Copyright (c) 2025 Pratibha Arya, Tara Bhatt, Lalit Mohan, Charu C. Dhondiyal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Theoretical and Experimental Studies of Non-Covalent Interactions in a Ternary Liquid Mixture of Toluene, DMSO and Butyl Acetate
Corresponding Author(s) : Tara Bhatt
Asian Journal of Chemistry,
Vol. 37 No. 11 (2025): Vol 37 Issue 11, 2025
Abstract
The study investigates the nature and strength of forces responsible for the molecular association between pure liquids viz. toluene (Tol), dimethyl sulfoxide (DMSO) and butyl acetate (BA) as well as their ternary mixture, using spectroscopic and computational techniques. Quantum chemical calculations are done by using density function theory (DFT) in order to get the information regarding non-covalent interaction. Theoretical calculation of the interaction energies was conducted to understand the nature and strength of possible intermolecular interaction between the molecules. The optimized geometries of the monomers, their self-associated dimers and their complexes confirm the presence of CH-π, CH-C and OH bond in the ternary systems and are found to influence the interaction energies of the complexes. In addition to the theoretical study, UV-Vis absorption spectra of ternary liquid mixture at different mole fractions have been examined to investigate the nature of specific interactions. Further, the presence of non-covalent interactions and the strength of different type of molecular interaction, infrared spectra of a ternary liquid mixture of toluene, DMSO, butyl acetate at various concentrations at room temperature (20 ºC) have also been assessed through the change in the vibrational stretching frequency of various functional groups of pure liquids. The experimentally recorded UV-Vis spectra and the shift in the frequencies of the functional groups in FT-IR spectra are also supported by the theoretical quantum calculations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. García, R. Alcalde, J.M. Leal and J.S. Matos, J. Chem. Soc., Faraday Trans., 93, 1115 (1997); https://doi.org/10.1039/a607876a
- O.A. El Seoud, S. Possidonio and N.I. Malek, Liquids, 4, 73 (2024); https://doi.org/10.3390/liquids4010003
- A. Mchaweh, A. Alsaygh, K. Nasrifar and M. Moshfeghian, Fluid Phase Equilib., 224, 157 (2004); https://doi.org/10.1016/j.fluid.2004.06.054
- A.S. Bahadur, M.C.S. Subha and K.C. Rao, J. Pure Appl. Ultrason., 23, 26 (2001).
- P.S. Rao, M.C.S. Subha and G.N. Swamy, Acustica, 83, 155 (1997).
- M.B. Ewing, B.J. Levien, K.N. Marsh and R.H. Stokes, J. Chem. Thermodyn., 2, 689 (1970); https://doi.org/10.1016/0021-9614(70)90044-3
- A. Ali, A.K. Nain and M. Kamil, Thermochim. Acta, 274, 209 (1996); https://doi.org/10.1016/0040-6031(95)02719-X
- A. Rohman and A. Windarsih, Int. J. Mol. Sci., 21, 5155 (2020); https://doi.org/10.3390/ijms21145155
- Pankaj and C. Sharma, Ultrasonics, 29, 344 (1991); https://doi.org/10.1016/0041-624X(91)90033-5
- S. Velmurugan, T.K. Nambinarayanan, R.A. Srinivasa and B. Krishnan, Indian J. Phys., 618, 105 (1987).
- J.M.G. Cowie, J. Polym. Sci. Part C Polym. Symp., 23, 267 (1968); https://doi.org/10.1002/polc.5070230133
- A. Pal and G. Das, J. Pure Appl. Ultrasonic, 21, 9 (1990).
- C. Di Mino, A. J. Clancy, A. Sella, C. A. Howard, T. F. Headen, A. G. Seel, and N.T. Skipper, J. Phys. Chem. B, 127, 1884 (2023); https://doi.org/10.1021/acs.jpcb.2c07155
- M. Šimunková and M. Malček, Acta Chim. Slov., 13, 38 (2020); https://doi.org/10.2478/acs-2020-0022
- P. Arya, T. Bhatt, H. Arya, C.C. Dhondiyal and M. Rana, Chem. Africa, 7, 1033 (2024); https://doi.org/10.1007/s42250-023-00779-0
- G. Arul and L. Palaniappan, Indian J. Pure Appl. Phys., 39, 561 (2001).
- S. Thirumaran and J.E. Jayakumar, Indian J. Pure Appl. Phys., 47, 265 (2009).
- S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami and K. Tanabe, J. Phys. Chem. A, 106, 4423 (2002); https://doi.org/10.1021/jp013723t
- H. Chen, X. Xu, S. Gong, Y. Zhou and Z. Wang, J. Mol. Liq., 313, 113542 (2020); https://doi.org/10.1016/j.molliq.2020.113542
- K. Umasivakami, S. Vaideeswaran and V. Rose, J. Serb. Chem. Soc., 83, 1131 (2018); https://doi.org/10.2298/JSC170829056U
- H. Chen, Z. Wang, X. Xu, S. Gong and Y. Zhou, Phys. Chem. Chem. Phys., 23, 13300 (2021); https://doi.org/10.1039/D1CP00874A
- L.A. Curtiss, K. Raghavachari, G.W. Trucks and J.A. Pople, J. Chem. Phys., 94, 7221 (1991); https://doi.org/10.1063/1.460205
- S. Jeff, J. Chem. Pharm. Res., 16, 95 (2024); https://doi.org/10.37532/0975-7384.2024.16(1).095
- R. Vargas, J. Garza and A. Martínez, J. Mex. Chem. Soc., 68, 970 (2024); https://doi.org/10.29356/jmcs.v68i4.2306
- Hema, T. Bhatt, T. Pant, C.C. Dhondiyal, M. Rana, P. Chowdhury, G. C. Joshi, P. Arya and H. Tiwari, J. Mol. Model., 26, 268 (2020); https://doi.org/10.1007/s00894-020-04533-y
- Y. Zhao and D.G. Truhlar, J. Chem. Theory Comput., 1, 415 (2005); https://doi.org/10.1021/ct049851d
- S. Scheiner, J. Phys. Chem. B, 110, 18670 (2006); https://doi.org/10.1021/jp063225q
- R.O. Jones, Rev. Mod. Phys., 87, 897 (2015); https://doi.org/10.1103/RevModPhys.87.897
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT (2013).
- M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek and G.R. Hutchison, J. Cheminform., 4, 17 (2012); https://doi.org/10.1186/1758-2946-4-17
- A.D. Becke, Phys. Rev. A Gen. Phys., 38, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
- L. Sobczyk, S.J. Grabowski and T.M. Krygowski, Chem. Rev., 105, 3513 (2005); https://doi.org/10.1021/cr030083c
- https://www.chemcraftprog.com
- H. Bertagnolli, E. Schultz and P. Chieux, Ber. Bunsenges. Phys. Chem, 93, 88 (1989); https://doi.org/10.1002/bbpc.19890930117
- L.I. Vaisman and M.L. Berkowitz, J. Am. Chem. Soc., 114, 7889 (1992); https://doi.org/10.1021/ja00046a038
- A. Ali, S. Hyder and M. Tariq, Int. J. Thermophys., 26, 1537 (2005); https://doi.org/10.1007/s10765-005-8102-9
- D. Patterson, J. Solution Chem., 23, 105 (1994); https://doi.org/10.1007/BF00973540
- M.I. Sancho, M.C. Almandoz, S.E. Blanco and E.A. Castro, Int. J. Mol. Sci., 12, 8895 (2011); https://doi.org/10.3390/ijms12128895
- J. Li and R.Q. Zhang, Sci. Rep., 6, 22304 (2016); https://doi.org/10.1038/srep22304
- J. Li and R.Q. Zhang, Phys. Chem. Chem. Phys., 17, 29489 (2015); https://doi.org/10.1039/C5CP04684J
- S. Tsuzuki and T. Uchimaru, Curr. Org. Chem., 10, 745 (2006); https://doi.org/10.2174/138527206776818937
- Hema, T. Bhatt, T. Pant, C.C. Dhondiyal and H. Tiwari, Indian J. Chem., 60A,1072 (2021).
- R.S. Mulliken, J. Am. Chem. Soc., 72, 600 (1950); https://doi.org/10.1021/ja01157a151
- R.S. Mulliken and W.B. Pearson, Molecular Complexes, Wiley Publishers: New York (1969).
- R. Foster, Charge-transfer Complexes, Academic Press: London, p. 387 (1969).
- Z.Y. Li, H.L. Wang, T.J. He, F.C. Liu and D.M. Chen, J. Mol. Struct. THEOCHEM, 778, 69 (2006); https://doi.org/10.1016/j.theochem.2006.08.048
- P. Hobza and Z. Havlas, Chem. Rev., 100, 4253 (2000); https://doi.org/10.1021/cr990050q
- X. Li, L. Liu and H.B. Schlegel, J. Am. Chem. Soc., 124, 9639 (2002); https://doi.org/10.1021/ja020213j
- G.E. Douberly, A.M. Ricks, P.V.R. Schleyer and M.A. Duncan, J. Phys. Chem. A, 112, 4869 (2008); https://doi.org/10.1021/jp802020n
- R. Knaanie, J. Šebek, M. Tsuge, N. Myllys, L. Khriachtchev, M. Räsänen, B. Albee, E.O. Potma and R.B. Gerber, J. Phys. Chem. A, 120, 3380 (2016); https://doi.org/10.1021/acs.jpca.6b01604
- J. Datka, J. Chem. Soc., Faraday Trans. I, 77, 511 (1981); https://doi.org/10.1039/F19817700511
- N. Mozhzhukhina, L.P. Méndez De Leo and E.J. Calvo, J. Phys. Chem. C, 117, 18375 (2013); https://doi.org/10.1021/jp407221c
- S. Kumar and L. Guganathan, J. Emerg. Technol. Innov. Res., 5, 544 (2018).
- Omni-Cell Transmission) AN20-03, Liquid film FT-IR analysis of esterification reaction products in the Omni-Cell Specac Ltd. (2022).
- J.R. Dyer, Applications of Absorption Spectroscopy of Organic Compounds, Prentice-Hall of India, New Delhi, edn 4 (1978).
- Hema, T. Bhatt, P. Arya, C.C. Dhondiyal, H. Tiwari and K. Devlal, Struct. Chem., 33, 207 (2022); https://doi.org/10.1007/s11224-021-01832-9
- A. Awasthi and J.P. Shukla, Ultrasonics, 41, 477 (2003); https://doi.org/10.1016/S0041-624X(03)00127-6
- A.Y. Li, H.B. Ji and L.J. Cao, J. Chem. Phys., 131, 164305 (2009); https://doi.org/10.1063/1.3251123
- Hema and T. Bhatt, Mater. Today, 47, 1590 (2021); https://doi.org/10.1016/j.matpr.2021.04.264
- J.S. Bader and B.J. Berne, J. Chem. Phys., 100, 8359 (1994); https://doi.org/10.1063/1.466780
- R. Ramírez, T. López-Ciudad, P. Kumar P and D. Marx, J. Chem. Phys., 121, 3973 (2004); https://doi.org/10.1063/1.1774986
- G. Arivazhagan, A. Elangovan, R. Shanmugam, R. Vijayalakshmi and N.K. Karthick, J. Mol. Liq., 214, 357 (2016); https://doi.org/10.1016/j.molliq.2015.10.062
References
B. García, R. Alcalde, J.M. Leal and J.S. Matos, J. Chem. Soc., Faraday Trans., 93, 1115 (1997); https://doi.org/10.1039/a607876a
O.A. El Seoud, S. Possidonio and N.I. Malek, Liquids, 4, 73 (2024); https://doi.org/10.3390/liquids4010003
A. Mchaweh, A. Alsaygh, K. Nasrifar and M. Moshfeghian, Fluid Phase Equilib., 224, 157 (2004); https://doi.org/10.1016/j.fluid.2004.06.054
A.S. Bahadur, M.C.S. Subha and K.C. Rao, J. Pure Appl. Ultrason., 23, 26 (2001).
P.S. Rao, M.C.S. Subha and G.N. Swamy, Acustica, 83, 155 (1997).
M.B. Ewing, B.J. Levien, K.N. Marsh and R.H. Stokes, J. Chem. Thermodyn., 2, 689 (1970); https://doi.org/10.1016/0021-9614(70)90044-3
A. Ali, A.K. Nain and M. Kamil, Thermochim. Acta, 274, 209 (1996); https://doi.org/10.1016/0040-6031(95)02719-X
A. Rohman and A. Windarsih, Int. J. Mol. Sci., 21, 5155 (2020); https://doi.org/10.3390/ijms21145155
Pankaj and C. Sharma, Ultrasonics, 29, 344 (1991); https://doi.org/10.1016/0041-624X(91)90033-5
S. Velmurugan, T.K. Nambinarayanan, R.A. Srinivasa and B. Krishnan, Indian J. Phys., 618, 105 (1987).
J.M.G. Cowie, J. Polym. Sci. Part C Polym. Symp., 23, 267 (1968); https://doi.org/10.1002/polc.5070230133
A. Pal and G. Das, J. Pure Appl. Ultrasonic, 21, 9 (1990).
C. Di Mino, A. J. Clancy, A. Sella, C. A. Howard, T. F. Headen, A. G. Seel, and N.T. Skipper, J. Phys. Chem. B, 127, 1884 (2023); https://doi.org/10.1021/acs.jpcb.2c07155
M. Šimunková and M. Malček, Acta Chim. Slov., 13, 38 (2020); https://doi.org/10.2478/acs-2020-0022
P. Arya, T. Bhatt, H. Arya, C.C. Dhondiyal and M. Rana, Chem. Africa, 7, 1033 (2024); https://doi.org/10.1007/s42250-023-00779-0
G. Arul and L. Palaniappan, Indian J. Pure Appl. Phys., 39, 561 (2001).
S. Thirumaran and J.E. Jayakumar, Indian J. Pure Appl. Phys., 47, 265 (2009).
S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami and K. Tanabe, J. Phys. Chem. A, 106, 4423 (2002); https://doi.org/10.1021/jp013723t
H. Chen, X. Xu, S. Gong, Y. Zhou and Z. Wang, J. Mol. Liq., 313, 113542 (2020); https://doi.org/10.1016/j.molliq.2020.113542
K. Umasivakami, S. Vaideeswaran and V. Rose, J. Serb. Chem. Soc., 83, 1131 (2018); https://doi.org/10.2298/JSC170829056U
H. Chen, Z. Wang, X. Xu, S. Gong and Y. Zhou, Phys. Chem. Chem. Phys., 23, 13300 (2021); https://doi.org/10.1039/D1CP00874A
L.A. Curtiss, K. Raghavachari, G.W. Trucks and J.A. Pople, J. Chem. Phys., 94, 7221 (1991); https://doi.org/10.1063/1.460205
S. Jeff, J. Chem. Pharm. Res., 16, 95 (2024); https://doi.org/10.37532/0975-7384.2024.16(1).095
R. Vargas, J. Garza and A. Martínez, J. Mex. Chem. Soc., 68, 970 (2024); https://doi.org/10.29356/jmcs.v68i4.2306
Hema, T. Bhatt, T. Pant, C.C. Dhondiyal, M. Rana, P. Chowdhury, G. C. Joshi, P. Arya and H. Tiwari, J. Mol. Model., 26, 268 (2020); https://doi.org/10.1007/s00894-020-04533-y
Y. Zhao and D.G. Truhlar, J. Chem. Theory Comput., 1, 415 (2005); https://doi.org/10.1021/ct049851d
S. Scheiner, J. Phys. Chem. B, 110, 18670 (2006); https://doi.org/10.1021/jp063225q
R.O. Jones, Rev. Mod. Phys., 87, 897 (2015); https://doi.org/10.1103/RevModPhys.87.897
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT (2013).
M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek and G.R. Hutchison, J. Cheminform., 4, 17 (2012); https://doi.org/10.1186/1758-2946-4-17
A.D. Becke, Phys. Rev. A Gen. Phys., 38, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
L. Sobczyk, S.J. Grabowski and T.M. Krygowski, Chem. Rev., 105, 3513 (2005); https://doi.org/10.1021/cr030083c
H. Bertagnolli, E. Schultz and P. Chieux, Ber. Bunsenges. Phys. Chem, 93, 88 (1989); https://doi.org/10.1002/bbpc.19890930117
L.I. Vaisman and M.L. Berkowitz, J. Am. Chem. Soc., 114, 7889 (1992); https://doi.org/10.1021/ja00046a038
A. Ali, S. Hyder and M. Tariq, Int. J. Thermophys., 26, 1537 (2005); https://doi.org/10.1007/s10765-005-8102-9
D. Patterson, J. Solution Chem., 23, 105 (1994); https://doi.org/10.1007/BF00973540
M.I. Sancho, M.C. Almandoz, S.E. Blanco and E.A. Castro, Int. J. Mol. Sci., 12, 8895 (2011); https://doi.org/10.3390/ijms12128895
J. Li and R.Q. Zhang, Sci. Rep., 6, 22304 (2016); https://doi.org/10.1038/srep22304
J. Li and R.Q. Zhang, Phys. Chem. Chem. Phys., 17, 29489 (2015); https://doi.org/10.1039/C5CP04684J
S. Tsuzuki and T. Uchimaru, Curr. Org. Chem., 10, 745 (2006); https://doi.org/10.2174/138527206776818937
Hema, T. Bhatt, T. Pant, C.C. Dhondiyal and H. Tiwari, Indian J. Chem., 60A,1072 (2021).
R.S. Mulliken, J. Am. Chem. Soc., 72, 600 (1950); https://doi.org/10.1021/ja01157a151
R.S. Mulliken and W.B. Pearson, Molecular Complexes, Wiley Publishers: New York (1969).
R. Foster, Charge-transfer Complexes, Academic Press: London, p. 387 (1969).
Z.Y. Li, H.L. Wang, T.J. He, F.C. Liu and D.M. Chen, J. Mol. Struct. THEOCHEM, 778, 69 (2006); https://doi.org/10.1016/j.theochem.2006.08.048
P. Hobza and Z. Havlas, Chem. Rev., 100, 4253 (2000); https://doi.org/10.1021/cr990050q
X. Li, L. Liu and H.B. Schlegel, J. Am. Chem. Soc., 124, 9639 (2002); https://doi.org/10.1021/ja020213j
G.E. Douberly, A.M. Ricks, P.V.R. Schleyer and M.A. Duncan, J. Phys. Chem. A, 112, 4869 (2008); https://doi.org/10.1021/jp802020n
R. Knaanie, J. Šebek, M. Tsuge, N. Myllys, L. Khriachtchev, M. Räsänen, B. Albee, E.O. Potma and R.B. Gerber, J. Phys. Chem. A, 120, 3380 (2016); https://doi.org/10.1021/acs.jpca.6b01604
J. Datka, J. Chem. Soc., Faraday Trans. I, 77, 511 (1981); https://doi.org/10.1039/F19817700511
N. Mozhzhukhina, L.P. Méndez De Leo and E.J. Calvo, J. Phys. Chem. C, 117, 18375 (2013); https://doi.org/10.1021/jp407221c
S. Kumar and L. Guganathan, J. Emerg. Technol. Innov. Res., 5, 544 (2018).
Omni-Cell Transmission) AN20-03, Liquid film FT-IR analysis of esterification reaction products in the Omni-Cell Specac Ltd. (2022).
J.R. Dyer, Applications of Absorption Spectroscopy of Organic Compounds, Prentice-Hall of India, New Delhi, edn 4 (1978).
Hema, T. Bhatt, P. Arya, C.C. Dhondiyal, H. Tiwari and K. Devlal, Struct. Chem., 33, 207 (2022); https://doi.org/10.1007/s11224-021-01832-9
A. Awasthi and J.P. Shukla, Ultrasonics, 41, 477 (2003); https://doi.org/10.1016/S0041-624X(03)00127-6
A.Y. Li, H.B. Ji and L.J. Cao, J. Chem. Phys., 131, 164305 (2009); https://doi.org/10.1063/1.3251123
Hema and T. Bhatt, Mater. Today, 47, 1590 (2021); https://doi.org/10.1016/j.matpr.2021.04.264
J.S. Bader and B.J. Berne, J. Chem. Phys., 100, 8359 (1994); https://doi.org/10.1063/1.466780
R. Ramírez, T. López-Ciudad, P. Kumar P and D. Marx, J. Chem. Phys., 121, 3973 (2004); https://doi.org/10.1063/1.1774986
G. Arivazhagan, A. Elangovan, R. Shanmugam, R. Vijayalakshmi and N.K. Karthick, J. Mol. Liq., 214, 357 (2016); https://doi.org/10.1016/j.molliq.2015.10.062