Copyright (c) 2025 Nitin Bansod, Nitin Bansod

This work is licensed under a Creative Commons Attribution 4.0 International License.
Sunlight Tempted Photodegradation of Methylene Blue using Cerium Doped La2O3 Photocatalyst
Corresponding Author(s) : Nitin Bansod
Asian Journal of Chemistry,
Vol. 37 No. 12 (2025): Vol 37 Issue 12, 2025
Abstract
In this study, we report the synthesis of pristine and cerium (Ce)-doped lanthanum oxide (La2O3) nanomaterials via a sol-gel combustion method and their application as efficient photocatalysts for the degradation of methylene blue (MB) dye under natural sunlight. Structural characterization by X-ray diffraction (XRD) confirmed the formation of hexagonal La2O3, with slight peak shifts observed upon Ce doping due to nanoscale lattice strain. Morphological analyses using SEM and TEM revealed that Ce doping induced the formation of a 3D network-like structure, enhancing surface area and active sites for pollutant adsorption. UV-visible spectroscopy demonstrated a reduction in the band gap from 5.56 eV for pristine La2O3 to 5.27 eV for 9% Ce-doped La2O3, facilitating improved visible-light absorption and reduced electron–hole recombination. Fourier-transform infrared (FTIR) and energy-dispersive X-ray (EDAX) analyses further confirmed the successful incorporation of Ce into the La2O3 matrix without impurities. Photocatalytic experiments showed that 7% Ce-doped La2O3 achieved the highest degradation efficiency of ~94% for MB dye within 90 min, outperforming pristine La2O3 (78%) and lower doped variants. The enhanced performance is attributed to band gap narrowing, effective charge carrier separation, and the unique network morphology of the doped nanomaterial. This study highlights the potential of Ce-doped La2O3 as a robust, visible-light-active photocatalyst for sustainable wastewater treatment applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Ghorai, A. Panda, A. Hossain, M. Bhattacharjee, M. Chakraborty, S.K. Bhattacharya, B. Show, A. Sarkar, P. Bera, H. Kim, M.M. Seikh and A. Gayen, J. Rare Earths, 40, 725 (2022); https://doi.org/10.1016/j.jre.2021.04.013
- M. Chalaris, D.A. Gkika, A.K. Tolkou, and G.Z. Kyzas, Environ. Sci. Pollut. Res., 30, 119627 (2023); https://doi.org/10.1007/s11356-023-30891-0
- Y. Shi, J. Ma, Y. Chen, Y. Qian, B. Xu, W. Chu and D. An, Sci. Total Environ., 804, 150024 (2022); https://doi.org/10.1016/j.scitotenv.2021.150024
- N. Alfryyan, I. Boukhris, S. Parveen, K.S. Albarkaty, Z. Alrowaili, M. Al-Buriahi, K. Chaudhary, I. Shakir and M.F. Warsi, Results Phys., 55, 107142 (2023); https://doi.org/10.1016/j.rinp.2023.107142
- E.H. Khader, T.J. Mohammed, N. Mirghaffari, A.D. Salman, T. Juzsakova and T.A. Abdullah, Clean Technol. Environ. Policy, 24, 713 (2022); https://doi.org/10.1007/s10098-021-02159-z
- M. Anwar, K.S. Alghamdi, S. Zulfiqar, M.F. Warsi, M. Waqas and M. Hasan, Opt. Mater., 135, 113336 (2023); https://doi.org/10.1016/j.optmat.2022.113336
- M. Samy, K. Mensah, E.M. El-Fakharany, M. Elkady and H. Shokry, Environ. Res., 223, 115460 (2023); https://doi.org/10.1016/j.envres.2023.115460
- K. Mensah, H. Mahmoud, M. Fujii, M. Samy and H. Shokry, Biomass Convers. Biorefin., 45, 102512 (2022); https://doi.org/10.1016/j.jwpe.2021.102512
- E. Salama, M. Samy, H. Shokry, G. El-Subruiti, A. El-Sharkawy, H. Hamad and M. Elkady, Sci. Rep., 12, 22443 (2022); https://doi.org/10.1038/s41598-022-26612-1
- M. Samy, M. Elkady, A. Kamal, N. Elessawy, S. Zaki and M. Eltarahony, Sustainability, 14, 14188 (2022); https://doi.org/10.3390/su142114188
- K. Mensah, M. Samy, H. Mahmoud, M. Fujii and H. Shokry, Int. J. Environ. Sci. Technol., 20, 9717 (2023); https://doi.org/10.1007/s13762-022-04646-2
- Z. Shen, Y. Zhou, Y. Guo, J. Zhao, J. Song, Y. Xie, Y. Ling and W. Zhang, Chin. Chem. Lett., 32, 2524 (2021); https://doi.org/10.1016/j.cclet.2021.01.044
- F.M.A. Alzahrani, M. Anwar, M.F. Warsi, U. Younis, W. Adan, Z. Alrowaili, M. Al-Buriahi and K. Chaudhary, Mater. Chem. Phys., 315, 129008 (2024); https://doi.org/10.1016/j.matchemphys.2024.129008
- Y. Wang, J. Li, S. Chen, Y. Xie, Y. Ma, Y. Luo, J. Huang, Y. Ling, J. Ye, Y. Liang and J. Du, J. Alloys Compd., 924, 166569 (2022); https://doi.org/10.1016/j.jallcom.2022.166569
- M. Samy, M.G. Ibrahim, M. Gar Alalm, M. Fujii, K.E. Diab and M. ElKady, Chem. Eng. J., 395, 124974 (2020); https://doi.org/10.1016/j.cej.2020.124974
- K. Lakshmi, K. Kadirvelu and P.S. Mohan, J. Chem. Technol. Biotechnol., 94, 3190 (2019); https://doi.org/10.1002/jctb.6126
- M. Samy, K. Mensah and M. Gar Alalm, J. Water Process Eng., 49, 103151 (2022); https://doi.org/10.1016/j.jwpe.2022.103151
- A.A. Oun, S. Shankar and J.W. Rhim, Crit. Rev. Food Sci. Nutr., 60, 435 (2020); https://doi.org/10.1080/10408398.2018.1536966
- S. Akgol, F. Ulucan-Karnak, C.I. Kuru and K. Kus ¸at, Biotechnol. Bioeng., 118, 2906 (2021); https://doi.org/10.1002/bit.27843
- X. Zhou, C. Ding, C. Cheng, S. Liu, G. Duan, W. Xu, K. Liu and H. Hou, Eur. Polym. J., 141, 110083 (2020); https://doi.org/10.1016/j.eurpolymj.2020.110083
- R. Jbeli, M. Lahmar, C. Bilel, F. Saadallah, H. Ouzari, M. Bouaïcha and M. Amlouk, Optik, 242, 166837 (2021); https://doi.org/10.1016/j.ijleo.2021.166837
- Z.N. Kayani, B. Amir, S. Riaz and S. Naseem, Opt. Mater., 109, 110287 (2020); https://doi.org/10.1016/j.optmat.2020.110287
- C.R. Michel and A.H. Martinez-Preciado, Sens. Actuators B Chem., 208, 355 (2015); https://doi.org/10.1016/j.snb.2014.11.034
- X. Ding, Y. Liu, L. Gao and L. Guo, J. Alloys Compd., 425, 318 (2006); https://doi.org/10.1016/j.jallcom.2006.01.030
- K.B. Jinesh, V.A.T. Dam, J. Swerts, C. De Nooijer, S. Van Elshocht, S.H. Brongersma and M. Crego-Calama, Sens. Actuators B Chem., 156, 276 (2011); https://doi.org/10.1016/j.snb.2011.04.033
- K. Krishna, K.S. Harisha, R. Neelakandan and Y. Sangappa, Mater. Today Proc., 42, 515 (2021); https://doi.org/10.1016/j.matpr.2020.10.481
- M. Mylarappa, S. Chandruvasan, K.S. Harisha and K.N. Shravana Kumara, Kuwait J. Sci., 51, 100145 (2024); https://doi.org/10.1016/j.kjs.2023.10.012
- M. Ghiasi and A. Malekzadeh, Superlattices Microstruct., 77, 295 (2015); https://doi.org/10.1016/j.spmi.2014.09.027
- C. Kumari, P. Sharma, S.C. Katyal, M. Tanwar, P. Bamola, H. Sharma, R. Kumar and S. Chhoker, Results Surf. Interfaces, 9, 100088 (2022); https://doi.org/10.1016/j.rsurfi.2022.100088
- Y. Li, L. Xue, L. Fan and Y. Yan, J. Alloys Compd., 478, 493 (2009); https://doi.org/10.1016/j.jallcom.2008.11.068
- M.A. Marjeghal, A. Sedghi and S. Baghshahi, J. Alloys Compd., 968, 171765 (2023); https://doi.org/10.1016/j.jallcom.2023.171765
- K. Wang, Y. Wu, H. Li, M. Li, F. Guan and H. Fan, J. Inorg. Biochem., 141, 36 (2014); https://doi.org/10.1016/j.jinorgbio.2014.08.009
- S. Karthikeyan, K. Dhanakodi, S. Surendhiran, K. Jagan, N. Lenin, L. Dhatchinamurthy and A. Rajamanickam, J. Mater. Sci. Mater. Electron., 34, 1157 (2023); https://doi.org/10.1007/s10854-023-10561-0
- Y. Xie, J. Wu, C. Sun, Y. Ling, S. Li, X. Li, J. Zhao and K. Yang, Mater. Chem. Phys., 246, 122846 (2020); https://doi.org/10.1016/j.matchemphys.2020.122846
- K. Chaudhary, S. Zulfiqar, H. Somaily, M. Aadil, M.F. Warsi and M. Shahid, Electrochim. Acta, 431, 141103 (2022); https://doi.org/10.1016/j.electacta.2022.141103
- S. Chandruvasan, M. Mylarappa, S. Kantharaju and S. Rekha, ECS Transitions, 107, 269 (2022); https://doi.org/10.1149/10701.0269ecst
- V. Pathak, P. Lad, A.B. Thakkar, P. Thakor, M.P. Deshpande and S. Pandya, Results Surf. Interfaces, 11, 100111 (2023); https://doi.org/10.1016/j.rsurfi.2023.100111
- W. Tang, H. Ye, Y. Xie, P. Chen, L. Luo and Y. Zhang, Chem. Eng. J., 478, 147350 (2023); https://doi.org/10.1016/j.cej.2023.147350
References
K. Ghorai, A. Panda, A. Hossain, M. Bhattacharjee, M. Chakraborty, S.K. Bhattacharya, B. Show, A. Sarkar, P. Bera, H. Kim, M.M. Seikh and A. Gayen, J. Rare Earths, 40, 725 (2022); https://doi.org/10.1016/j.jre.2021.04.013
M. Chalaris, D.A. Gkika, A.K. Tolkou, and G.Z. Kyzas, Environ. Sci. Pollut. Res., 30, 119627 (2023); https://doi.org/10.1007/s11356-023-30891-0
Y. Shi, J. Ma, Y. Chen, Y. Qian, B. Xu, W. Chu and D. An, Sci. Total Environ., 804, 150024 (2022); https://doi.org/10.1016/j.scitotenv.2021.150024
N. Alfryyan, I. Boukhris, S. Parveen, K.S. Albarkaty, Z. Alrowaili, M. Al-Buriahi, K. Chaudhary, I. Shakir and M.F. Warsi, Results Phys., 55, 107142 (2023); https://doi.org/10.1016/j.rinp.2023.107142
E.H. Khader, T.J. Mohammed, N. Mirghaffari, A.D. Salman, T. Juzsakova and T.A. Abdullah, Clean Technol. Environ. Policy, 24, 713 (2022); https://doi.org/10.1007/s10098-021-02159-z
M. Anwar, K.S. Alghamdi, S. Zulfiqar, M.F. Warsi, M. Waqas and M. Hasan, Opt. Mater., 135, 113336 (2023); https://doi.org/10.1016/j.optmat.2022.113336
M. Samy, K. Mensah, E.M. El-Fakharany, M. Elkady and H. Shokry, Environ. Res., 223, 115460 (2023); https://doi.org/10.1016/j.envres.2023.115460
K. Mensah, H. Mahmoud, M. Fujii, M. Samy and H. Shokry, Biomass Convers. Biorefin., 45, 102512 (2022); https://doi.org/10.1016/j.jwpe.2021.102512
E. Salama, M. Samy, H. Shokry, G. El-Subruiti, A. El-Sharkawy, H. Hamad and M. Elkady, Sci. Rep., 12, 22443 (2022); https://doi.org/10.1038/s41598-022-26612-1
M. Samy, M. Elkady, A. Kamal, N. Elessawy, S. Zaki and M. Eltarahony, Sustainability, 14, 14188 (2022); https://doi.org/10.3390/su142114188
K. Mensah, M. Samy, H. Mahmoud, M. Fujii and H. Shokry, Int. J. Environ. Sci. Technol., 20, 9717 (2023); https://doi.org/10.1007/s13762-022-04646-2
Z. Shen, Y. Zhou, Y. Guo, J. Zhao, J. Song, Y. Xie, Y. Ling and W. Zhang, Chin. Chem. Lett., 32, 2524 (2021); https://doi.org/10.1016/j.cclet.2021.01.044
F.M.A. Alzahrani, M. Anwar, M.F. Warsi, U. Younis, W. Adan, Z. Alrowaili, M. Al-Buriahi and K. Chaudhary, Mater. Chem. Phys., 315, 129008 (2024); https://doi.org/10.1016/j.matchemphys.2024.129008
Y. Wang, J. Li, S. Chen, Y. Xie, Y. Ma, Y. Luo, J. Huang, Y. Ling, J. Ye, Y. Liang and J. Du, J. Alloys Compd., 924, 166569 (2022); https://doi.org/10.1016/j.jallcom.2022.166569
M. Samy, M.G. Ibrahim, M. Gar Alalm, M. Fujii, K.E. Diab and M. ElKady, Chem. Eng. J., 395, 124974 (2020); https://doi.org/10.1016/j.cej.2020.124974
K. Lakshmi, K. Kadirvelu and P.S. Mohan, J. Chem. Technol. Biotechnol., 94, 3190 (2019); https://doi.org/10.1002/jctb.6126
M. Samy, K. Mensah and M. Gar Alalm, J. Water Process Eng., 49, 103151 (2022); https://doi.org/10.1016/j.jwpe.2022.103151
A.A. Oun, S. Shankar and J.W. Rhim, Crit. Rev. Food Sci. Nutr., 60, 435 (2020); https://doi.org/10.1080/10408398.2018.1536966
S. Akgol, F. Ulucan-Karnak, C.I. Kuru and K. Kus ¸at, Biotechnol. Bioeng., 118, 2906 (2021); https://doi.org/10.1002/bit.27843
X. Zhou, C. Ding, C. Cheng, S. Liu, G. Duan, W. Xu, K. Liu and H. Hou, Eur. Polym. J., 141, 110083 (2020); https://doi.org/10.1016/j.eurpolymj.2020.110083
R. Jbeli, M. Lahmar, C. Bilel, F. Saadallah, H. Ouzari, M. Bouaïcha and M. Amlouk, Optik, 242, 166837 (2021); https://doi.org/10.1016/j.ijleo.2021.166837
Z.N. Kayani, B. Amir, S. Riaz and S. Naseem, Opt. Mater., 109, 110287 (2020); https://doi.org/10.1016/j.optmat.2020.110287
C.R. Michel and A.H. Martinez-Preciado, Sens. Actuators B Chem., 208, 355 (2015); https://doi.org/10.1016/j.snb.2014.11.034
X. Ding, Y. Liu, L. Gao and L. Guo, J. Alloys Compd., 425, 318 (2006); https://doi.org/10.1016/j.jallcom.2006.01.030
K.B. Jinesh, V.A.T. Dam, J. Swerts, C. De Nooijer, S. Van Elshocht, S.H. Brongersma and M. Crego-Calama, Sens. Actuators B Chem., 156, 276 (2011); https://doi.org/10.1016/j.snb.2011.04.033
K. Krishna, K.S. Harisha, R. Neelakandan and Y. Sangappa, Mater. Today Proc., 42, 515 (2021); https://doi.org/10.1016/j.matpr.2020.10.481
M. Mylarappa, S. Chandruvasan, K.S. Harisha and K.N. Shravana Kumara, Kuwait J. Sci., 51, 100145 (2024); https://doi.org/10.1016/j.kjs.2023.10.012
M. Ghiasi and A. Malekzadeh, Superlattices Microstruct., 77, 295 (2015); https://doi.org/10.1016/j.spmi.2014.09.027
C. Kumari, P. Sharma, S.C. Katyal, M. Tanwar, P. Bamola, H. Sharma, R. Kumar and S. Chhoker, Results Surf. Interfaces, 9, 100088 (2022); https://doi.org/10.1016/j.rsurfi.2022.100088
Y. Li, L. Xue, L. Fan and Y. Yan, J. Alloys Compd., 478, 493 (2009); https://doi.org/10.1016/j.jallcom.2008.11.068
M.A. Marjeghal, A. Sedghi and S. Baghshahi, J. Alloys Compd., 968, 171765 (2023); https://doi.org/10.1016/j.jallcom.2023.171765
K. Wang, Y. Wu, H. Li, M. Li, F. Guan and H. Fan, J. Inorg. Biochem., 141, 36 (2014); https://doi.org/10.1016/j.jinorgbio.2014.08.009
S. Karthikeyan, K. Dhanakodi, S. Surendhiran, K. Jagan, N. Lenin, L. Dhatchinamurthy and A. Rajamanickam, J. Mater. Sci. Mater. Electron., 34, 1157 (2023); https://doi.org/10.1007/s10854-023-10561-0
Y. Xie, J. Wu, C. Sun, Y. Ling, S. Li, X. Li, J. Zhao and K. Yang, Mater. Chem. Phys., 246, 122846 (2020); https://doi.org/10.1016/j.matchemphys.2020.122846
K. Chaudhary, S. Zulfiqar, H. Somaily, M. Aadil, M.F. Warsi and M. Shahid, Electrochim. Acta, 431, 141103 (2022); https://doi.org/10.1016/j.electacta.2022.141103
S. Chandruvasan, M. Mylarappa, S. Kantharaju and S. Rekha, ECS Transitions, 107, 269 (2022); https://doi.org/10.1149/10701.0269ecst
V. Pathak, P. Lad, A.B. Thakkar, P. Thakor, M.P. Deshpande and S. Pandya, Results Surf. Interfaces, 11, 100111 (2023); https://doi.org/10.1016/j.rsurfi.2023.100111
W. Tang, H. Ye, Y. Xie, P. Chen, L. Luo and Y. Zhang, Chem. Eng. J., 478, 147350 (2023); https://doi.org/10.1016/j.cej.2023.147350