Copyright (c) 2025 Suneetha Majji, G. Hima Bindu, K. Jyothi Priya, Ch. Ramya Kumari, G. Supriya, D. Swapna, S. Paul Douglas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of MgFe2O4-TiO2-SiO2 Ternary Nanocomposite: Synthesis, Characterization and Photocatalytic Degradation of Brilliant Green dye
Corresponding Author(s) : S. Paul Douglas
Asian Journal of Chemistry,
Vol. 37 No. 2 (2025): Vol 37 Issue 2, 2025
Abstract
Wet chemical techniques were used to synthesize magnetic nanocomposites effectively, whereas the sol-gel process was used to individually prepare the magnetic nanocomposites. The UV-DRS, FTIR, SEM, EDS, TEM, XRD and VSM methods were used to characterize the MgFe2O4-TiO2-SiO2 nanocomposite. The photocatalytic activity of the nanocomposite as a photocatalyst towards the degradation of Brilliant green was studied under visible light irradiation. The photocatalytic activity showed that the nanocomposites were still effective after three cycles of catalysis and degraded brilliant green dye at a rate of 100%. The structural, morphological and optical properties of the composites have been investigated by X-ray diffraction and high-resolution transmission electron microscopy (HR-TEM) techniques. The HR-TEM images confirm the formation of ternary nanocomposites having smaller particle sizes, whereas the surface morphology of nanocomposite was examined by SEM and EDS techniques. In UV-DRS analysis, the band gap energy value of the nanocomposite was found to be 2.3 eV. These results concluded that a synthesized photocatalyst is effective, reusable, easily separable, low-cost and eco-friendly. The antibacterial activity of the prepared nanocomposites was also evaluated against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. The novel nanocomposites have shown efficient photocatalytic activity and better antibacterial activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Mittal, S. Sharma, T. Kumar, N.S. Chauhan, K. Kumari, S. Maken and N. Kumar, J. Mater. Sci. Mater. Electron., 31, 2010 (2020); https://doi.org/10.1007/s10854-019-02720-z
- W. Somraksa, S. Suwanboon, P. Amornpitoksuk and C. Randorn, Mater. Res., 23, e20190627 (2020); https://doi.org/10.1590/1980-5373-mr-2019-0627
- D. Bhattacharya, D. Ghoshal, D. Mondal, B.K. Paul, N. Bose, S. Das and M. Basu, Results Phys., 12, 1850 (2019); https://doi.org/10.1016/j.rinp.2019.01.065
- M.A. Al-Nuaim, A.A. Alwasiti and Z.Y. Shnain, Chem. Zvesti, 77, 677 (2023); https://doi.org/10.1007/s11696-022-02468-7
- M.B. Tahir, M. Sohaib, M. Sagir and M. Rafique, Encyclopedia of Smart Mater., 2, 578 (2022); https://doi.org/10.1016/B978-0-12-815732-9.00006-1
- A. Tariq, U. Ullah, I. Ahmad, M. Asif, I. Sadiq and H. Haleem, IET Nanobiotechnol., 13, 697 (2019); https://doi.org/10.1049/iet-nbt.2018.5032
- H.N.C. Dharma, J. Jaafar, N. Widiastuti, H. Matsuyama, S. Rajabsadeh, M.H.D. Othman, M.A. Rahman, N.N.M. Jafri, N.S. Suhaimin, A.M. Nasir and N.H. Alias, Membranes, 12, 1 (2022); https://doi.org/10.3390/membranes12030345
- R. Li, T. Li and Q. Zhou, Catalysts, 10, 804 (2020); https://doi.org/10.3390/catal10070804
- Y. Noratiqah and N.B. Ibrahim, Appl. Phys., A Mater. Sci. Process., 129, 1 (2023); https://doi.org/10.1007/s00339-022-06289-z
- T. Tangcharoen, Results Mater., 23, 100596 (2024); https://doi.org/10.1016/j.rinma.2024.100596
- V. Cappello, L. Marchetti, P. Parlanti, S. Landi, I. Tonazzini, M. Cecchini, V. Piazza and M. Gemmi, Sci. Rep., 6, 1 (2016); https://doi.org/10.1038/s41598-016-0001-8
- A. Tariq, U. Ullah, I. Ahmad, M. Asif, I. Sadiq and H. Haleem, IET Nanobiotechnol., 13, 697 (2019); https://doi.org/10.1049/iet-nbt.2018.5032
- R.L. Pozzo, M.A. Baltanas and A.E. Cassano, Catal. Today, 39, 219 (1997); https://doi.org/10.1016/S0920-5861(97)00103-X
- D. Beydoun, R. Amal, G. Low and S. McEvoy, J. Mol. Catal. Chem., 180, 193 (2001); https://doi.org/10.1016/S1381-1169(01)00429-0
- H. Hamad, M. Abd El-Latif, A.E.-H. Kashyout, W. Sadik and M. Feteha, New J. Chem., 39, 3116 (2015); https://doi.org/10.1039/C4NJ01821D
- N. Hosseinahli, M. Hasanov and M. Abbasi, J. Water Reuse Desalin., 11, 508 (2021); https://doi.org/10.2166/wrd.2021.085
- S. Ryali and P.D. Sanasi, J. Chin. Chem. Soc., 65, 1423 (2018); https://doi.org/10.1002/jccs.201800154
- J. Xue, H. Zhang, J. Zhao, X. Ou and Y. Ling, J. Magnet. Magn. Mater., 514, 167168 (2020); https://doi.org/10.1016/j.jmmm.2020.167168
- G. Nagaraj, D. Brundha, C. Chandraleka, M. Arulpriya, V. Kowsalya, S. Sangavi, R. Jayalakshmi, S. Tamilarasu and R. Murugan, SN Appl. Sci., 2, 734 (2020); https://doi.org/10.1007/s42452-020-2554-1
- O. Samuel, M.H.D. Othman, R. Kamaludin, O. Sinsamphanh, H. Abdullah, M.H. Puteh and T.A. Kurniawan, Ceram. Int., 48, 5845 (2020); https://doi.org/10.1016/j.ceramint.2021.11.158
References
A. Mittal, S. Sharma, T. Kumar, N.S. Chauhan, K. Kumari, S. Maken and N. Kumar, J. Mater. Sci. Mater. Electron., 31, 2010 (2020); https://doi.org/10.1007/s10854-019-02720-z
W. Somraksa, S. Suwanboon, P. Amornpitoksuk and C. Randorn, Mater. Res., 23, e20190627 (2020); https://doi.org/10.1590/1980-5373-mr-2019-0627
D. Bhattacharya, D. Ghoshal, D. Mondal, B.K. Paul, N. Bose, S. Das and M. Basu, Results Phys., 12, 1850 (2019); https://doi.org/10.1016/j.rinp.2019.01.065
M.A. Al-Nuaim, A.A. Alwasiti and Z.Y. Shnain, Chem. Zvesti, 77, 677 (2023); https://doi.org/10.1007/s11696-022-02468-7
M.B. Tahir, M. Sohaib, M. Sagir and M. Rafique, Encyclopedia of Smart Mater., 2, 578 (2022); https://doi.org/10.1016/B978-0-12-815732-9.00006-1
A. Tariq, U. Ullah, I. Ahmad, M. Asif, I. Sadiq and H. Haleem, IET Nanobiotechnol., 13, 697 (2019); https://doi.org/10.1049/iet-nbt.2018.5032
H.N.C. Dharma, J. Jaafar, N. Widiastuti, H. Matsuyama, S. Rajabsadeh, M.H.D. Othman, M.A. Rahman, N.N.M. Jafri, N.S. Suhaimin, A.M. Nasir and N.H. Alias, Membranes, 12, 1 (2022); https://doi.org/10.3390/membranes12030345
R. Li, T. Li and Q. Zhou, Catalysts, 10, 804 (2020); https://doi.org/10.3390/catal10070804
Y. Noratiqah and N.B. Ibrahim, Appl. Phys., A Mater. Sci. Process., 129, 1 (2023); https://doi.org/10.1007/s00339-022-06289-z
T. Tangcharoen, Results Mater., 23, 100596 (2024); https://doi.org/10.1016/j.rinma.2024.100596
V. Cappello, L. Marchetti, P. Parlanti, S. Landi, I. Tonazzini, M. Cecchini, V. Piazza and M. Gemmi, Sci. Rep., 6, 1 (2016); https://doi.org/10.1038/s41598-016-0001-8
A. Tariq, U. Ullah, I. Ahmad, M. Asif, I. Sadiq and H. Haleem, IET Nanobiotechnol., 13, 697 (2019); https://doi.org/10.1049/iet-nbt.2018.5032
R.L. Pozzo, M.A. Baltanas and A.E. Cassano, Catal. Today, 39, 219 (1997); https://doi.org/10.1016/S0920-5861(97)00103-X
D. Beydoun, R. Amal, G. Low and S. McEvoy, J. Mol. Catal. Chem., 180, 193 (2001); https://doi.org/10.1016/S1381-1169(01)00429-0
H. Hamad, M. Abd El-Latif, A.E.-H. Kashyout, W. Sadik and M. Feteha, New J. Chem., 39, 3116 (2015); https://doi.org/10.1039/C4NJ01821D
N. Hosseinahli, M. Hasanov and M. Abbasi, J. Water Reuse Desalin., 11, 508 (2021); https://doi.org/10.2166/wrd.2021.085
S. Ryali and P.D. Sanasi, J. Chin. Chem. Soc., 65, 1423 (2018); https://doi.org/10.1002/jccs.201800154
J. Xue, H. Zhang, J. Zhao, X. Ou and Y. Ling, J. Magnet. Magn. Mater., 514, 167168 (2020); https://doi.org/10.1016/j.jmmm.2020.167168
G. Nagaraj, D. Brundha, C. Chandraleka, M. Arulpriya, V. Kowsalya, S. Sangavi, R. Jayalakshmi, S. Tamilarasu and R. Murugan, SN Appl. Sci., 2, 734 (2020); https://doi.org/10.1007/s42452-020-2554-1
O. Samuel, M.H.D. Othman, R. Kamaludin, O. Sinsamphanh, H. Abdullah, M.H. Puteh and T.A. Kurniawan, Ceram. Int., 48, 5845 (2020); https://doi.org/10.1016/j.ceramint.2021.11.158