Copyright (c) 2025 Geetha Das, Department of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil, 626126, Tamil Nadu, India
This work is licensed under a Creative Commons Attribution 4.0 International License.
Surfactant Stabilized Nanoparticles for Environmental Sensing Applications
Corresponding Author(s) : Geetha Das
Asian Journal of Chemistry,
Vol. 37 No. 2 (2025): Vol 37 Issue 2, 2025
Abstract
Surfactants play a major role in the formation of nanoparticles due to their strong dispersion-enhancing properties. Nano-emulsions are non-equilibrium systems, their characteristics properties rely on both their synthesis process and composition. Research on optimization strategies for the synthesis of nanomaterials is currently increasing. Surfactants are a flexible class of materials that emphasize surface energy levels, chemical properties, regularity, pH sensitivity, activity and the performance of nanoparticles. The broad spectrum of surface improvements and applications, such as sensors, catalytic activity, the conversion of energy and storage capacity, biological acceptance and therapeutics, dispersion behaviour of nanoparticles in fundamental composite materials, cement, traditional detergents, purification systems and particular applications in environmental sensing have become inevitable. The exploration of design concepts for surfactants that enhance the efficacy of specific nanostructures has been increasingly prominent in recent discussions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Dong, Y. Song, H. Wang, L. Su, Y. Shen, D.K. Tran, R.A. Letteri, J.A. Flores, Y.N. Lin, J. Li and K.L. Wooley, Polym. Chem., 11, 4895 (2020); https://doi.org/10.1039/D0PY00029A
- J.M.J. Jeyakumar and M. Zhang, Himal. J. Agric., 28, 3 (2022); https://doi.org/10.47310/hja.2022.v03i01.002
- F. Busetti, A. Heitz, M. Cuomo, S. Badoer and P. Traverso, J. Chromatogr. A, 1102, 104 (2006); https://doi.org/10.1016/j.chroma.2005.10.013
- J. Briffa, E. Sinagra and R. Blundell, Heliyon, 6, e04691 (2020); https://doi.org/10.1016/j.heliyon.2020.e04691
- V. Masindi and K.L. Muedi, Environmental Contamination by Heavy Metals. In Heavy Metals, IntechOpen, pp. 115-133 (2018).
- H. Qin, Q. Su, S.T. Khu and N. Tang, Sustainability, 6, 7433 (2014); https://doi.org/10.3390/su6107433
- H. Kumar, N. Kumari and R. Sharma, Environ. Impact Assess. Rev., 85, 106438 (2020); https://doi.org/10.1016/j.eiar.2020.106438
- P. Koedrith and Y.R. Seo, Int. J. Mol. Sci., 12, 9576 (2011); https://doi.org/10.3390/ijms12129576
- M. Petrovic and D. Barceló, Anal. Chem., 72, 4560 (2000); https://doi.org/10.1021/ac000306o
- S. Gavrilas, C.S. Ursachi, S. Perta-Crisan and F.D. Munteanu, Sensors, 22, 1513 (2022); https://doi.org/10.3390/s22041513
- C.I. Justino, A.C. Duarte and T.A. Rocha-Santos, Sensors, 17, 2918 (2017); https://doi.org/10.3390/s17122918
- Z. Khanam, S. Gupta and A. Verma, S. Afr. J. Bot., 134, 401 (2020); https://doi.org/10.1016/j.sajb.2020.08.007
- J.A. Silva, Sustainability, 15, 10940 (2023); https://doi.org/10.3390/su151410940
- A. Hashem, M.A.M. Hossain, A.R. Marlinda, M.A. Mamun, K. Simarani and M.R. Johan, Appl. Surf. Sci. Adv., 4, 100064 (2021); https://doi.org/10.1016/j.apsadv.2021.100064
- D.D. Mara, Public Health, 117, 452 (2003); https://doi.org/10.1016/S0033-3506(03)00143-4
- M. Moore, P. Gould and B.S. Keary, Int. J. Hyg. Environ Health., 206, 269 (2003); https://doi.org/10.1078/1438-4639-00223
- V. Krepl, P. Kment and Z. Vališ, Agric. Trop. Subtrop., 46, 73 (2013); https://doi.org/10.2478/ats-2013-0012
- M.A. Montgomery and M. Elimelech, Environ. Sci. Technol., 41, 17 (2007); https://doi.org/10.1021/es072435t
- J. Theron and T.E. Cloete, Crit. Rev. Microbiol., 28, 1 (2002); https://doi.org/10.1080/1040-840291046669
- M.T. Amin, A.A. Alazba and U. Manzoor, Adv. Mater. Sci. Eng., 2014, 825910 (2014); https://doi.org/10.1155/2014/825910
- P. Leonard, S. Hearty, J. Brennan, L. Dunne, J. Quinn, T. Chakraborty and R. O’Kennedy, Enzyme Microb. Technol., 32, 3 (2003); https://doi.org/10.1016/S0141-0229(02)00232-6
- N.J. Ashbolt, Toxicology, 198, 229 (2004); https://doi.org/10.1016/j.tox.2004.01.030
- L. Haller, G. Hutton and J. Bartram, J. Water Health, 5, 467 (2007); https://doi.org/10.2166/wh.2007.008
- X. Zhou, Z. Li, T. Zheng, Y. Yan, P. Li, E.A. Odey, H.P. Mang and S.M. Uddin, Environ. Int., 120, 246 (2018); https://doi.org/10.1016/j.envint.2018.07.047
- E.I. Epelle, P.U. Okoye, S. Roddy, B. Gunes and J.A. Okolie, Environments, 9, 141 (2022); https://doi.org/10.3390/environments9110141
- I. Tlili and T.A. Alkanhal, J. Water Reuse Desalin., 9, 232 (2019); https://doi.org/10.2166/wrd.2019.057
- R. Pabbati, V.R. Kondakindi and F. Shaik, in eds.: N.R. Maddela, S. Chakraborty and R. Prasad, Applications of Nanomaterials in Biomedical Engineering, In: Nanotechnology for Advances in Medical Microbiology, Environmental and Microbial Biotechnology, Springer, Singapore, Chap. pp 51–86 (2021); https://doi.org/10.1007/978-981-15-9916-3_3
- S. Lakshminarayanan, M. Kumaresan, V. Jeyasingh, N. Selvapalam, L. Piramuthu and G. Dass, Chem. Zvesti, 76, 1891 (2022); https://doi.org/10.1007/s11696-021-01984-2
- V. Deepak, P.S. Umamaheshwaran, K. Guhan, R.A. Nanthini, B. Krithiga, N.M. Jaithoon and S. Gurunathan, Colloids Surf. B Biointerfaces, 86, 353 (2011); https://doi.org/10.1016/j.colsurfb.2011.04.019
- M. Li, H. Gou, I. Al-Ogaidi and N. Wu, ACS Sustain. Chem.& Eng., 1, 713 (2013); https://doi.org/10.1021/sc400019a
- D. Pokhrel and T. Viraraghavan, Water Res., 40, 549 (2006); https://doi.org/10.1016/j.watres.2005.11.040
- B. Han, T. Runnells, J. Zimbron and R. Wickramasinghe, Desalination, 145, 293 (2002); https://doi.org/10.1016/S0011-9164(02)00425-3
- D.R. Pokhrel, M.K. Sah, B. Gautam, H.K. Basak, A. Bhattarai and A. Chatterjee, RSC Adv., 13, 17685 (2023); https://doi.org/10.1039/D3RA02883F
- S. Jain, M. Nehra, R. Kumar, N. Dilbaghi, T.Y. Hu, S. Kumar, A. Kaushik and C. Li, Biosens. Bioelectron., 179, 113074 (2021); https://doi.org/10.1016/j.bios.2021.113074
- P. Teengam, W. Siangproh, A. Tuantranont, T. Vilaivan, O. Chailapakul and C.S. Henry, Anal. Chem., 89, 5428 (2017); https://doi.org/10.1021/acs.analchem.7b00255
- R. Tenchov, R. Bird, A.E. Curtze and Q. Zhou, ACS Nano, 15, 16982 (2021); https://doi.org/10.1021/acsnano.1c04996
- B. Mubeen, A.N. Ansar, R. Rasool, I. Ullah, S.S. Imam, S. Alshehri, M.M. Ghoneim, S.I. Alzarea, M.S. Nadeem and I. Kazmi, Antibiotics, 10, 1473 (2021); https://doi.org/10.3390/antibiotics10121473
- P. Brangel, A. Sobarzo, C. Parolo, B.S. Miller, P.D. Howes, S. Gelkop, J.J. Lutwama, J.M. Dye, R.A. McKendry, L. Lobel and M.M. Stevens, ACS Nano, 12, 63 (2018); https://doi.org/10.1021/acsnano.7b07021
- N. Yamamoto, Y. Ariumi, N. Nishida, R. Yamamoto, G. Bauer, T. Gojobori, K. Shimotohno and M. Mizokami, Gene, 758, 144944 (2020); https://doi.org/10.1016/j.gene.2020.144944
- J. Huo, A. Le Bas, H.M. Duyvesteyn, H. Mikolajek, T. Malinauskas, R.R. Ruza, T.K. Tan, P. Rijal, M. Dumoux, P.N. Ward, J. Ren, D. Zhou, P.J. Harrison, M. Weckener, D.K. Clare, V.K. Vogirala, J. Radecke, L. Moynié, Y. Zhao, J. Gilbert-Jaramillo, M.L. Knight, J.A. Tree, K.R. Buttigieg, N. Coombes, M.J. Elmore, M.W. Carroll, L. Carrique, P.N.M. Shah, W. James, A.R. Townsend, D.I. Stuart, R.J. Owens and J.H. Naismith, Nat. Struct. Mol. Biol., 27, 846 (2020); https://doi.org/10.1038/s41594-020-0469-6
- A. Luceri, R. Francese, D. Lembo, M. Ferraris and C. Balagna, Microorganisms, 11, 629 (2023); https://doi.org/10.3390/microorganisms11030629
- S. Haracz, M. Hilgendorff, J.D. Rybka and M. Giersig, Nucl. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms, 364, 120 (2015); https://doi.org/10.1016/j.nimb.2015.08.035
- B.F.B. Silva, E.F. Marques and U. Olsson, Langmuir, 24, 10746 (2008); https://doi.org/10.1021/la801548s
- M. Arunpandian, D. Sivaganesh, M.S. Revathy, K. Selvakumar, S. Arunachalam and D. Geetha, Int. J. Environ. Anal. Chem., 102, 5738 (2022); https://doi.org/10.1080/03067319.2020.1803847
- P. Khullar, V. Singh, A. Mahal, H. Kaur, V. Singh, T.S. Banipal, G. Kaur and M.S. Bakshi, J. Phys. Chem. C, 115, 10442 (2011); https://doi.org/10.1021/jp201712a
- Nini Liang, X. Hu, W. Li, A.W. Mwakosya, Z. Guo, Y. Xu, X. Huang, Z. Li, X. Zhang, X. Zou and J. Shi, Food Chem., 343, 128494 (2021); https://doi.org/10.1016/j.foodchem.2020.128494
- J. Gao, C.M. Bender and C.J. Murphy, Langmuir, 19, 9065 (2003); https://doi.org/10.1021/la034919i
- Z. Li, B. Liu, X. Li, S. Yu, L. Wang, Y. Hou, Y. Zou, M. Yao, Q. Li, B. Zou, T. Cui, G. Zou, G. Wang and Y. Liu, Nanotechnology, 18, 255602 (2007); https://doi.org/10.1088/0957-4484/18/25/255602
- C.C. Huang, Z. Yang, K.H. Lee and H.T. Chang, Angew. Chem. Int. Ed., 46, 6824 (2007); https://doi.org/10.1002/anie.200700803
- S.W. Bo, Z.Y. Yang, J.S. Kim, J.Y. Kim, U. Kang, G.J. Woo, Y.C. Chung, S.A. Eremin and D.H. Chung, J. Microbiol. Biotechnol., 10, 1629 (2007).
- N. Bagheri, V. Mazzaracchio, S. Cinti, N. Colozza, C. Di Natale, P.A. Netti, M. Saraji, S. Roggero, D. Moscone and F. Arduini, Anal. Chem., 93, 5225 (2021); https://doi.org/10.1021/acs.analchem.0c05469
- S.S. Dasary, A.K. Singh, D. Senapati, H. Yu and P.C. Ray, J. Am. Chem. Soc., 131, 13806 (2009); https://doi.org/10.1021/ja905134d
- J.L. Zhang, J.M. Du, B.X. Han, Z.M. Liu, T. Jiang and Z.F. Zhang, Angew. Chem., Int. Ed., 45, 1116 (2006); https://doi.org/10.1002/anie.200503762
- A.R. Ravishankara, J.S. Daniel and R.W. Portmann, Science, 326, 123 (2009); https://doi.org/10.1126/science.1176985
- N. Xiao and C. Yu, Anal. Chem., 82, 3659 (2010); https://doi.org/10.1021/ac902924p
- H. Tao, W. Wei, X. Zeng, X. Liu, X. Zhang and Y. Zhang, Microchim. Acta, 166, 53 (2009); https://doi.org/10.1007/s00604-009-0163-1
- J.Y. Tsai, S. Egelman, L. Cranor and A. Acquisti, Inform. Systm. Res., 22, 254 (2010); https://doi.org/10.1287/isre.1090.0260
- S.T. Niyomthai, P. Supaphol and P. Niyomthai, Materials Today: Proc., 52, 2505 (2022); https://doi.org/10.1016/j.matpr.2021.10.440
- D.J. Newman and G.M. Cragg, J. Nat. Prod., 70, 461 (2007); https://doi.org/10.1021/np068054v
- B.S. Chauhan and D.E. Johnson, Field Crops Res., 121, 226 (2011); https://doi.org/10.1016/j.fcr.2010.12.008
- H. Uzawa, K. Ohga, Y. Shinozaki, I. Ohsawa, T. Nagatsuka, Y. Seto, Y. Nishida, Biosens. Bioelectron., 24, 923 (2008); https://doi.org/10.1016/j.bios.2008.07.049
- J. Sharma, R. Chhabra, A. Cheng, J. Brownell, Y. Liu and H. Yan, Science, 323, 112 (2009); https://doi.org/10.1126/science.1165831
- T. Bo, S. Fenoglio, G. Malacarne, M. Pessino and F. Sgaribold, Limnologica, 37, 186 (2007); https://doi.org/10.1016/j.limno.2007.01.002
- L.B. Wang, W. Chen, D.H. Xu, B.S. Shim, Y.Y. Zhu, F.X. Sun, L.Q. Liu, C.F. Peng, Z.Y. Jin, C.L. Xu and N.A. Kotov, Nano Lett., 9, 4147 (2009); https://doi.org/10.1021/nl902368r
- I. Singh and R.K. Bedi, Solid State Sci., 13, 2011 (2011); https://doi.org/10.1016/j.solidstatesciences.2011.09.003
- S. Khoee and M. Yaghoobian, Eur. J. Med. Chem., 44, 2392 (2009); https://doi.org/10.1016/j.ejmech.2008.09.045
- S. Zhang and Y. Zhao, ACS Nano, 5, 2637 (2011); https://doi.org/10.1021/nn102666k
- H.M. Jung, K.E. Price and D.T. McQuade, J. Am. Chem. Soc., 125, 5351 (2003); https://doi.org/10.1021/ja0271983
- K.E. Price and D.T. McQuade, Chem. Commun., 13, 1714 (2005); https://doi.org/10.1039/b416892e
- S.M. Shaban, J. Kang and D.-H. Kim, Composites Commun., 22, 100537 (2020); https://doi.org/10.1016/j.coco.2020.100537
- X.M. Jiang, L. Zhang, W.Q. Zhang and S. Zhao, J. Surfactants Deterg., 18, 41 (2015); https://doi.org/10.1007/s11743-014-1604-3
- C. Femina Carolin and T. Kamalesh, Heliyon, 10, e29773 (2024); https://doi.org/10.1016/j.heliyon.2024.e29773
- A. Labena, M.A. Hegazy, H. Horn and E. Müller, J. Surfactants Deterg., 17, 419 (2014); https://doi.org/10.1007/s11743-013-1551-4
- Z. Dong, Y. Zheng and J. Zhao, J. Surfactants Deterg., 17, 1213 (2014); https://doi.org/10.1007/s11743-014-1616-z
- C. Ge, J. Zhu, G. Wu, H. Ye, H. Lu and L. Yin, Biomacromolecules, 23, 2647 (2022); https://doi.org/10.1021/acs.biomac.2c00399
- M.S. Shim and Y. Xia, Angew. Chem., 52, 6926 (2022); https://doi.org/10.1002/anie.201209633
- H. Mohan, M. Bartkowski and S. Giordani, Appl. Sci., 11, 10565 (2021); https://doi.org/10.3390/app112210565
- L. Xu, M. Zhao, W. Gao, Y. Yang, J. Zhang, Y. Pu and B. He, Colloids Surf. B Biointerfaces, 181, 252 (2019); https://doi.org/10.1016/j.colsurfb.2019.05.064
- K. Goyal, A. Konar, B.S.H. Kumar and V. Koul, Nanoscale, 10, 17781 (2018); https://doi.org/10.1039/C8NR03828G
- P. Li, H. Song, H. Zhang, P. Yang, C. Zhang, P. Huang, D. Kong and W. Wang, Nanoscale, 9, 13413 (2017); https://doi.org/10.1039/C7NR04470D
- S. Lakshminarayanan, V. Jeyasingh, K. Murugesan, L. Piramuthu, N. Selvapalam and G. Dass, J. Anal. Chem., 77, 1503 (2022); https://doi.org/10.1134/S1061934822120085
- S. Biswas, P. Kumari, P.M. Lakhani and B. Ghosh, Eur. J. Pharm. Sci., 83, 184 (2016); https://doi.org/10.1016/j.ejps.2015.12.031
- G. Slor, A.R. Olea, S. Pujals, V.R. De La Rosa, R. Hoogenboom, A. Tigrine L. Albertazzi and R.J. Amir, Biomacromolecules, 22, 1197 (2021); https://doi.org/10.1021/acs.biomac.0c01708
- X. Zhang, T. Zhu, Y. Miao, L. Zhou and W. Zhang, J. Nanobiotechnol., 18, 136 (2020); https://doi.org/10.1186/s12951-020-00691-6
- V. Junnuthula, P. Kolimi, D. Nyavanandi, S. Sampathi, L.K. Vora and S. Dyawanapelly, Pharmaceutics, 14, 1860 (2022); https://doi.org/10.3390/pharmaceutics14091860
- K. Na, V.A. Sethuraman, Y. Han Bae and V.A. Sethuraman, Anticancer. Agents Med. Chem., 6, 525 (2006); https://doi.org/10.2174/187152006778699068
- B. Reddy, H.K.S. Yadav, D.K. Nagesha, A. Raizaday and A. Karim, J. Nanosci. Nanotechnol., 15, 4009 (2015); https://doi.org/10.1166/jnn.2015.9713
- S. Sheikpranbabu, K. Kalishwaralal, D. Venkataraman, S.H. Eom, J. Park and S. Gurunathan, J. Nanobiotechnol., 8, 1 (2009); https://doi.org/10.1186/1477-3155-7-8
- X. Yang, Y. Chen, R. Yuan, G. Chen, E. Blanco, J. Gao and X. Shuai, Polymer, 49, 3477 (2008); https://doi.org/10.1016/j.polymer.2008.06.005
- S.M. Morsy, Int. J. Curr. Microbiol. Appl. Sci., 3, 237 (2014).
- N. Sakaè, D. Madunic-Èaèic, D. Markovic, L. Hok, R. Vianello, V. Vrèek, B. Šarkanj, B. Ðurin, B. Della Ventura, R. Velotta and M. Jozanovic, Chemosensors, 10, 523 (2022); https://doi.org/10.3390/chemosensors10120523.
- W.F. Elmobarak and F. Almomani, J. Petrol. Sci. Eng., 203, 108591 (2021); https://doi.org/10.1016/j.petrol.2021.108591
- C.S. Rout, M. Hegde, A. Govindaraj and C.N.R. Rao, Nanotechnology, 18, 205504 (2007); https://doi.org/10.1088/0957-4484/18/20/205504
- G. Kaur, K. Saini, A.K. Tripathi, V. Jain, D. Deva and I. Lahiri, Vacuum, 139, 136 (2017); https://doi.org/10.1016/j.vacuum.2017.02.020
- R.S. Juang and M.L. Chen, Ind. Eng. Chem. Res., 36, 813 (1997); https://doi.org/10.1021/ie960351f
- M.R. Housaindokht, F. JanatiFard and N. Ashraf, J. Surfactants Deterg., 24, 873 (2021); https://doi.org/10.1002/jsde.12541
- D. Geetha and R. Tyagi, J. Dispers. Sci. Technol., 37, 1089 (2016); https://doi.org/10.1080/01932691.2015.1081097
- B.S. Shim, W. Chen, C. Doty, C. Xu and N.A. Kotov, Nano Lett., 8, 4151 (2008); https://doi.org/10.1021/nl801495p
- G. Dai, J. Hu, X. Zhao and P. Wang, Sens. Actuators B Chem., 238, 138 (2017); https://doi.org/10.1016/j.snb.2016.07.008
- J. Zhang, J. Lei, C. Xu, L. Ding and H. Ju, Anal. Chem., 82, 1117 (2010); https://doi.org/10.1021/ac902914r
- Y. Temerk, M. Ibrahim, H. Ibrahim and M. Kotb, J. Electroanal. Chem., 760, 135 (2016); https://doi.org/10.1016/j.jelechem.2015.11.026
- D.S. Nayak and N.P. Shetti, J. Surfact. Deterg., 19, 1071 (2016); https://doi.org/10.1007/s11743-016-1854-3
- M. Wachhold and M.G. Kanatzidis, Chem. Mater., 12, 2914 (2000); https://doi.org/10.1021/cm000102o
- J.J. Gooding, J. Shein and L.M.H. Lai, Electrochem. Commun., 11, 2015 (2009); https://doi.org/10.1016/j.elecom.2009.08.043
- O.A. de Fuentes, T. Ferri, M. Frasconi, V. Paolini and R. Santucci, Angew. Chem. Int. Ed., 50, 3457 (2011); https://doi.org/10.1002/anie.201006743
- F. Wang, S. Liu, M. Lin, X. Chen, S. Lin, X. Du, H. Li, H. Ye, B. Qiu, Z. Lin, L. Guo and G. Chen, Biosens. Bioelectron., 68, 475 (2015); https://doi.org/10.1016/j.bios.2015.01.037
- F. Tan, N.M. Saucedo, P. Ramnani and A. Mulchandani, Environ. Sci. Technol., 49, 9256 (2015); https://doi.org/10.1021/acs.est.5b01674
- R. Singh and K.K. Mohanty, Energy Fuels, 29, 467 (2015); https://doi.org/10.1021/ef5015007
- Y. Bao, W. An, C.H. Turner and K.M. Krishnan, Langmuir, 26, 478 (2010); https://doi.org/10.1021/la902120e
- T. He, D. Chen and X. Jiao, Chem. Mater., 16, 737 (2004); https://doi.org/10.1021/cm0303033
- V. Privman, D.V. Goia, J. Park and E. Matijevic, J. Colloid Interface Sci., 213, 36 (1999); https://doi.org/10.1006/jcis.1999.6106
- Y. Zhu, T. Mei, Y. Wang and Y. Qian, J. Mater. Chem., 21, 11457 (2011); https://doi.org/10.1039/c1jm11079a
- J.D. Holmes, K.P. Johnston, R.C. Doty and B.A. Korgel, Science, 287, 1471 (2000); https://doi.org/10.1126/science.287.5457.1471
- J. Yang, C. Li, Z. Cheng, X. Zhang, Z. Quan, C. Zhang and J. Lin, J. Phys. Chem. C, 111, 18148 (2007); https://doi.org/10.1021/jp0767112
- C.M. Payne, D.E. Tsentalovich, D.N. Benoit, L.J. Anderson, W. Guo, V.L. Colvin, M. Pasquali and J.H. Hafner, Chem. Mater., 26, 1999 (2014); https://doi.org/10.1021/cm402506e
- X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu and X.B. Zhang, Appl. Phys. Lett., 7, 86 (2005); https://doi.org/10.1063/1.1863440
- L. Deng, J. Ni, J.M. Qin and X.P. Jia, J. Solid State Chem., 255, 129 (2017); https://doi.org/10.1016/j.jssc.2017.08.006
- K. Saha, S.S. Agasti, C. Kim, X. Li and V.M. Rotello, Chem. Rev., 112, 2739 (2012); https://doi.org/10.1021/cr2001178
- J.M. Wu and B. Qi, J. Phys. Chem. C, 111, 666 (2007); https://doi.org/10.1021/jp065630n
- C.H. Kuo, C.H. Chen and M.H. Huang, Adv. Funct. Mater., 17, 3773 (2007); https://doi.org/10.1002/adfm.200700356
- Y. Sun and Y. Xia, Science, 298, 2176 (2002); https://doi.org/10.1126/science.1077229
- G.D. Park, Y.C. Kang and J.S. Cho, Nanomaterials, 12, 680 (2022); https://doi.org/10.3390/nano12040680
- J. Park, X. Shen and G. Wang, Sens. Actuators B Chem., 136, 494 (2009); https://doi.org/10.1016/j.snb.2008.11.041
- X. Xu, L. Hu, N. Gao, S. Liu, S. Wageh, A.A. Al-Ghamdi, A. Alshahrie and X. Fang, Adv. Funct. Mater., 25, 445 (2015); https://doi.org/10.1002/adfm.201403065
- D. Muñoz-Rojas, J. OróSolé, O. Ayyad and P. Gómez-Romero, Small, 4, 1301 (2008); https://doi.org/10.1002/smll.200701199
- Q. Zeng, X. Kong, Y. Sun, Y. Zhang, L. Tu, J. Zhao and H. Zhang, J. Phys. Chem. C, 112, 8587 (2008); https://doi.org/10.1021/jp711395f
- S.J. Lee, H. Jang and D.N. Lee, Nanoscale Adv., 5, 5165 (2023); https://doi.org/10.1039/D3NA00163F
- W.C. Zhang, X.L. Wu, H.T. Chen, Y.J. Gao, J. Zhu, G.S. Huang and P.K. Chu, Acta Mater., 56, 2508 (2008); https://doi.org/10.1016/j.actamat.2008.01.043
- B. Mayers and Y. Xia, Adv. Mater., 14, 279 (2002); https://doi.org/10.1002/1521-4095(20020219)14:4<279::AID-ADMA279>3.0.CO;2-2
- V.R. Chaudhari, S.K. Haram, S.K. Kulshreshtha, J.R. Bellare and P.A. Hassan, Colloids Surf. A Physicochem. Eng. Asp., 301, 475 (2007); https://doi.org/10.1016/j.colsurfa.2007.01.025
- T.C. Prathna, N. Chandrasekaran, A.M. Raichur and A. Mukherjee, Colloids Surf. A Physicochem. Eng. Asp., 377, 212 (2011); https://doi.org/10.1016/j.colsurfa.2010.12.047
- Z. Fang, K. Tang, S. Lei and T. Li, Nanotechnology, 17, 3008 (2006); https://doi.org/10.1088/0957-4484/17/12/032
- A. Vaseashta, M. Vaclavikova, S. Vaseashta, G. Gallios, P. Roy and O. Pummakarnchana, Sci. Technol. Adv. Mater., 8, 47 (2007); https://doi.org/10.1016/j.stam.2006.11.003
- Z. Zhang, H. Wang, R. Yang and X. Jiang, Int. J. Food Sci. Technol., 45, 258 (2010); https://doi.org/10.1111/j.1365-2621.2009.02129.x
- D. Geetha and R. Tyagi, Tenside Surfactants Deterg., 49, 417 (2012); https://doi.org/10.3139/113.110212
- K. Müller, Gen. Pharmacol., 27, 1325 (1996); https://doi.org/10.1016/S0306-3623(96)00075-4
- A.K. Rathankumar, K. Saikia, P.S. Kumar, S. Varjani, N. Bharadwaj, J. George, S. Kalita and V.K. Vaidyanathan, J. Chem. Technol. Biotechnol., 97, 391 (2022); https://doi.org/10.1002/jctb.6721
- E.-S.M. El-Sayed and D. Yuan, Green Chem., 22, 4082 (2020); https://doi.org/10.1039/D0GC00353K
- M.I. Ahamad, J. Song, H. Sun, X. Wang, M.S. Mehmood, M. Sajid, P. Su and A.J. Khan, Int. J. Environ. Res. Public Health, 17, 1070 (2020); https://doi.org/10.3390/ijerph17031070
- Y. You, Y. Ma, Z. Komeily Nia, Y. Su, W. Lei, S. Zhao and J. Li, J. Environ. Chem. Eng., 12, 111765 (2024); https://doi.org/10.1016/j.jece.2023.111765
- K. Sun, Y. Song, F. He, M. Jing, J. Tang and R. Liu, Sci. Total Environ., 773, 145403 (2021); https://doi.org/10.1016/j.scitotenv.2021.145403
- R. Vittal, H. Gomathi and K.J. Kim, Adv. Colloid Interface Sci., 119, 55 (2006); https://doi.org/10.1016/j.cis.2005.09.004
- C. Raril and J.G. Manjunatha, Biomed. J. Sci. Tech. Res., 11, 8560 (2018);https://doi.org/10.26717/BJSTR.2018.11.002108
- P.E. Lokhande, K. Pawar and U.S. Chavan, Mater. Sci. Energy Technol., 1, 166 (2018); https://doi.org/10.1016/j.mset.2018.07.001
- T. Zhang, Y. Liu, S. Zhong and L. Zhang, Chemosphere, 246, 125726 (2020); https://doi.org/10.1016/j.chemosphere.2019.125726
- N. Zhan, G. Palui, M. Safi, X. Ji and H. Mattoussi, J. Am. Chem. Soc., 135, 13786 (2013); https://doi.org/10.1021/ja405010v
- T. Ramcharan and A. Bissessur, J. Surfactants Deterg., 19, 209 (2016); https://doi.org/10.1007/s11743-015-1763-x
- J.G. Manjunatha, Chem. Data Coll., 25, 100331 (2020); https://doi.org/10.1016/j.cdc.2019.100331
- F. Fay, D.J. Quinn, B.F. Gilmore, P.A. McCarron and C.J. Scott, Biomaterials, 31, 4214 (2010); https://doi.org/10.1016/j.biomaterials.2010.01.143
- R. Kedmi, N. Ben-Arie and D. Peer, Biomaterials, 31, 6867 (2010); https://doi.org/10.1016/j.biomaterials.2010.05.027
- R. Gossmann, K. Langer, D. Mulac and M. Antopolsky, PLoS One, 10, e0127532 (2015); https://doi.org/10.1371/journal.pone.0127532
- A. Salvati, A.S. Pitek, M.P. Monopoli, K. Prapainop, F.B. Bombelli, D.R. Hristov, P.M. Kelly, C. Åberg, E. Mahon and K.A. Dawson, Nat. Nanotechnol., 8, 137 (2013); https://doi.org/10.1038/nnano.2012.237
- F. Wang, Y. Wu, J. Zhang, H. Wang, X. Xie, X. Ye, D. Peng and W. Chen, Drug Metabol. Disposition, 47, 364 (2019); https://doi.org/10.1124/dmd.118.085340
- E. Kiss, I. Bertoti and E.I. Vargha-Butler, J. Colloid Interface Sci., 245, 91 (2002); https://doi.org/10.1006/jcis.2001.7954
- M.J. Santander-Ortega, A.B. Jódar-Reyes, N. Csaba, D. Bastos-González and J.L. Ortega-Vinuesa, J. Colloid Interface Sci., 302, 522 (2006); https://doi.org/10.1016/j.jcis.2006.07.031
- C.E. Espinosa, Q. Guo, V. Singh, Langmuir, 26, 16941 (2010); https://doi.org/10.1021/la1033965
- S.P. Chaudhari and R.P. Dugar, J. Drug Deliv. Sci. Technol., 41, 68 (2017); https://doi.org/10.1016/j.jddst.2017.06.010
- E. Pisani, E. Fattal, J. Paris, C. Ringard, V. Rosilio and N. Tsapis, J. Colloid Interface Sci., 326, 66 (2008); https://doi.org/10.1016/j.jcis.2008.07.013
- D. Jain, R. Athawale, A. Bajaj, S. Shrikhande, P.N. Goel and R.P. Gude, Colloids Surf. B Biointerfaces, 109, 59 (2013); https://doi.org/10.1016/j.colsurfb.2013.03.027
- H. Liao, S. Zhao, H. Wang, Y. Liu, Y. Zhang and G. Sun, Int. J. Nanomedicine, 2019, 7963 (2019); https://doi.org/10.2147/IJN.S196974
- Y. Zhao, Z. Wang, W. Zhang and X. Jiang, Nanoscale, 2, 2114 (2010); https://doi.org/10.1039/C0NR00309C
- A. Torcello-Gómez, M.J. Santander-Ortega, J.M. Peula-García, J. Maldonado-Valderrama, M.J. Gálvez-Ruiz, J.L. Ortega-Vinuesaa and Antonio Martín-Rodríguez, Soft Matter, 7, 8450 (2011); https://doi.org/10.1039/C1SM05570D
- A. Gagliardi, D. Paolino, N, Costa, M. Fresta and D. Cosco, Mater. Sci. Eng., 118, 111538 (2021); https://doi.org/10.1016/j.msec.2020.111538
- B. Wilson, M.K. Samanta, K. Santhi, K.P.S. Kumar, N. Paramakrishnan and B. Suresh, Brain Res., 1200, 159 (2008); https://doi.org/10.1016/j.brainres.2008.01.039
- K. Tahara, Y. Miyazaki, Y. Kawashima, J. Kreuter and H. Yamamoto, Eur. J. Pharm. Biopharmaceut., 77, 84 (2011); https://doi.org/10.1016/j.ejpb.2010.11.002
- T. Miyazawa, K. Nakagawa, T. Harigae, R. Onuma, F. Kimura, T. Fujii and T. Miyazawa, Int. J. Nanomedicine, 10, 7223 (2015); https://doi.org/10.2147/ijn.S94336
- S.D. Tröster and J. Kreuter, J. Microencapsul., 9, 19 (1992); https://doi.org/10.3109/02652049209021219
- J.H. Jeong, S.H. Kang, J.H. Kim, K.S. Yu, I.H. Lee, Y.J. Lee, J.H. Lee, N.S. Lee, Y.G. Jeong, D.K. Kim, G.H. Kim, S.H. Lee, S.K. Hong, S.-Y. Han and B.S. Kang, J. Nanosci. Nanotechnol., 14, 8365 (2014); https://doi.org/10.1166/jnn.2014.9927
- C. Urata, Yamada H, Wakabayashi, Y. Aoyama, S. Hirosawa, S. Arai, S. Takeoka, Y. Yamauchi and K. Kuroda, J. Am. Chem. Soc., 133, 8102 (2011); https://doi.org/10.1021/ja201779d
- T. Yanagisawa, T. Shimizu, K. Kuroda and C. Kato, Bull. Chem. Soc. Jpn., 63, 988 (1990); https://doi.org/10.1246/bcsj.63.988
- A. Radomski, P. Jurasz, D. Alonso-Escolano, M. Drews, M. Morandi, T. Malinski and M.W. Radomski, Br. J. Pharmacol., 146, 882 (2005); https://doi.org/10.1038/sj.bjp.0706386
- K. Maisel, L. Ensign, M. Reddy, R. Cone and J. Hanes, J. Contr. Release, 197, 48 (2015); https://doi.org/10.1016/j.jconrel.2014.10.026
- L.M. Ensign, R. Cone, J. Hanes, Adv. Drug Deliv. Rev., 64, 557 (2012); https://doi.org/10.1016/j.addr.2011.12.009
- Z. Xin, D. Wei, C. Hongbo, Z. Meixia, K. Yongqiang, G. Jian, L. Qiaoyu, G. Mingyue, W. Xiuhua and M. Shirui, Asian J. Pharm. Sci., 14, 543 (2019); https://doi.org/10.1016/j.ajps.2018.09.002
- D. Liu, F. Yang, F. Xiong and N. Gu, Theranostics, 6, 1306 (2016); https://doi.org/10.7150/thno.14858
- S. Hedayati and M. Niakousari, J. Food Proc. Preserv., 39, 2001 (2015); https://doi.org/10.1111/jfpp.12440
- L. Kvítek, A. Panácek, J. Soukupová, M. Kolár, R. Vecerová, R. Prucek, M. Holecová and R. Zboril, J. Phys. Chem. C, 112, 5825 (2008); https://doi.org/10.1021/jp711616v
- G. Das and R. Tyagi, Tenside Surfactants Deterg., 53, 568 (2016);https://doi.org/10.3139/113.110449
- A.K. Tiwari, A. Mishra, G. Pandey, M.K. Gupta and P.C. Pandey, Part. Part. Syst. Charact., 39, 2100159 (2021); https://doi.org/10.1002/ppsc.202100159
- A. Ahmadi, A.K. Manshad, M. Akbari, J.A. Ali, P.T. Jaf and A.F. Abdulrahman, Energy, 290, 130201 (2024); https://doi.org/10.1016/j.energy.2023.130201
- A.Rahman, F. Torabi and E. Shirif, Petroleum, 9, 255 (2023); https://doi.org/10.1016/j.petlm.2023.02.002
- Y. Zhang, Y. Zhu, Z. Liu, S. Hu, Y. Wang, Y. Chang and R. Li, J. Mol. Liq., 298, 112028 (2020); https://doi.org/10.1016/j.molliq.2019.112028
- E.J. White, M. Venter, N.F. Hiten and J.T. Burger, Biotechnol. J., 3, 1424 (2008); https://doi.org/10.1002/biot.200800207
- M.J. Shojaei, Y. Méheust, A. Osman, P. Grassia and N. Shokri, Chem. Eng. Sci., 238, 116601 (2021); https://doi.org/10.1016/j.ces.2021.116601
- T. Danelon, P. Paz and G. Chapiro, Appl. Math. Model., 125B, 630 (2024); https://doi.org/10.1016/j.apm.2023.10.022
- N. Yekeen, M.A. Manan, A.K. Idris, E. Padmanabhan, R. Junin, A.M. Samin, A.O. Gbadamosi and I. Oguamah, J. Petroleum Sci. Eng., 164, 43 (2018); https://doi.org/10.1016/j.petrol.2018.01.035
References
M. Dong, Y. Song, H. Wang, L. Su, Y. Shen, D.K. Tran, R.A. Letteri, J.A. Flores, Y.N. Lin, J. Li and K.L. Wooley, Polym. Chem., 11, 4895 (2020); https://doi.org/10.1039/D0PY00029A
J.M.J. Jeyakumar and M. Zhang, Himal. J. Agric., 28, 3 (2022); https://doi.org/10.47310/hja.2022.v03i01.002
F. Busetti, A. Heitz, M. Cuomo, S. Badoer and P. Traverso, J. Chromatogr. A, 1102, 104 (2006); https://doi.org/10.1016/j.chroma.2005.10.013
J. Briffa, E. Sinagra and R. Blundell, Heliyon, 6, e04691 (2020); https://doi.org/10.1016/j.heliyon.2020.e04691
V. Masindi and K.L. Muedi, Environmental Contamination by Heavy Metals. In Heavy Metals, IntechOpen, pp. 115-133 (2018).
H. Qin, Q. Su, S.T. Khu and N. Tang, Sustainability, 6, 7433 (2014); https://doi.org/10.3390/su6107433
H. Kumar, N. Kumari and R. Sharma, Environ. Impact Assess. Rev., 85, 106438 (2020); https://doi.org/10.1016/j.eiar.2020.106438
P. Koedrith and Y.R. Seo, Int. J. Mol. Sci., 12, 9576 (2011); https://doi.org/10.3390/ijms12129576
M. Petrovic and D. Barceló, Anal. Chem., 72, 4560 (2000); https://doi.org/10.1021/ac000306o
S. Gavrilas, C.S. Ursachi, S. Perta-Crisan and F.D. Munteanu, Sensors, 22, 1513 (2022); https://doi.org/10.3390/s22041513
C.I. Justino, A.C. Duarte and T.A. Rocha-Santos, Sensors, 17, 2918 (2017); https://doi.org/10.3390/s17122918
Z. Khanam, S. Gupta and A. Verma, S. Afr. J. Bot., 134, 401 (2020); https://doi.org/10.1016/j.sajb.2020.08.007
J.A. Silva, Sustainability, 15, 10940 (2023); https://doi.org/10.3390/su151410940
A. Hashem, M.A.M. Hossain, A.R. Marlinda, M.A. Mamun, K. Simarani and M.R. Johan, Appl. Surf. Sci. Adv., 4, 100064 (2021); https://doi.org/10.1016/j.apsadv.2021.100064
D.D. Mara, Public Health, 117, 452 (2003); https://doi.org/10.1016/S0033-3506(03)00143-4
M. Moore, P. Gould and B.S. Keary, Int. J. Hyg. Environ Health., 206, 269 (2003); https://doi.org/10.1078/1438-4639-00223
V. Krepl, P. Kment and Z. Vališ, Agric. Trop. Subtrop., 46, 73 (2013); https://doi.org/10.2478/ats-2013-0012
M.A. Montgomery and M. Elimelech, Environ. Sci. Technol., 41, 17 (2007); https://doi.org/10.1021/es072435t
J. Theron and T.E. Cloete, Crit. Rev. Microbiol., 28, 1 (2002); https://doi.org/10.1080/1040-840291046669
M.T. Amin, A.A. Alazba and U. Manzoor, Adv. Mater. Sci. Eng., 2014, 825910 (2014); https://doi.org/10.1155/2014/825910
P. Leonard, S. Hearty, J. Brennan, L. Dunne, J. Quinn, T. Chakraborty and R. O’Kennedy, Enzyme Microb. Technol., 32, 3 (2003); https://doi.org/10.1016/S0141-0229(02)00232-6
N.J. Ashbolt, Toxicology, 198, 229 (2004); https://doi.org/10.1016/j.tox.2004.01.030
L. Haller, G. Hutton and J. Bartram, J. Water Health, 5, 467 (2007); https://doi.org/10.2166/wh.2007.008
X. Zhou, Z. Li, T. Zheng, Y. Yan, P. Li, E.A. Odey, H.P. Mang and S.M. Uddin, Environ. Int., 120, 246 (2018); https://doi.org/10.1016/j.envint.2018.07.047
E.I. Epelle, P.U. Okoye, S. Roddy, B. Gunes and J.A. Okolie, Environments, 9, 141 (2022); https://doi.org/10.3390/environments9110141
I. Tlili and T.A. Alkanhal, J. Water Reuse Desalin., 9, 232 (2019); https://doi.org/10.2166/wrd.2019.057
R. Pabbati, V.R. Kondakindi and F. Shaik, in eds.: N.R. Maddela, S. Chakraborty and R. Prasad, Applications of Nanomaterials in Biomedical Engineering, In: Nanotechnology for Advances in Medical Microbiology, Environmental and Microbial Biotechnology, Springer, Singapore, Chap. pp 51–86 (2021); https://doi.org/10.1007/978-981-15-9916-3_3
S. Lakshminarayanan, M. Kumaresan, V. Jeyasingh, N. Selvapalam, L. Piramuthu and G. Dass, Chem. Zvesti, 76, 1891 (2022); https://doi.org/10.1007/s11696-021-01984-2
V. Deepak, P.S. Umamaheshwaran, K. Guhan, R.A. Nanthini, B. Krithiga, N.M. Jaithoon and S. Gurunathan, Colloids Surf. B Biointerfaces, 86, 353 (2011); https://doi.org/10.1016/j.colsurfb.2011.04.019
M. Li, H. Gou, I. Al-Ogaidi and N. Wu, ACS Sustain. Chem.& Eng., 1, 713 (2013); https://doi.org/10.1021/sc400019a
D. Pokhrel and T. Viraraghavan, Water Res., 40, 549 (2006); https://doi.org/10.1016/j.watres.2005.11.040
B. Han, T. Runnells, J. Zimbron and R. Wickramasinghe, Desalination, 145, 293 (2002); https://doi.org/10.1016/S0011-9164(02)00425-3
D.R. Pokhrel, M.K. Sah, B. Gautam, H.K. Basak, A. Bhattarai and A. Chatterjee, RSC Adv., 13, 17685 (2023); https://doi.org/10.1039/D3RA02883F
S. Jain, M. Nehra, R. Kumar, N. Dilbaghi, T.Y. Hu, S. Kumar, A. Kaushik and C. Li, Biosens. Bioelectron., 179, 113074 (2021); https://doi.org/10.1016/j.bios.2021.113074
P. Teengam, W. Siangproh, A. Tuantranont, T. Vilaivan, O. Chailapakul and C.S. Henry, Anal. Chem., 89, 5428 (2017); https://doi.org/10.1021/acs.analchem.7b00255
R. Tenchov, R. Bird, A.E. Curtze and Q. Zhou, ACS Nano, 15, 16982 (2021); https://doi.org/10.1021/acsnano.1c04996
B. Mubeen, A.N. Ansar, R. Rasool, I. Ullah, S.S. Imam, S. Alshehri, M.M. Ghoneim, S.I. Alzarea, M.S. Nadeem and I. Kazmi, Antibiotics, 10, 1473 (2021); https://doi.org/10.3390/antibiotics10121473
P. Brangel, A. Sobarzo, C. Parolo, B.S. Miller, P.D. Howes, S. Gelkop, J.J. Lutwama, J.M. Dye, R.A. McKendry, L. Lobel and M.M. Stevens, ACS Nano, 12, 63 (2018); https://doi.org/10.1021/acsnano.7b07021
N. Yamamoto, Y. Ariumi, N. Nishida, R. Yamamoto, G. Bauer, T. Gojobori, K. Shimotohno and M. Mizokami, Gene, 758, 144944 (2020); https://doi.org/10.1016/j.gene.2020.144944
J. Huo, A. Le Bas, H.M. Duyvesteyn, H. Mikolajek, T. Malinauskas, R.R. Ruza, T.K. Tan, P. Rijal, M. Dumoux, P.N. Ward, J. Ren, D. Zhou, P.J. Harrison, M. Weckener, D.K. Clare, V.K. Vogirala, J. Radecke, L. Moynié, Y. Zhao, J. Gilbert-Jaramillo, M.L. Knight, J.A. Tree, K.R. Buttigieg, N. Coombes, M.J. Elmore, M.W. Carroll, L. Carrique, P.N.M. Shah, W. James, A.R. Townsend, D.I. Stuart, R.J. Owens and J.H. Naismith, Nat. Struct. Mol. Biol., 27, 846 (2020); https://doi.org/10.1038/s41594-020-0469-6
A. Luceri, R. Francese, D. Lembo, M. Ferraris and C. Balagna, Microorganisms, 11, 629 (2023); https://doi.org/10.3390/microorganisms11030629
S. Haracz, M. Hilgendorff, J.D. Rybka and M. Giersig, Nucl. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms, 364, 120 (2015); https://doi.org/10.1016/j.nimb.2015.08.035
B.F.B. Silva, E.F. Marques and U. Olsson, Langmuir, 24, 10746 (2008); https://doi.org/10.1021/la801548s
M. Arunpandian, D. Sivaganesh, M.S. Revathy, K. Selvakumar, S. Arunachalam and D. Geetha, Int. J. Environ. Anal. Chem., 102, 5738 (2022); https://doi.org/10.1080/03067319.2020.1803847
P. Khullar, V. Singh, A. Mahal, H. Kaur, V. Singh, T.S. Banipal, G. Kaur and M.S. Bakshi, J. Phys. Chem. C, 115, 10442 (2011); https://doi.org/10.1021/jp201712a
Nini Liang, X. Hu, W. Li, A.W. Mwakosya, Z. Guo, Y. Xu, X. Huang, Z. Li, X. Zhang, X. Zou and J. Shi, Food Chem., 343, 128494 (2021); https://doi.org/10.1016/j.foodchem.2020.128494
J. Gao, C.M. Bender and C.J. Murphy, Langmuir, 19, 9065 (2003); https://doi.org/10.1021/la034919i
Z. Li, B. Liu, X. Li, S. Yu, L. Wang, Y. Hou, Y. Zou, M. Yao, Q. Li, B. Zou, T. Cui, G. Zou, G. Wang and Y. Liu, Nanotechnology, 18, 255602 (2007); https://doi.org/10.1088/0957-4484/18/25/255602
C.C. Huang, Z. Yang, K.H. Lee and H.T. Chang, Angew. Chem. Int. Ed., 46, 6824 (2007); https://doi.org/10.1002/anie.200700803
S.W. Bo, Z.Y. Yang, J.S. Kim, J.Y. Kim, U. Kang, G.J. Woo, Y.C. Chung, S.A. Eremin and D.H. Chung, J. Microbiol. Biotechnol., 10, 1629 (2007).
N. Bagheri, V. Mazzaracchio, S. Cinti, N. Colozza, C. Di Natale, P.A. Netti, M. Saraji, S. Roggero, D. Moscone and F. Arduini, Anal. Chem., 93, 5225 (2021); https://doi.org/10.1021/acs.analchem.0c05469
S.S. Dasary, A.K. Singh, D. Senapati, H. Yu and P.C. Ray, J. Am. Chem. Soc., 131, 13806 (2009); https://doi.org/10.1021/ja905134d
J.L. Zhang, J.M. Du, B.X. Han, Z.M. Liu, T. Jiang and Z.F. Zhang, Angew. Chem., Int. Ed., 45, 1116 (2006); https://doi.org/10.1002/anie.200503762
A.R. Ravishankara, J.S. Daniel and R.W. Portmann, Science, 326, 123 (2009); https://doi.org/10.1126/science.1176985
N. Xiao and C. Yu, Anal. Chem., 82, 3659 (2010); https://doi.org/10.1021/ac902924p
H. Tao, W. Wei, X. Zeng, X. Liu, X. Zhang and Y. Zhang, Microchim. Acta, 166, 53 (2009); https://doi.org/10.1007/s00604-009-0163-1
J.Y. Tsai, S. Egelman, L. Cranor and A. Acquisti, Inform. Systm. Res., 22, 254 (2010); https://doi.org/10.1287/isre.1090.0260
S.T. Niyomthai, P. Supaphol and P. Niyomthai, Materials Today: Proc., 52, 2505 (2022); https://doi.org/10.1016/j.matpr.2021.10.440
D.J. Newman and G.M. Cragg, J. Nat. Prod., 70, 461 (2007); https://doi.org/10.1021/np068054v
B.S. Chauhan and D.E. Johnson, Field Crops Res., 121, 226 (2011); https://doi.org/10.1016/j.fcr.2010.12.008
H. Uzawa, K. Ohga, Y. Shinozaki, I. Ohsawa, T. Nagatsuka, Y. Seto, Y. Nishida, Biosens. Bioelectron., 24, 923 (2008); https://doi.org/10.1016/j.bios.2008.07.049
J. Sharma, R. Chhabra, A. Cheng, J. Brownell, Y. Liu and H. Yan, Science, 323, 112 (2009); https://doi.org/10.1126/science.1165831
T. Bo, S. Fenoglio, G. Malacarne, M. Pessino and F. Sgaribold, Limnologica, 37, 186 (2007); https://doi.org/10.1016/j.limno.2007.01.002
L.B. Wang, W. Chen, D.H. Xu, B.S. Shim, Y.Y. Zhu, F.X. Sun, L.Q. Liu, C.F. Peng, Z.Y. Jin, C.L. Xu and N.A. Kotov, Nano Lett., 9, 4147 (2009); https://doi.org/10.1021/nl902368r
I. Singh and R.K. Bedi, Solid State Sci., 13, 2011 (2011); https://doi.org/10.1016/j.solidstatesciences.2011.09.003
S. Khoee and M. Yaghoobian, Eur. J. Med. Chem., 44, 2392 (2009); https://doi.org/10.1016/j.ejmech.2008.09.045
S. Zhang and Y. Zhao, ACS Nano, 5, 2637 (2011); https://doi.org/10.1021/nn102666k
H.M. Jung, K.E. Price and D.T. McQuade, J. Am. Chem. Soc., 125, 5351 (2003); https://doi.org/10.1021/ja0271983
K.E. Price and D.T. McQuade, Chem. Commun., 13, 1714 (2005); https://doi.org/10.1039/b416892e
S.M. Shaban, J. Kang and D.-H. Kim, Composites Commun., 22, 100537 (2020); https://doi.org/10.1016/j.coco.2020.100537
X.M. Jiang, L. Zhang, W.Q. Zhang and S. Zhao, J. Surfactants Deterg., 18, 41 (2015); https://doi.org/10.1007/s11743-014-1604-3
C. Femina Carolin and T. Kamalesh, Heliyon, 10, e29773 (2024); https://doi.org/10.1016/j.heliyon.2024.e29773
A. Labena, M.A. Hegazy, H. Horn and E. Müller, J. Surfactants Deterg., 17, 419 (2014); https://doi.org/10.1007/s11743-013-1551-4
Z. Dong, Y. Zheng and J. Zhao, J. Surfactants Deterg., 17, 1213 (2014); https://doi.org/10.1007/s11743-014-1616-z
C. Ge, J. Zhu, G. Wu, H. Ye, H. Lu and L. Yin, Biomacromolecules, 23, 2647 (2022); https://doi.org/10.1021/acs.biomac.2c00399
M.S. Shim and Y. Xia, Angew. Chem., 52, 6926 (2022); https://doi.org/10.1002/anie.201209633
H. Mohan, M. Bartkowski and S. Giordani, Appl. Sci., 11, 10565 (2021); https://doi.org/10.3390/app112210565
L. Xu, M. Zhao, W. Gao, Y. Yang, J. Zhang, Y. Pu and B. He, Colloids Surf. B Biointerfaces, 181, 252 (2019); https://doi.org/10.1016/j.colsurfb.2019.05.064
K. Goyal, A. Konar, B.S.H. Kumar and V. Koul, Nanoscale, 10, 17781 (2018); https://doi.org/10.1039/C8NR03828G
P. Li, H. Song, H. Zhang, P. Yang, C. Zhang, P. Huang, D. Kong and W. Wang, Nanoscale, 9, 13413 (2017); https://doi.org/10.1039/C7NR04470D
S. Lakshminarayanan, V. Jeyasingh, K. Murugesan, L. Piramuthu, N. Selvapalam and G. Dass, J. Anal. Chem., 77, 1503 (2022); https://doi.org/10.1134/S1061934822120085
S. Biswas, P. Kumari, P.M. Lakhani and B. Ghosh, Eur. J. Pharm. Sci., 83, 184 (2016); https://doi.org/10.1016/j.ejps.2015.12.031
G. Slor, A.R. Olea, S. Pujals, V.R. De La Rosa, R. Hoogenboom, A. Tigrine L. Albertazzi and R.J. Amir, Biomacromolecules, 22, 1197 (2021); https://doi.org/10.1021/acs.biomac.0c01708
X. Zhang, T. Zhu, Y. Miao, L. Zhou and W. Zhang, J. Nanobiotechnol., 18, 136 (2020); https://doi.org/10.1186/s12951-020-00691-6
V. Junnuthula, P. Kolimi, D. Nyavanandi, S. Sampathi, L.K. Vora and S. Dyawanapelly, Pharmaceutics, 14, 1860 (2022); https://doi.org/10.3390/pharmaceutics14091860
K. Na, V.A. Sethuraman, Y. Han Bae and V.A. Sethuraman, Anticancer. Agents Med. Chem., 6, 525 (2006); https://doi.org/10.2174/187152006778699068
B. Reddy, H.K.S. Yadav, D.K. Nagesha, A. Raizaday and A. Karim, J. Nanosci. Nanotechnol., 15, 4009 (2015); https://doi.org/10.1166/jnn.2015.9713
S. Sheikpranbabu, K. Kalishwaralal, D. Venkataraman, S.H. Eom, J. Park and S. Gurunathan, J. Nanobiotechnol., 8, 1 (2009); https://doi.org/10.1186/1477-3155-7-8
X. Yang, Y. Chen, R. Yuan, G. Chen, E. Blanco, J. Gao and X. Shuai, Polymer, 49, 3477 (2008); https://doi.org/10.1016/j.polymer.2008.06.005
S.M. Morsy, Int. J. Curr. Microbiol. Appl. Sci., 3, 237 (2014).
N. Sakaè, D. Madunic-Èaèic, D. Markovic, L. Hok, R. Vianello, V. Vrèek, B. Šarkanj, B. Ðurin, B. Della Ventura, R. Velotta and M. Jozanovic, Chemosensors, 10, 523 (2022); https://doi.org/10.3390/chemosensors10120523.
W.F. Elmobarak and F. Almomani, J. Petrol. Sci. Eng., 203, 108591 (2021); https://doi.org/10.1016/j.petrol.2021.108591
C.S. Rout, M. Hegde, A. Govindaraj and C.N.R. Rao, Nanotechnology, 18, 205504 (2007); https://doi.org/10.1088/0957-4484/18/20/205504
G. Kaur, K. Saini, A.K. Tripathi, V. Jain, D. Deva and I. Lahiri, Vacuum, 139, 136 (2017); https://doi.org/10.1016/j.vacuum.2017.02.020
R.S. Juang and M.L. Chen, Ind. Eng. Chem. Res., 36, 813 (1997); https://doi.org/10.1021/ie960351f
M.R. Housaindokht, F. JanatiFard and N. Ashraf, J. Surfactants Deterg., 24, 873 (2021); https://doi.org/10.1002/jsde.12541
D. Geetha and R. Tyagi, J. Dispers. Sci. Technol., 37, 1089 (2016); https://doi.org/10.1080/01932691.2015.1081097
B.S. Shim, W. Chen, C. Doty, C. Xu and N.A. Kotov, Nano Lett., 8, 4151 (2008); https://doi.org/10.1021/nl801495p
G. Dai, J. Hu, X. Zhao and P. Wang, Sens. Actuators B Chem., 238, 138 (2017); https://doi.org/10.1016/j.snb.2016.07.008
J. Zhang, J. Lei, C. Xu, L. Ding and H. Ju, Anal. Chem., 82, 1117 (2010); https://doi.org/10.1021/ac902914r
Y. Temerk, M. Ibrahim, H. Ibrahim and M. Kotb, J. Electroanal. Chem., 760, 135 (2016); https://doi.org/10.1016/j.jelechem.2015.11.026
D.S. Nayak and N.P. Shetti, J. Surfact. Deterg., 19, 1071 (2016); https://doi.org/10.1007/s11743-016-1854-3
M. Wachhold and M.G. Kanatzidis, Chem. Mater., 12, 2914 (2000); https://doi.org/10.1021/cm000102o
J.J. Gooding, J. Shein and L.M.H. Lai, Electrochem. Commun., 11, 2015 (2009); https://doi.org/10.1016/j.elecom.2009.08.043
O.A. de Fuentes, T. Ferri, M. Frasconi, V. Paolini and R. Santucci, Angew. Chem. Int. Ed., 50, 3457 (2011); https://doi.org/10.1002/anie.201006743
F. Wang, S. Liu, M. Lin, X. Chen, S. Lin, X. Du, H. Li, H. Ye, B. Qiu, Z. Lin, L. Guo and G. Chen, Biosens. Bioelectron., 68, 475 (2015); https://doi.org/10.1016/j.bios.2015.01.037
F. Tan, N.M. Saucedo, P. Ramnani and A. Mulchandani, Environ. Sci. Technol., 49, 9256 (2015); https://doi.org/10.1021/acs.est.5b01674
R. Singh and K.K. Mohanty, Energy Fuels, 29, 467 (2015); https://doi.org/10.1021/ef5015007
Y. Bao, W. An, C.H. Turner and K.M. Krishnan, Langmuir, 26, 478 (2010); https://doi.org/10.1021/la902120e
T. He, D. Chen and X. Jiao, Chem. Mater., 16, 737 (2004); https://doi.org/10.1021/cm0303033
V. Privman, D.V. Goia, J. Park and E. Matijevic, J. Colloid Interface Sci., 213, 36 (1999); https://doi.org/10.1006/jcis.1999.6106
Y. Zhu, T. Mei, Y. Wang and Y. Qian, J. Mater. Chem., 21, 11457 (2011); https://doi.org/10.1039/c1jm11079a
J.D. Holmes, K.P. Johnston, R.C. Doty and B.A. Korgel, Science, 287, 1471 (2000); https://doi.org/10.1126/science.287.5457.1471
J. Yang, C. Li, Z. Cheng, X. Zhang, Z. Quan, C. Zhang and J. Lin, J. Phys. Chem. C, 111, 18148 (2007); https://doi.org/10.1021/jp0767112
C.M. Payne, D.E. Tsentalovich, D.N. Benoit, L.J. Anderson, W. Guo, V.L. Colvin, M. Pasquali and J.H. Hafner, Chem. Mater., 26, 1999 (2014); https://doi.org/10.1021/cm402506e
X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu and X.B. Zhang, Appl. Phys. Lett., 7, 86 (2005); https://doi.org/10.1063/1.1863440
L. Deng, J. Ni, J.M. Qin and X.P. Jia, J. Solid State Chem., 255, 129 (2017); https://doi.org/10.1016/j.jssc.2017.08.006
K. Saha, S.S. Agasti, C. Kim, X. Li and V.M. Rotello, Chem. Rev., 112, 2739 (2012); https://doi.org/10.1021/cr2001178
J.M. Wu and B. Qi, J. Phys. Chem. C, 111, 666 (2007); https://doi.org/10.1021/jp065630n
C.H. Kuo, C.H. Chen and M.H. Huang, Adv. Funct. Mater., 17, 3773 (2007); https://doi.org/10.1002/adfm.200700356
Y. Sun and Y. Xia, Science, 298, 2176 (2002); https://doi.org/10.1126/science.1077229
G.D. Park, Y.C. Kang and J.S. Cho, Nanomaterials, 12, 680 (2022); https://doi.org/10.3390/nano12040680
J. Park, X. Shen and G. Wang, Sens. Actuators B Chem., 136, 494 (2009); https://doi.org/10.1016/j.snb.2008.11.041
X. Xu, L. Hu, N. Gao, S. Liu, S. Wageh, A.A. Al-Ghamdi, A. Alshahrie and X. Fang, Adv. Funct. Mater., 25, 445 (2015); https://doi.org/10.1002/adfm.201403065
D. Muñoz-Rojas, J. OróSolé, O. Ayyad and P. Gómez-Romero, Small, 4, 1301 (2008); https://doi.org/10.1002/smll.200701199
Q. Zeng, X. Kong, Y. Sun, Y. Zhang, L. Tu, J. Zhao and H. Zhang, J. Phys. Chem. C, 112, 8587 (2008); https://doi.org/10.1021/jp711395f
S.J. Lee, H. Jang and D.N. Lee, Nanoscale Adv., 5, 5165 (2023); https://doi.org/10.1039/D3NA00163F
W.C. Zhang, X.L. Wu, H.T. Chen, Y.J. Gao, J. Zhu, G.S. Huang and P.K. Chu, Acta Mater., 56, 2508 (2008); https://doi.org/10.1016/j.actamat.2008.01.043
B. Mayers and Y. Xia, Adv. Mater., 14, 279 (2002); https://doi.org/10.1002/1521-4095(20020219)14:4<279::AID-ADMA279>3.0.CO;2-2
V.R. Chaudhari, S.K. Haram, S.K. Kulshreshtha, J.R. Bellare and P.A. Hassan, Colloids Surf. A Physicochem. Eng. Asp., 301, 475 (2007); https://doi.org/10.1016/j.colsurfa.2007.01.025
T.C. Prathna, N. Chandrasekaran, A.M. Raichur and A. Mukherjee, Colloids Surf. A Physicochem. Eng. Asp., 377, 212 (2011); https://doi.org/10.1016/j.colsurfa.2010.12.047
Z. Fang, K. Tang, S. Lei and T. Li, Nanotechnology, 17, 3008 (2006); https://doi.org/10.1088/0957-4484/17/12/032
A. Vaseashta, M. Vaclavikova, S. Vaseashta, G. Gallios, P. Roy and O. Pummakarnchana, Sci. Technol. Adv. Mater., 8, 47 (2007); https://doi.org/10.1016/j.stam.2006.11.003
Z. Zhang, H. Wang, R. Yang and X. Jiang, Int. J. Food Sci. Technol., 45, 258 (2010); https://doi.org/10.1111/j.1365-2621.2009.02129.x
D. Geetha and R. Tyagi, Tenside Surfactants Deterg., 49, 417 (2012); https://doi.org/10.3139/113.110212
K. Müller, Gen. Pharmacol., 27, 1325 (1996); https://doi.org/10.1016/S0306-3623(96)00075-4
A.K. Rathankumar, K. Saikia, P.S. Kumar, S. Varjani, N. Bharadwaj, J. George, S. Kalita and V.K. Vaidyanathan, J. Chem. Technol. Biotechnol., 97, 391 (2022); https://doi.org/10.1002/jctb.6721
E.-S.M. El-Sayed and D. Yuan, Green Chem., 22, 4082 (2020); https://doi.org/10.1039/D0GC00353K
M.I. Ahamad, J. Song, H. Sun, X. Wang, M.S. Mehmood, M. Sajid, P. Su and A.J. Khan, Int. J. Environ. Res. Public Health, 17, 1070 (2020); https://doi.org/10.3390/ijerph17031070
Y. You, Y. Ma, Z. Komeily Nia, Y. Su, W. Lei, S. Zhao and J. Li, J. Environ. Chem. Eng., 12, 111765 (2024); https://doi.org/10.1016/j.jece.2023.111765
K. Sun, Y. Song, F. He, M. Jing, J. Tang and R. Liu, Sci. Total Environ., 773, 145403 (2021); https://doi.org/10.1016/j.scitotenv.2021.145403
R. Vittal, H. Gomathi and K.J. Kim, Adv. Colloid Interface Sci., 119, 55 (2006); https://doi.org/10.1016/j.cis.2005.09.004
C. Raril and J.G. Manjunatha, Biomed. J. Sci. Tech. Res., 11, 8560 (2018);https://doi.org/10.26717/BJSTR.2018.11.002108
P.E. Lokhande, K. Pawar and U.S. Chavan, Mater. Sci. Energy Technol., 1, 166 (2018); https://doi.org/10.1016/j.mset.2018.07.001
T. Zhang, Y. Liu, S. Zhong and L. Zhang, Chemosphere, 246, 125726 (2020); https://doi.org/10.1016/j.chemosphere.2019.125726
N. Zhan, G. Palui, M. Safi, X. Ji and H. Mattoussi, J. Am. Chem. Soc., 135, 13786 (2013); https://doi.org/10.1021/ja405010v
T. Ramcharan and A. Bissessur, J. Surfactants Deterg., 19, 209 (2016); https://doi.org/10.1007/s11743-015-1763-x
J.G. Manjunatha, Chem. Data Coll., 25, 100331 (2020); https://doi.org/10.1016/j.cdc.2019.100331
F. Fay, D.J. Quinn, B.F. Gilmore, P.A. McCarron and C.J. Scott, Biomaterials, 31, 4214 (2010); https://doi.org/10.1016/j.biomaterials.2010.01.143
R. Kedmi, N. Ben-Arie and D. Peer, Biomaterials, 31, 6867 (2010); https://doi.org/10.1016/j.biomaterials.2010.05.027
R. Gossmann, K. Langer, D. Mulac and M. Antopolsky, PLoS One, 10, e0127532 (2015); https://doi.org/10.1371/journal.pone.0127532
A. Salvati, A.S. Pitek, M.P. Monopoli, K. Prapainop, F.B. Bombelli, D.R. Hristov, P.M. Kelly, C. Åberg, E. Mahon and K.A. Dawson, Nat. Nanotechnol., 8, 137 (2013); https://doi.org/10.1038/nnano.2012.237
F. Wang, Y. Wu, J. Zhang, H. Wang, X. Xie, X. Ye, D. Peng and W. Chen, Drug Metabol. Disposition, 47, 364 (2019); https://doi.org/10.1124/dmd.118.085340
E. Kiss, I. Bertoti and E.I. Vargha-Butler, J. Colloid Interface Sci., 245, 91 (2002); https://doi.org/10.1006/jcis.2001.7954
M.J. Santander-Ortega, A.B. Jódar-Reyes, N. Csaba, D. Bastos-González and J.L. Ortega-Vinuesa, J. Colloid Interface Sci., 302, 522 (2006); https://doi.org/10.1016/j.jcis.2006.07.031
C.E. Espinosa, Q. Guo, V. Singh, Langmuir, 26, 16941 (2010); https://doi.org/10.1021/la1033965
S.P. Chaudhari and R.P. Dugar, J. Drug Deliv. Sci. Technol., 41, 68 (2017); https://doi.org/10.1016/j.jddst.2017.06.010
E. Pisani, E. Fattal, J. Paris, C. Ringard, V. Rosilio and N. Tsapis, J. Colloid Interface Sci., 326, 66 (2008); https://doi.org/10.1016/j.jcis.2008.07.013
D. Jain, R. Athawale, A. Bajaj, S. Shrikhande, P.N. Goel and R.P. Gude, Colloids Surf. B Biointerfaces, 109, 59 (2013); https://doi.org/10.1016/j.colsurfb.2013.03.027
H. Liao, S. Zhao, H. Wang, Y. Liu, Y. Zhang and G. Sun, Int. J. Nanomedicine, 2019, 7963 (2019); https://doi.org/10.2147/IJN.S196974
Y. Zhao, Z. Wang, W. Zhang and X. Jiang, Nanoscale, 2, 2114 (2010); https://doi.org/10.1039/C0NR00309C
A. Torcello-Gómez, M.J. Santander-Ortega, J.M. Peula-García, J. Maldonado-Valderrama, M.J. Gálvez-Ruiz, J.L. Ortega-Vinuesaa and Antonio Martín-Rodríguez, Soft Matter, 7, 8450 (2011); https://doi.org/10.1039/C1SM05570D
A. Gagliardi, D. Paolino, N, Costa, M. Fresta and D. Cosco, Mater. Sci. Eng., 118, 111538 (2021); https://doi.org/10.1016/j.msec.2020.111538
B. Wilson, M.K. Samanta, K. Santhi, K.P.S. Kumar, N. Paramakrishnan and B. Suresh, Brain Res., 1200, 159 (2008); https://doi.org/10.1016/j.brainres.2008.01.039
K. Tahara, Y. Miyazaki, Y. Kawashima, J. Kreuter and H. Yamamoto, Eur. J. Pharm. Biopharmaceut., 77, 84 (2011); https://doi.org/10.1016/j.ejpb.2010.11.002
T. Miyazawa, K. Nakagawa, T. Harigae, R. Onuma, F. Kimura, T. Fujii and T. Miyazawa, Int. J. Nanomedicine, 10, 7223 (2015); https://doi.org/10.2147/ijn.S94336
S.D. Tröster and J. Kreuter, J. Microencapsul., 9, 19 (1992); https://doi.org/10.3109/02652049209021219
J.H. Jeong, S.H. Kang, J.H. Kim, K.S. Yu, I.H. Lee, Y.J. Lee, J.H. Lee, N.S. Lee, Y.G. Jeong, D.K. Kim, G.H. Kim, S.H. Lee, S.K. Hong, S.-Y. Han and B.S. Kang, J. Nanosci. Nanotechnol., 14, 8365 (2014); https://doi.org/10.1166/jnn.2014.9927
C. Urata, Yamada H, Wakabayashi, Y. Aoyama, S. Hirosawa, S. Arai, S. Takeoka, Y. Yamauchi and K. Kuroda, J. Am. Chem. Soc., 133, 8102 (2011); https://doi.org/10.1021/ja201779d
T. Yanagisawa, T. Shimizu, K. Kuroda and C. Kato, Bull. Chem. Soc. Jpn., 63, 988 (1990); https://doi.org/10.1246/bcsj.63.988
A. Radomski, P. Jurasz, D. Alonso-Escolano, M. Drews, M. Morandi, T. Malinski and M.W. Radomski, Br. J. Pharmacol., 146, 882 (2005); https://doi.org/10.1038/sj.bjp.0706386
K. Maisel, L. Ensign, M. Reddy, R. Cone and J. Hanes, J. Contr. Release, 197, 48 (2015); https://doi.org/10.1016/j.jconrel.2014.10.026
L.M. Ensign, R. Cone, J. Hanes, Adv. Drug Deliv. Rev., 64, 557 (2012); https://doi.org/10.1016/j.addr.2011.12.009
Z. Xin, D. Wei, C. Hongbo, Z. Meixia, K. Yongqiang, G. Jian, L. Qiaoyu, G. Mingyue, W. Xiuhua and M. Shirui, Asian J. Pharm. Sci., 14, 543 (2019); https://doi.org/10.1016/j.ajps.2018.09.002
D. Liu, F. Yang, F. Xiong and N. Gu, Theranostics, 6, 1306 (2016); https://doi.org/10.7150/thno.14858
S. Hedayati and M. Niakousari, J. Food Proc. Preserv., 39, 2001 (2015); https://doi.org/10.1111/jfpp.12440
L. Kvítek, A. Panácek, J. Soukupová, M. Kolár, R. Vecerová, R. Prucek, M. Holecová and R. Zboril, J. Phys. Chem. C, 112, 5825 (2008); https://doi.org/10.1021/jp711616v
G. Das and R. Tyagi, Tenside Surfactants Deterg., 53, 568 (2016);https://doi.org/10.3139/113.110449
A.K. Tiwari, A. Mishra, G. Pandey, M.K. Gupta and P.C. Pandey, Part. Part. Syst. Charact., 39, 2100159 (2021); https://doi.org/10.1002/ppsc.202100159
A. Ahmadi, A.K. Manshad, M. Akbari, J.A. Ali, P.T. Jaf and A.F. Abdulrahman, Energy, 290, 130201 (2024); https://doi.org/10.1016/j.energy.2023.130201
A.Rahman, F. Torabi and E. Shirif, Petroleum, 9, 255 (2023); https://doi.org/10.1016/j.petlm.2023.02.002
Y. Zhang, Y. Zhu, Z. Liu, S. Hu, Y. Wang, Y. Chang and R. Li, J. Mol. Liq., 298, 112028 (2020); https://doi.org/10.1016/j.molliq.2019.112028
E.J. White, M. Venter, N.F. Hiten and J.T. Burger, Biotechnol. J., 3, 1424 (2008); https://doi.org/10.1002/biot.200800207
M.J. Shojaei, Y. Méheust, A. Osman, P. Grassia and N. Shokri, Chem. Eng. Sci., 238, 116601 (2021); https://doi.org/10.1016/j.ces.2021.116601
T. Danelon, P. Paz and G. Chapiro, Appl. Math. Model., 125B, 630 (2024); https://doi.org/10.1016/j.apm.2023.10.022
N. Yekeen, M.A. Manan, A.K. Idris, E. Padmanabhan, R. Junin, A.M. Samin, A.O. Gbadamosi and I. Oguamah, J. Petroleum Sci. Eng., 164, 43 (2018); https://doi.org/10.1016/j.petrol.2018.01.035