Copyright (c) 2025 Xavier S, Bavani C, Kishore G, Pritha P, Sebastian S
This work is licensed under a Creative Commons Attribution 4.0 International License.
Experimental and Theoretical Analysis of 4-(4-(4,5-Dihydro-5-(4-isopropylphenyl)-1H-pyrazol-3-yl)phenyl)morpholine Molecule: Spectroscopy, NLO, Docking and Reactivity Studies
Corresponding Author(s) : S. Xavier
Asian Journal of Chemistry,
Vol. 37 No. 2 (2025): Vol 37 Issue 2, 2025
Abstract
This study unveils the molecular structural and spectroscopic analysis of 4-(4-(4,5-dihydro-5-(4-isopropylphenyl)-1H-pyrazol-3-yl)-phenyl)morpholine (IPH) to determine its biological behaviour and stability through a DFT study. Theoretical calculations at the B3LYP/6-311G(d,p) level of the basis set and functional group have revealed unique and intriguing insights. Experimental UV-Vis, FT-IR and NMR analyses were carried out, predicting their functional group, mode of vibration and λmax at 300 nm, which also correlated with the DFT studies. The donor-acceptor interactions of molecule have been clarified by executing the natural bond orbital (NBO). Potential energy distribution (PED) was used to identify the vibration mode. To evaluate the 1H and 13C NMR, the gauge independent atomic orbital (GIAO) approach is modified. The electronic transition of the molecule was established by applying the time-dependent density functional theory (TD-DFT) approach. It was found that the theoretical band gap was 4 eV, indicating that the molecule is reactive and stable. By examining the charge distribution and electrostatic potential of molecule, a significant data regarding its active area was revealed. Similarly, the electron-hole distribution was detected and the reactive sites were predicted through the electron localized function (ELF) and localized orbital locator (LOL) studies. The molecular docking was also performed to determine the biological behaviour of the molecules against prostate cancer and the inhibition rate and docking score were also calculated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Kumari and R.K. Singh, Bioorg. Chem., 96, 103578 (2020); https://doi.org/10.1016/j.bioorg.2020.103578
- F. Arshad, M.F. Khan, W. Akhtar, M.M. Alam, L.M. Nainwal, S.K. Kaushik, M. Akhter, S. Parvez, S.M. Hasan and M. Shaquiquzzaman, Eur. J. Med. Chem., 167, 324 (2019); https://doi.org/10.1016/j.ejmech.2019.02.015
- R. Lesyk, J. Med. Sci., 89, 407 (2020); https://doi.org/10.20883/medical.e407
- S. El-Assaly, A.E.H.A. Ismail, H. Bary and M. Abouelenein, Curr. Chem. Lett., 10, 309 (2021); https://doi.org/10.5267/j.ccl.2021.3.003
- R. Thomas, Y.S. Mary, K.S. Resmi, B. Narayana, B.K. Sarojini, G. Vijayakumar and C. Van Alsenoy, J. Mol. Struct., 1181, 455 (2019); https://doi.org/10.1016/j.molstruc.2019.01.003
- S. Sebastian, S. Sylvestre, N. Sundaraganesan, B. Karthikeyan and S. Silvan, Heliyon, 8, e08821 (2022); https://doi.org/10.1016/j.heliyon.2022.e08821
- K.A. Abdalkarim, S.J. Mohammed, A.H. Hasan, K.M. Omer, K.H.H. Aziz, F. Paularokiadoss, R.F. Hamarouf, H.Q. Hassan and T. Christopher Jeyakumar, Chem. Phy. Imp., 8, 100402 (2024); https://doi.org/10.1016/j.chphi.2023.100402
- S.S. Margreat, S. Ramalingam, H.M. Al-Maqtari, J. Jamalis, S. Sebastian, S. Periandy and S. Xavier, Chem. Data Coll., 33, 100701 (2021); https://doi.org/10.1016/j.cdc.2021.100701
- C. Adaikalaraj D. Bhakiaraj R.N. Asha, T.A. Sandosh, S. Manivarman and F. Paularokiadoss, Vietnam J. Chem., 60, 472 (2022); https://doi.org/10.1002/vjch.202100193
- H.K. Thabet, A.F. Al-Hossainy and M. Imran, Opt. Mater., 105, 109915 (2020); https://doi.org/10.1016/j.optmat.2020.109915
- A. Frisch, Gaussian 09W Reference, Gaussian Inc., Wallingford CT, USA, pp. 1-25 (2009).
- H. Kruse, L. Goerigk and S. Grimme, J. Org. Chem., 77, 10824 (2012); https://doi.org/10.1021/jo302156p
- M.H. Jamróz. Spectrochim. Acta A: Mol. Biomol. Spectrosc., 114, 220 (2013); https://doi.org/10.1016/j.saa.2013.05.096
- R. Tiwari, K. Mahasenan, R. Pavlovicz, C. Li and E. Tjarks, J. Chem. Inf. Mol., 49, 1581 (2009); https://doi.org/10.1021/ci900031y
- Z. Ullah, B. Mustafa, H.J. Kim, Y.S. Mary, Y. Shyma Mary and H.W. Kwon, J. Mol. Liq., 357, 119076 (2022); https://doi.org/10.1016/j.molliq.2022.119076
- P. Botschwina and J. Flügge, Chem. Phys. Lett., 180, 589 (1991); https://doi.org/10.1016/0009-2614(91)85015-O
- J. Demaison, L. Margules and J.E. Boggs, Chem. Phys., 260, 65 (2000); https://doi.org/10.1016/S0301-0104(00)00253-6
- S.K. Saha, A. Hens, N.C. Murmu and P. Banerjee, J. Mol. Liq., 215, 486 (2016); https://doi.org/10.1016/j.molliq.2016.01.024
- J.M. Ramos, O. Versiane, J. Felcman and C.A. Téllez S., Spectrochim. Acta: Mol. Biomol. Spectrosc., 72, 182 (2009); https://doi.org/10.1016/j.saa.2008.09.026
- Y. Kaddouri, F. Abrigach, N. Mechbal, Y. Karzazi, M. El Kodadi, A. Aouniti and R. Touzani, Mater. Today Proc., 13, 956 (2019); https://doi.org/10.1016/j.matpr.2019.04.060
- R.R. Pillai, V.V. Menon, Y.S. Mary, S. Armakovic, S.J. Armakovic and C.Y. Panicker, J. Mol. Struct., 1130, 208 (2017); https://doi.org/10.1016/j.molstruc.2016.10.032
- S.S. Pathade, V.A. Adole, B.S. Jagdale and T.B. Pawar, J. Mater. Sci. Res. India., 17, 27 (2020); https://doi.org/10.13005/msri.17.special-issue1.05
- N. Manju, B. Kalluraya, Asma and M.S. Kumar, J. Mol. Struct., 1193, 386 (2019); https://doi.org/10.1016/j.molstruc.2019.05.049
- K. Bhavani, J. Christina Rhoda, M.K. Hossain and C. Karnan, Opt. Mater., 148, 114924 (2024); https://doi.org/10.1016/j.optmat.2024.114924
- C. Morell, A. Grand and A. Toro-Labbe, J. Phys. Chem. A, 109, 205 (2005); https://doi.org/10.1021/jp046577a
- M. Arivazhagan, S. Manivel, S. Jeyavijayan and R. Meenakshi, Spectrochim. Acta Part A: Mol. Biomol. Spectros., 134, 493 (2015); https://doi.org/10.1016/j.saa.2014.06.108
- B.A. Shainyan, N.N. Chipanina, T.N. Aksamentova, L.P. Oznobikhina, G.N. Rosentsveig and I.B. Rosentsveig, Tetrahedron, 66, 8551 (2010); https://doi.org/10.1016/j.tet.2010.08.076
- K. Anbukarasi, S. Xavier, J. Jamalis, S. Sebastian, F. Paularokiadoss, S. Periandy and R. Rajkumar, J. Mol. Struct., 1249, 131580 (2022); https://doi.org/10.1016/j.molstruc.2021.131580
- K. Anbukarasi, S. Xavier, A.H. Hasan, Y.L. Er, J. Jamalis, S. Sebastian and S. Periandy, Curr. Phys. Chem., 13, 37 (2023); https://doi.org/10.2174/1877946812666220928102954
- A. Innasiraj, B. Anandhi, Y. Gnanadeepam, N. Das, F. Paularokiadoss, A.V. Ilavarasi, C.D. Sheela, D.R. Ampasala and T.C. Jeyakumar, J. Mol. Struct., 1265, 133450 (2022); https://doi.org/10.1016/j.molstruc.2022.133450
- J. Jamalis, S. Sebastian, S.S. Margreat, K. Subashini, S. Ramalingam, H.M. Al-Maqtari, S. Periandy and S. Xavier, Chem. Data Coll., 28, 100415 (2020); https://doi.org/10.1016/j.cdc.2020.100415
- S. Demir, F. Tinmaz, N. Dege and I.O. Ilhan, J. Mol. Struct., 1108, 637 (2016); https://doi.org/10.1016/j.molstruc.2015.12.057
- S. Asokan, S. Sebastian, B. Karthikeyan, S. Xavier, R.G. Raman, S. Silvan, S.S. Margreat and R. Sagayaraj, Chem. Phys. Impact, 8, 100497 (2024); https://doi.org/10.1016/j.chphi.2024.100497
- S. Sebastian, S. Sylvestre, N. Sundaraganesan, B. Karthikeyan and S. Silvan, Heliyon, 8, e08821 (2022); https://doi.org/10.1016/j.heliyon.2022.e08821
- L. Rosenfeld, A. Sananes, Y. Zur, S. Cohen, K. Dhara, S. Gelkop, E. Ben Zeev, A. Shahar, L. Lobel, B. Akabayov, E. Arbely and N. Papo, J. Med. Chem., 63, 7601 (2020); https://doi.org/10.1021/acs.jmedchem.0c00418
- W.L. DeLano, CCP4 Newsl. Protein Crystallogr., 40, 82 (2002).
- P. Ayaz, D. Andres, D.A. Kwiatkowski, C.C. Kolbe, P. Lienau, G. Siemeister, U. Lücking and C.M. Stegmann, ACS Chem. Biol., 11, 1710 (2016); https://doi.org/10.1021/acschembio.6b00074
- A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
- P. Pritha, G. Kishore, S. Xavier, F. Paularokiadoss, D. Bhakiaraj, S. Periandy, G. Bouzid and S. Ayachi, Mater. Chem. Phys., 326, 129829 (2024); https://doi.org/10.1016/j.matchemphys.2024.129829
References
A. Kumari and R.K. Singh, Bioorg. Chem., 96, 103578 (2020); https://doi.org/10.1016/j.bioorg.2020.103578
F. Arshad, M.F. Khan, W. Akhtar, M.M. Alam, L.M. Nainwal, S.K. Kaushik, M. Akhter, S. Parvez, S.M. Hasan and M. Shaquiquzzaman, Eur. J. Med. Chem., 167, 324 (2019); https://doi.org/10.1016/j.ejmech.2019.02.015
R. Lesyk, J. Med. Sci., 89, 407 (2020); https://doi.org/10.20883/medical.e407
S. El-Assaly, A.E.H.A. Ismail, H. Bary and M. Abouelenein, Curr. Chem. Lett., 10, 309 (2021); https://doi.org/10.5267/j.ccl.2021.3.003
R. Thomas, Y.S. Mary, K.S. Resmi, B. Narayana, B.K. Sarojini, G. Vijayakumar and C. Van Alsenoy, J. Mol. Struct., 1181, 455 (2019); https://doi.org/10.1016/j.molstruc.2019.01.003
S. Sebastian, S. Sylvestre, N. Sundaraganesan, B. Karthikeyan and S. Silvan, Heliyon, 8, e08821 (2022); https://doi.org/10.1016/j.heliyon.2022.e08821
K.A. Abdalkarim, S.J. Mohammed, A.H. Hasan, K.M. Omer, K.H.H. Aziz, F. Paularokiadoss, R.F. Hamarouf, H.Q. Hassan and T. Christopher Jeyakumar, Chem. Phy. Imp., 8, 100402 (2024); https://doi.org/10.1016/j.chphi.2023.100402
S.S. Margreat, S. Ramalingam, H.M. Al-Maqtari, J. Jamalis, S. Sebastian, S. Periandy and S. Xavier, Chem. Data Coll., 33, 100701 (2021); https://doi.org/10.1016/j.cdc.2021.100701
C. Adaikalaraj D. Bhakiaraj R.N. Asha, T.A. Sandosh, S. Manivarman and F. Paularokiadoss, Vietnam J. Chem., 60, 472 (2022); https://doi.org/10.1002/vjch.202100193
H.K. Thabet, A.F. Al-Hossainy and M. Imran, Opt. Mater., 105, 109915 (2020); https://doi.org/10.1016/j.optmat.2020.109915
A. Frisch, Gaussian 09W Reference, Gaussian Inc., Wallingford CT, USA, pp. 1-25 (2009).
H. Kruse, L. Goerigk and S. Grimme, J. Org. Chem., 77, 10824 (2012); https://doi.org/10.1021/jo302156p
M.H. Jamróz. Spectrochim. Acta A: Mol. Biomol. Spectrosc., 114, 220 (2013); https://doi.org/10.1016/j.saa.2013.05.096
R. Tiwari, K. Mahasenan, R. Pavlovicz, C. Li and E. Tjarks, J. Chem. Inf. Mol., 49, 1581 (2009); https://doi.org/10.1021/ci900031y
Z. Ullah, B. Mustafa, H.J. Kim, Y.S. Mary, Y. Shyma Mary and H.W. Kwon, J. Mol. Liq., 357, 119076 (2022); https://doi.org/10.1016/j.molliq.2022.119076
P. Botschwina and J. Flügge, Chem. Phys. Lett., 180, 589 (1991); https://doi.org/10.1016/0009-2614(91)85015-O
J. Demaison, L. Margules and J.E. Boggs, Chem. Phys., 260, 65 (2000); https://doi.org/10.1016/S0301-0104(00)00253-6
S.K. Saha, A. Hens, N.C. Murmu and P. Banerjee, J. Mol. Liq., 215, 486 (2016); https://doi.org/10.1016/j.molliq.2016.01.024
J.M. Ramos, O. Versiane, J. Felcman and C.A. Téllez S., Spectrochim. Acta: Mol. Biomol. Spectrosc., 72, 182 (2009); https://doi.org/10.1016/j.saa.2008.09.026
Y. Kaddouri, F. Abrigach, N. Mechbal, Y. Karzazi, M. El Kodadi, A. Aouniti and R. Touzani, Mater. Today Proc., 13, 956 (2019); https://doi.org/10.1016/j.matpr.2019.04.060
R.R. Pillai, V.V. Menon, Y.S. Mary, S. Armakovic, S.J. Armakovic and C.Y. Panicker, J. Mol. Struct., 1130, 208 (2017); https://doi.org/10.1016/j.molstruc.2016.10.032
S.S. Pathade, V.A. Adole, B.S. Jagdale and T.B. Pawar, J. Mater. Sci. Res. India., 17, 27 (2020); https://doi.org/10.13005/msri.17.special-issue1.05
N. Manju, B. Kalluraya, Asma and M.S. Kumar, J. Mol. Struct., 1193, 386 (2019); https://doi.org/10.1016/j.molstruc.2019.05.049
K. Bhavani, J. Christina Rhoda, M.K. Hossain and C. Karnan, Opt. Mater., 148, 114924 (2024); https://doi.org/10.1016/j.optmat.2024.114924
C. Morell, A. Grand and A. Toro-Labbe, J. Phys. Chem. A, 109, 205 (2005); https://doi.org/10.1021/jp046577a
M. Arivazhagan, S. Manivel, S. Jeyavijayan and R. Meenakshi, Spectrochim. Acta Part A: Mol. Biomol. Spectros., 134, 493 (2015); https://doi.org/10.1016/j.saa.2014.06.108
B.A. Shainyan, N.N. Chipanina, T.N. Aksamentova, L.P. Oznobikhina, G.N. Rosentsveig and I.B. Rosentsveig, Tetrahedron, 66, 8551 (2010); https://doi.org/10.1016/j.tet.2010.08.076
K. Anbukarasi, S. Xavier, J. Jamalis, S. Sebastian, F. Paularokiadoss, S. Periandy and R. Rajkumar, J. Mol. Struct., 1249, 131580 (2022); https://doi.org/10.1016/j.molstruc.2021.131580
K. Anbukarasi, S. Xavier, A.H. Hasan, Y.L. Er, J. Jamalis, S. Sebastian and S. Periandy, Curr. Phys. Chem., 13, 37 (2023); https://doi.org/10.2174/1877946812666220928102954
A. Innasiraj, B. Anandhi, Y. Gnanadeepam, N. Das, F. Paularokiadoss, A.V. Ilavarasi, C.D. Sheela, D.R. Ampasala and T.C. Jeyakumar, J. Mol. Struct., 1265, 133450 (2022); https://doi.org/10.1016/j.molstruc.2022.133450
J. Jamalis, S. Sebastian, S.S. Margreat, K. Subashini, S. Ramalingam, H.M. Al-Maqtari, S. Periandy and S. Xavier, Chem. Data Coll., 28, 100415 (2020); https://doi.org/10.1016/j.cdc.2020.100415
S. Demir, F. Tinmaz, N. Dege and I.O. Ilhan, J. Mol. Struct., 1108, 637 (2016); https://doi.org/10.1016/j.molstruc.2015.12.057
S. Asokan, S. Sebastian, B. Karthikeyan, S. Xavier, R.G. Raman, S. Silvan, S.S. Margreat and R. Sagayaraj, Chem. Phys. Impact, 8, 100497 (2024); https://doi.org/10.1016/j.chphi.2024.100497
S. Sebastian, S. Sylvestre, N. Sundaraganesan, B. Karthikeyan and S. Silvan, Heliyon, 8, e08821 (2022); https://doi.org/10.1016/j.heliyon.2022.e08821
L. Rosenfeld, A. Sananes, Y. Zur, S. Cohen, K. Dhara, S. Gelkop, E. Ben Zeev, A. Shahar, L. Lobel, B. Akabayov, E. Arbely and N. Papo, J. Med. Chem., 63, 7601 (2020); https://doi.org/10.1021/acs.jmedchem.0c00418
W.L. DeLano, CCP4 Newsl. Protein Crystallogr., 40, 82 (2002).
P. Ayaz, D. Andres, D.A. Kwiatkowski, C.C. Kolbe, P. Lienau, G. Siemeister, U. Lücking and C.M. Stegmann, ACS Chem. Biol., 11, 1710 (2016); https://doi.org/10.1021/acschembio.6b00074
A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
P. Pritha, G. Kishore, S. Xavier, F. Paularokiadoss, D. Bhakiaraj, S. Periandy, G. Bouzid and S. Ayachi, Mater. Chem. Phys., 326, 129829 (2024); https://doi.org/10.1016/j.matchemphys.2024.129829