Copyright (c) 2025 Buddhadeb Dutta

This work is licensed under a Creative Commons Attribution 4.0 International License.
Recent Developments in Zeolites Based CO2 Separation Technologies: A Review
Corresponding Author(s) : Buddhadeb Dutta
Asian Journal of Chemistry,
Vol. 37 No. 11 (2025): Vol 37 Issue 11, 2025
Abstract
Increase in the concentration of carbon dioxide (CO2) in the atmosphere due to anthropogenic activities has become an enormous problem in recent years. As CO2 is one of the most potent greenhouse gases, increase in its concentration will lead to increase in the average temperature of the atmosphere, which is referred to as global warming. Global warming leads to unpredictable change in weather and climate, sea-level rise, decline in arctic ice caps, only to name a few. To get rid of this problem, carbon capture and sequestration has become one promising technological breakthrough. Porous materials have shown considerable advantages in the adsorption of CO2. Among many porous materials like metal organic frameworks (MOFs), porous carbon-based materials, zeolites, etc., zeolites have shown certain advantages like tuning pore sizes and properties by ion exchange, easy regeneration, greater selectivity, etc. This review article explores the application of zeolites in the field of CO2 separation, with a particular emphasis on recent advancements and emerging trends in their development and performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- International Energy Agency, CO2 Emissions in 2022; Paris: IEA, November 2023; https://www.iea.org/reports/co2-emissions-in-2022 (Accessed on 16 June 2025).
- Z. Liu, Z. Deng, S. J. Davis and P. Ciais, Nat. Rev. Earth Environ., 4, 205 (2023); https://doi.org/10.1038/s43017-023-00406-z
- Y. Li, X. Wang and M. Cao, J. CO2 Util., 27, 204 (2018); https://doi.org/10.1016/j.jcou.2018.07.019
- Z. Liu, Appl. Energy, 166, 239 (2016); https://doi.org/10.1016/j.apenergy.2015.11.005
- F. Sher, S.Z. Iqbal, S. Albazzaz, U. Ali, D.A. Mortari and T. Rashid, Fuel, 282, 118506 (2020); https://doi.org/10.1016/j.fuel.2020.118506
- R.V. Siriwardane, M.-S. Shen, E.P. Fisher and J. Losch, Energy Fuels, 19, 1153 (2005); https://doi.org/10.1021/ef040059h
- http://www.ipcc.ch/report/sr15/
- R.L. Siegelman, E.J. Kim and J.R. Long, Nat. Mater., 20, 1060 (2021); https://doi.org/10.1038/s41563-021-01054-8
- M. Irani, A.T. Jacobson, K.A.M. Gasem and M. Fan, Fuel, 206, 10 (2017); https://doi.org/10.1016/j.fuel.2017.05.087
- B. Sreenivasulu, D.V. Gayatri, I. Sreedhar and K.V. Raghavan, Renew. Sustain. Energy Rev., 41, 1324 (2015); https://doi.org/10.1016/j.rser.2014.09.029
- D. Tiwari, H. Bhunia and P.K. Bajpai, RSC Adv., 6, 111842 (2016); https://doi.org/10.1039/C6RA18291G
- M. Deng and H.G. Park, Langmuir, 35, 4453 (2019); https://doi.org/10.1021/acs.langmuir.8b03980
- N. Omidfar, A. Mohamadalizadeh and S.H. Mousavi, Asia-Pac. J. Chem. Eng., 10, 885 (2015); https://doi.org/10.1002/apj.1925
- K.K. Jena, A.P. Panda, S. Verma, G.K. Mani, S.K. Swain and S.M. Alhassan, J. Alloys Compd., 800, 279 (2019); https://doi.org/10.1016/j.jallcom.2019.06.011
- B. Kaur, R.K. Gupta and H. Bhunia, Chem. Eng. Commun., 207, 1031 (2020); https://doi.org/10.1080/00986445.2019.1635466
- O.H.P. Gunawardene, C.A. Gunathilake, K. Vikrant and S.M. Amaraweera, Atmosphere, 13, 397 (2022); https://doi.org/10.3390/atmos13030397
- H.A. Patel, J. Byun and C.T. Yavuz, ChemSusChem, 10, 1303 (2017); https://doi.org/10.1002/cssc.201601545
- F.E.C. Othman, N. Yusof and A.F. Ismail, Chem. Eng. Technol., 43, 2023 (2020); https://doi.org/10.1002/ceat.201900480
- R. Castro-Muñoz, M. Zamidi Ahmad, M. Malankowska and J. Coronas, Chem. Eng. J., 446, 137047 (2022); https://doi.org/10.1016/j.cej.2022.137047
- S-Ichi, Nakao, K. Yogo, K. Goto, T. Kai and H. Yamada, Advanced CO2 Capture Technologies: Absorption, Adsorption and Membrane Separation Methods, Springer (2019).
- Y. Bi and Y. Ju, Front. Energy, 16, 793 (2022); https://doi.org/10.1007/s11708-022-0821-0
- B. Li, Y. Duan, D. Luebke and B. Morreale, Appl. Energy, 102, 1439 (2013); https://doi.org/10.1016/j.apenergy.2012.09.009
- C.-H. Yu, C.-H. Huang and C.-S. Tan, Aerosol Air Qual. Res., 12, 745 (2012); https://doi.org/10.4209/aaqr.2012.05.0132
- S. Boycheva, I. Marinov and D. Zgureva-Filipova, Energies, 14, 8279 (2021); https://doi.org/10.3390/en14248279
- H. Pashaei, A. Ghaemi, M. Nasiri and B. Karami, ACS Omega, 5, 8432 (2020); https://doi.org/10.1021/acsomega.9b03363
- A. Ghaemi, Pol. J. Chem. Technol., 19, 75 (2017); https://doi.org/10.1515/pjct-2017-0052
- H. Pashaei, M.N. Zarandi and A. Ghaemi, Chem. Eng. Res. Des., 121, 32 (2017); https://doi.org/10.1016/j.cherd.2017.03.001
- I.M. Bernhardsen and H.K. Knuutila, Int. J. Greenh. Gas Control, 61, 27 (2017); https://doi.org/10.1016/j.ijggc.2017.03.021
- Q. Wang, J. Luo, Z. Zhong and A. Borgna, Energy Environ. Sci., 4, 42 (2011); https://doi.org/10.1039/C0EE00064G
- W. Gao, S. Liang, R. Wang, Q. Jiang, Y. Zhang, Q. Zheng, B. Xie, C. Y. Toe, X. Zhu, J. Wang, L. Huang, Y. Gao, Z. Wang, C. Jo, Q. Wang, L. Wang, Y. Liu, B. Louis, J. Scott, A.-C. Roger, R. Amal, H. He and S.-E. Park, Chem. Soc. Rev., 49, 8584 (2020); https://doi.org/10.1039/D0CS00025F
- F.M. Baena-Moreno, M. Rodriguez-Galan, F. Vega, B. Alonso-Fariñas, L.F. Vilches Arenas and B. Navarrete, Energy Sources A, 41, 1403 (2019); https://doi.org/10.1080/15567036.2018.1548518
- X. Wang and C. Song, Front. Energy Res., 8, 560849 (2020); https://doi.org/10.3389/fenrg.2020.560849
- M.J. Regufe, A. Pereira, A.F.P. Ferreira, A.M. Ribeiro and A.E. Rodrigues, Energies, 14, 2406 (2021); https://doi.org/10.3390/en14092406
- International Association of Oil and Gas Producers, Potential for CCS and CCU in Europe (2019).
- C.H. Huang and C.S. Tan, Aerosol Air Qual. Res., 14, 480 (2014); https://doi.org/10.4209/aaqr.2013.10.0326
- E.I. Koytsoumpa, C. Bergins and E. Kakaras, J. Supercrit. Fluids, 132, 3 (2018); https://doi.org/10.1016/j.supflu.2017.07.029
- A.J. Kamphuis, F. Picchioni and P.P. Pescarmona, Green Chem., 21, 406 (2019); https://doi.org/10.1039/C8GC03086C
- S. Salehi and M. Anbia, Appl. Organomet. Chem., 32, 4390 (2018); https://doi.org/10.1002/aoc.4390
- S. Lee and S. Park, J. Ind. Eng. Chem., 23, 1 (2015); https://doi.org/10.1016/j.jiec.2014.09.001
- C. Gunathilake, R.S. Dassanayake, N. Abidi and M. Jaroniec, J. Mater. Chem. A Mater. Energy Sustain., 4, 4808 (2016); https://doi.org/10.1039/C6TA00261G
- A. Alabadi, S. Razzaque, Y. Yang, S. Chen and B. Tan, Chem. Eng. J., 281, 606 (2015); https://doi.org/10.1016/j.cej.2015.06.032
- R.S. Dassanayake, C. Gunathilake, A.C. Dassanayake, N. Abidi and M. Jaroniec, J. Mater. Chem. A Mater. Energy Sustain., 5, 7462 (2017); https://doi.org/10.1039/C7TA01038A
- R. Dassanayake, C. Gunathilake, N. Abidi and M. Jaroniec, Cellulose, 25, 1911 (2018); https://doi.org/10.1007/s10570-018-1660-3
- A.S. Lee, J.C. Eslick, D.C. Miller and J.R. Kitchin, Int. J. Greenh. Gas Control, 18, 68 (2013); https://doi.org/10.1016/j.ijggc.2013.06.020
- M. Wang, A.S. Joel, C. Ramshaw, D. Eimer and N.M. Musa, Appl. Energy, 158, 275 (2015); https://doi.org/10.1016/j.apenergy.2015.08.083
- N. Hedin, L. Andersson, L. Bergstrom and J. Yan, Appl. Energy, 104, 418 (2013); https://doi.org/10.1016/j.apenergy.2012.11.034
- J.A. Mason, T.M. McDonald, T.H. Bae, J.E. Bachman, K. Sumida, J.J. Dutton, S.S. Kaye and J.R. Long, J. Am. Chem. Soc., 137, 4787 (2015); https://doi.org/10.1021/jacs.5b00838
- X. Zhang, X. He and T. Gundersen, Energy Fuels, 27, 4137 (2013); https://doi.org/10.1021/ef3021798
- S. Zhao, P.H.M. Feron, L. Deng, E. Favre, E. Chabanon, S. Yan, J. Hou, V. Chen and H. Qi, J. Membr. Sci., 511, 180 (2016); https://doi.org/10.1016/j.memsci.2016.03.051
- F.S. Taheri, A. Ghaemi, A. Maleki and S. Shahhosseini, Energy Fuels, 33, 5384 (2019); https://doi.org/10.1021/acs.energyfuels.9b00703
- Z. Khoshraftar, A. Ghaemi and H. Mashhadimoslem, Iran. J. Chem. Eng., 18, 64 (2021).
- V. Indira and K. Abhitha, Energy Nexus, 7, 100095 (2022); https://doi.org/10.1016/j.nexus.2022.100095
- F. Fashi, A. Ghaemi and A.H. Behroozi, Chem. Eng. Commun., 208, 1104 (2021); https://doi.org/10.1080/00986445.2020.1746657
- M. Khajeh Amiri, A. Ghaemi and H. Arjomandi, Iran. J. Chem. Eng., 16, 54 (2019); https://doi.org/10.1001.1.17355397.2019.16.1.4.8
- S. Zhang, M.-S. Jang, J. Lee, P. Puthiaraj and W.-S. Ahn, ACS Sustain. Chem.& Eng., 8, 7078 (2020); https://doi.org/10.1021/acssuschemeng.0c00885
- G. Mondino, A.I. Spjelkavik, T. Didriksen, S. Krishnamurthy, R.E. Stensrød, C.A. Grande, L.O. Nord and R. Blom, Ind. Eng. Chem. Res., 59, 7198 (2020); https://doi.org/10.1021/acs.iecr.9b06387
- Z. Wang and S.M. Cohen, Chem. Soc. Rev., 38, 1315 (2009); https://doi.org/10.1039/b802258p
- A. Ghaemi and A. Hemmati, Iranian Chem. Eng. J., 20, 22 (2021); https://doi.org/10.22034/ijche.2021.239817.1026
- K.-M. Lee, Y.-H. Lim, C.-J. Park and Y.-M. Jo, Ind. Eng. Chem. Res., 51, 1355 (2012); https://doi.org/10.1021/ie2013532
- Z. Khoshraftar and A. Ghaemi, Curr. Res. Green. Sustain. Chem., 5, 100342 (2022); https://doi.org/10.1016/j.crgsc.2022.100342
- H. Mashhadimoslem, M. Safarzadeh Khosrowshahi, M. Jafari, A. Ghaemi and A. Maleki, ACS Omega, 7, 18409 (2022); https://doi.org/10.1021/acsomega.2c00673
- H. Ramezanipour Penchah, A. Ghaemi and F. Jafari, Environ. Sci. Pollut. Res. Int., 29, 5134 (2022); https://doi.org/10.1007/s11356-021-16040-5
- A.I. Pruna, A. Càrcel, A. Benedito and E. Giménez, Int. J. Mol. Sci., 24, 3865 (2023); https://doi.org/10.3390/ijms24043865
- F. Fathalian, S. Aarabi, A. Ghaemi and A. Hemmati, Sci. Rep., 12, 21507 (2022); https://doi.org/10.1038/s41598-022-26138-6
- X. Ma, X. Li, H. Cui, W. Zhang, Z. Cheng and Z. Zhou, AIChE J., 69, e17520 (2023); https://doi.org/10.1002/aic.17520
- F. Fashi, A. Ghaemi and P. Moradi, Greenhouse Gas Sci. Technol., 9, 37 (2019); https://doi.org/10.1002/ghg.1829
- A.M. Alloush, H. Abdulghani, H.A. Amasha, T.A. Saleh and O.C.S. Al Hamouz, J. Ind. Eng. Chem., 113, 215 (2022); https://doi.org/10.1016/j.jiec.2022.05.049
- F. Maleki, A. Ghaemi and G.M. Mohamad Sadeghi, Environ. Prog. Sustain. Energy, 42, e13954 (2023); https://doi.org/10.1002/ep.13954
- A. Torkashvand, H.R. Penchah and A. Ghaemi, Int. J. Environ. Sci. Technol., 19, 8835 (2022); https://doi.org/10.1007/s13762-022-04122-x
- P. Najafi, H.R. Penchah and A. Ghaemi, Environ. Technol. Innov., 23, 101746 (2021); https://doi.org/10.1016/j.eti.2021.101746
- H. Cui, J. Xu, J. Shi, N. Yan and Y. Liu, Energy, 187, 115936 (2019); https://doi.org/10.1016/j.energy.2019.115936
- D. Saha and M.J. Kienbaum, Micropor. Mesopor. Mater., 287, 29 (2019); https://doi.org/10.1016/j.micromeso.2019.05.051
- A.R. Millward and O.M. Yaghi, J. Am. Chem. Soc., 127, 17998 (2005); https://doi.org/10.1021/ja0570032
- P.A.S. Moura, D.P. Bezerra, E. Vilarrasa-Garcia, M. Bastos-Neto and D.C.S. Azevedo, Adsorption, 22, 71 (2016); https://doi.org/10.1007/s10450-015-9738-9
- T.H. Bae, M.R. Hudson, J.A. Mason, W.L. Queen, J.J. Dutton, K. Sumida, K.J. Micklash, S.S. Kaye, C.M. Brown and J.R. Long, Energy Environ. Sci., 6, 128 (2013); https://doi.org/10.1039/C2EE23337A
- D.G. Madden, H.S. Scott, A. Kumar, K.-J. Chen, R. Sanii, A. Bajpai, M. Lusi, T. Curtin, J.J. Perry and M.J. Zaworotko, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 375, 2084 (2017); https://doi.org/10.1098/rsta.2016.0025
- P. Nugent, Y. Belmabkhout, S.D. Burd, A.J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi and M.J. Zaworotko, Nature, 495, 80 (2013); https://doi.org/10.1038/nature11893
- J. Liu, P.K. Thallapally, B.P. McGrail, D.R. Brown and J. Liu, Chem. Soc. Rev., 41, 2308 (2012); https://doi.org/10.1039/C1CS15221A
- Q. Liu, A. Mace, Z. Bacsik, J. Sun, A. Laaksonen and N. Hedin, Chem. Commun., 46, 4502 (2010); https://doi.org/10.1039/c000900h
- P. Vasiliev, O. Cheung, Z. Bacsik, N. Hedin, Zeolite Type a Sorbent, US 2017/0158519 A1 (2017).
- C.J. Heard, L. Grajciar, C.M. Rice, S.M. Pugh, P. Nachtigall, S.E. Ashbrook and R.E. Morris, Nat. Commun., 10, 4690 (2019); https://doi.org/10.1038/s41467-019-12752-y
- S. Prodinger and M.A. Derewinski, Petrol. Chem., 60, 420 (2020); https://doi.org/10.1134/S0965544120040143
- B. Wu, X. Zhang, Y. Xu, D. Bao and S.J. Zhang, J. Clean. Prod., 101, 251 (2015); https://doi.org/10.1016/j.jclepro.2015.03.082
- Y. Zheng, X. Li and P.K. Dutta, Sensors, 12, 5170 (2012); https://doi.org/10.3390/s120405170
- C. Lu, H. Bai, B. Wu, F. Su and J.F. Hwang, Energy Fuels, 22, 3050 (2008); https://doi.org/10.1021/ef8000086
- D. Fu and M.E. Davis, Chem. Soc. Rev., 51, 9340 (2022); https://doi.org/10.1039/D2CS00508E
- K.C. Kemp, J.G. Min, H.J. Choi and S.B. Hong, in eds.: S. Valencia and F. Rey, New Developments in Adsorption/Separation of Small Molecules by Zeolites, In: Structure and Bonding, Springer International Publishing, edn. 1, pp.1–30 (2020).
- B. Dutta, Asian J. Chem., 34, 3125 (2022); https://doi.org/10.14233/ajchem.2022.23960
- B. Dutta, Asian J. Chem., 36, 1977 (2024); https://doi.org/10.14233/ajchem.2024.32083
- K.S. Walton, M.B. Abney and M.D. LeVan, Micropor. Mesopor. Mater., 91, 78 (2006); https://doi.org/10.1016/j.micromeso.2005.11.023
- A. Bakhtyari, M. Mofarahi and C.-H. Lee, in eds.: M.R. Rahimpour, M. Farsi and M.A. Makarem CO2 Adsorption by Conventional and Nanosized Zeolites, In: Advances in Carbon Capture, Woodhead Publishing, Chap. 19, pp. 193-228 (2020).
- R. Szostak, Handbook of Molecular Sieves, Van Nostrand Reinhold, New York (1992).
- D.W. Breck, Zeolite Molecular Sieves: Structure, Chemistry and Use. John Wiley & Sons Inc., New York (1984).
- T. Maesen and B. Marcus, Stud. Surf. Sci. Catal., 137, 1 (2001); https://doi.org/10.1016/S0167-2991(01)80242-1
- N. Mortazavi, M. Bahadori, A. Marandi, S. Tangestaninejad, M. Moghadam, V. Mirkhani and I. Mohammadpoor-Baltork, Sustain. Chem. Pharm., 22, 100495 (2021); https://doi.org/10.1016/j.scp.2021.100495
- F. Bahmanzadegan and A. Ghaemi, Case Studies Chem. Environ. Eng., 9, 100564 (2024); https://doi.org/10.1016/j.cscee.2023.100564
- Y. Li, H. Yi, X. Tang, F. Li and Q. Yuan, Chem. Eng. J., 229, 50 (2013); https://doi.org/10.1016/j.cej.2013.05.101
- C. Chen, J. Yu, G. Song and K. Che, J. Environ. Chem. Eng., 11, 110253 (2023); https://doi.org/10.1016/j.jece.2023.110253
- M. Cavallo, M. Dosa, N.G. Porcaro, F. Bonino, M. Piumetti and V. Crocellà, J. CO2 Util., 67, 102335 (2023); https://doi.org/10.1016/j.jcou.2022.102335
- F. Bahmanzadegan and A. Ghaemi, Case Studies In Chem. Environ. Eng., 9, 100595 (2024); https://doi.org/10.1016/j.cscee.2023.100595
- N. Chouikhi, J.A. Cecilia, E. Vilarrasa-García, S. Besghaier, M. Chlendi, F.I. Franco Duro, E. Rodriguez Castellon and M. Bagane, Minerals, 9, 514 (2019); https://doi.org/10.3390/min9090514
- E.A. Roth, S. Agarwal and R.K. Gupta, Energy Fuels, 27, 4129 (2013); https://doi.org/10.1021/ef302017m
- A. Ansari, S. Shahhosseini and A. Maleki, Sep. Sci. Technol., 58, 1252 (2023); https://doi.org/10.1080/01496395.2023.2189049
- H. Gong, W. Liu, L. Liu, N. Goyal, P. Xiao, G. Li, Y. Wei and T. Du, J. Taiwan Inst. Chem. Eng., 103, 160 (2019); https://doi.org/10.1016/j.jtice.2019.07.006
- E. Kim, T. Lee, H. Kim, W.-J. Jung, D.-Y. Han, H. Baik, N. Choi and J. Choi, Environ. Sci. Technol., 48, 14828 (2014); https://doi.org/10.1021/es504265p
- R.P. Townsend and E.N. Coker, Stud. Surf. Sci. Catal., 137, 467 (2001); https://doi.org/10.1016/S0167-2991(01)80253-6
- L. Ćurković, Š. Cerjan-Stefanović and T. Filipan, Water Res., 31, 1379 (1997); https://doi.org/10.1016/S0043-1354(96)00411-3
- C. Baerlocher and L.B. McCusker, Database of Zeolite Structures. http://www.iza-structure.org/databases/
- M. Dusselier and M.E. Davis, Chem. Rev., 118, 5265 (2018); https://doi.org/10.1021/acs.chemrev.7b00738
- M.R. Hudson, W.L. Queen, J.A. Mason, D.W. Fickel, R.F. Lobo and C.M. Brown, J. Am. Chem. Soc., 134, 1970 (2012); https://doi.org/10.1021/ja210580b
- Q. Jiang, J. Rentschler, G. Sethia, S. Weinman, R. Perrone and K. Liu, Chem. Eng. J., 230, 380 (2013); https://doi.org/10.1016/j.cej.2013.06.103
- J.-R. Li, R.J. Kuppler and H.-C. Zhou, Chem. Soc. Rev., 38, 1477 (2009); https://doi.org/10.1039/b802426j
- H. Chen, Y.J. Zhang, P.Y. He and C.J. Li, Energy, 179, 422 (2019); https://doi.org/10.1016/j.energy.2019.04.113
- A. Pulido, P. Nachtigall, A. Zukal, I. Dominguez and J. Cejka, J. Phys. Chem. C, 113, 2928 (2009); https://doi.org/10.1021/jp810038b
- G. Calleja, J. Pau and J.A. Calles, J. Chem. Eng. Data, 43, 994 (1998); https://doi.org/10.1021/je9702100
- H. Chen, W. Wang, J. Ding, X. Wei and J. Lu, Energy Procedia, 105, 4370 (2017); https://doi.org/10.1016/j.egypro.2017.03.929
- Y. Guo, T. Sun, Y. Gu, X. Liu, Q. Ke, X. Wei and S. Wang, Chem. Asian J., 13, 3222 (2018); https://doi.org/10.1002/asia.201800930
- D.G. Boer, J. Langerak and P.P. Pescarmona, ACS Appl. Energy Mater., 6, 2634 (2023); https://doi.org/10.1021/acsaem.2c03605
- P. Hu, R. Oishi, H. Ya, Y. Yonezawa, M. Matsukura, K. Iyoki, T. Okubo and T. Wakihara, Chem. Eng. J., 508, 161054 (2025); https://doi.org/10.1016/j.cej.2025.161054
- M. Palomino, A. Corma, F. Rey and S. Valencia, Langmuir, 26, 1910 (2010); https://doi.org/10.1021/la9026656
- D. Newsome, S. Gunawan, G. Baron, J. Denayer and M.O. Coppens, Adsorption, 20, 157 (2014); https://doi.org/10.1007/s10450-013-9560-1
- R.T. Yang, Adsorbents: Fundamentals and Applications, Wiley-Interscience, John Wiley & Sons, Inc. (2003).
- R.M. Barrer, Zeolites and Clay Minerals as Sorbents and Molecular Sieves, Academic Press (1978).
- R.T. Yang, Gas Separation by Adsorption Processes, Imperial College Press (1997).
- A.M. Najafi, S. Soltanali and H. Ghassabzadeh, Chem. Eng. J., 468, 143719 (2023); https://doi.org/10.1016/j.cej.2023.143719
- P. Li and F.H. Tezel, Micropor. Mesopor. Mater., 98, 94 (2007); https://doi.org/10.1016/j.micromeso.2006.08.016
- M. Mofarahi and F. Gholipour, Micropor. Mesopor. Mater., 200, 1 (2014); https://doi.org/10.1016/j.micromeso.2014.08.022
- J.A. Dunne, M. Rao, S. Sircar, R.J. Gorte and A.L. Myers, Langmuir, 12, 5896 (1996); https://doi.org/10.1021/la960496r
- E. Pérez-Botella, S. Valencia and F. Rey, Chem. Rev., 122, 17647 (2022); https://doi.org/10.1021/acs.chemrev.2c00140
- T. Remy, E. Gobechiya, D. Danaci, S.A. Peter, P. Xiao, L. Van Tendeloo, S. Couck, J. Shang, C.E.A. Kirschhock, R.K. Singh, J.A. Martens, G.V. Baron, P.A. Webley and J.F.M. Denayer, RSC Adv., 4, 62511 (2014); https://doi.org/10.1039/C4RA12460J
- T. Remy, S.A. Peter, L. Van Tendeloo, S. Van der Perre, Y. Lorgouilloux, C.E.A. Kirschhock, G.V. Baron and J.F.M. Denayer, Langmuir, 29, 4998 (2013); https://doi.org/10.1021/la400352r
- N.K. Jensen, T.E. Rufford, G. Watson, D. Zhang, K.I. Chan and E.F. May, J. Chem. Eng. Data, 57, 106 (2012); https://doi.org/10.1021/je200817w
- Z. Tao, Y. Tian, W. Wu, Z. Liu, W. Fu, C.-W. Kung and J. Shang, Mater. Sustain., 2, 20 (2024); https://doi.org/10.1038/s44296-024-00023-x
- K. Chen, S.H. Mousavi, R. Singh, R.Q. Snurr, G. Li and P.A. Webley, Chem. Soc. Rev., 51, 1139 (2022); https://doi.org/10.1039/D1CS00822F
- J. Shang, G. Li, R. Singh, Q. Gu, K.M. Nairn, T.J. Bastow, N. Medhekar, C.M. Doherty, A.J. Hill, J.Z. Liu and P.A. Webley, J. Am. Chem. Soc., 134, 19246 (2012); https://doi.org/10.1021/ja309274y
- V.M. Georgieva, E.L. Bruce, M.C. Verbraeken, A.R. Scott, W.J. Casteel Jr., S. Brandani and P.A. Wright, J. Am. Chem. Soc., 141, 12744 (2019); https://doi.org/10.1021/jacs.9b05539
- H.J. Choi, D. Jo, J.G. Min and S.B. Hong, Angew. Chem. Int. Ed., 60, 4307 (2021); https://doi.org/10.1002/anie.202012953
- M.M. Lozinska, E. Mangano, J.P.S.S. Mowat, A.M. Shepherd, R.F. Howe, S.P. Thompson, J.E. Parker, S. Brandani and P.A. Wright, J. Am. Chem. Soc., 134, 17628 (2012); https://doi.org/10.1021/ja3070864
- D. Barthomeuf, J. Phys. Chem., 88, 42 (1984); https://doi.org/10.1021/j150645a010
- R. Bulanek, K. Frolich, E. Frýdova and P. Čičmanec, Top. Catal., 53, 1349 (2010); https://doi.org/10.1007/s11244-010-9593-6
- G. Bhati, N.P.S.K. Dharanikota, R.V.S. Uppaluri and B. Mandal, Micropor. Mesopor. Mater., 387, 113537 (2025); https://doi.org/10.1016/j.micromeso.2025.113537
- D. Bonenfant, M. Kharoune, P. Niquette, M. Mimeault and R. Hausler, Sci. Technol. Adv. Mater., 9, 013007 (2008); https://doi.org/10.1088/1468-6996/9/1/013007
- M. Sakuth, J. Meyer and J. Gmehling, Chem. Eng. Process., 37, 267 (1998); https://doi.org/10.1016/S0255-2701(98)00038-5
- D. Barthomeuf, Micropor. Mesopor. Mater., 66, 1 (2003); https://doi.org/10.1016/j.micromeso.2003.08.006
- J.C. Lavalley, Catal. Today, 27, 377 (1996); https://doi.org/10.1016/0920-5861(95)00161-1
- G.D. Pirngruber, P. Raybaud, Y. Belmabkhout, J. Čejka and A. Zukal, Phys. Chem. Chem. Phys., 12, 13534 (2010); https://doi.org/10.1039/b927476f
- A. Zukal, A. Pulido, B. Gil, P. Nachtigall, O. Bludský, M. Rubes and J. Cejka, Phys. Chem. Chem. Phys., 12, 6413 (2010); https://doi.org/10.1039/c001950j
- R.S. Pillai, S.A. Peter and R.V. Jasra, Micropor. Mesopor. Mater., 162, 143 (2012); https://doi.org/10.1016/j.micromeso.2011.12.039
- S.T. Yang, J. Kim and W.S. Ahn, Micropor. Mesopor. Mater., 135, 90 (2010); https://doi.org/10.1016/j.micromeso.2010.06.015
- Z. Bacsik, O. Cheung, P. Vasiliev and N. Hedin, Appl. Energy, 162, 613 (2016); https://doi.org/10.1016/j.apenergy.2015.10.109
- J. Zhang, R. Singh and P.A. Webley, Micropor. Mesopor. Mater., 111, 478 (2008); https://doi.org/10.1016/j.micromeso.2007.08.022
- L. Joos, J.A. Swisher and B. Smit, Langmuir, 29, 15936 (2013); https://doi.org/10.1021/la403824g
- M.J. Purdue and Z. Qiao, Micropor. Mesopor. Mater., 261, 181 (2018); https://doi.org/10.1016/j.micromeso.2017.10.059
- Y. Wang and M.D. LeVan, J. Chem. Eng. Data, 55, 3189 (2010); https://doi.org/10.1021/je100053g
- H. Wang, Y. Yin, J. Bai and S. Wang, RSC Adv., 10, 6503 (2020); https://doi.org/10.1039/C9RA08334K
- G. Li, P. Xiao, P.A. Webley, J. Zhang and R. Singh, Energy Procedia, 1, 1123 (2009); https://doi.org/10.1016/j.egypro.2009.01.148
- A.A. Dabbawala, I. Ismail, B.V. Vaithilingam, K. Polychronopoulou, G. Singaravel, S. Morin, M. Berthod and Y. Al Wahedi, Micropor. Mesopor. Mater., 303, 110261 (2020); https://doi.org/10.1016/j.micromeso.2020.110261
- S. Smeets, D. Xie, L.B. Mccusker, C. Baerlocher, S.I. Zones, J.A. Thompson, H.S. Lacheen and H. Huang, Chem. Mater., 26, 3909 (2014); https://doi.org/10.1021/cm501176j
- S. Couck, J. Lefevere, S. Mullens, L. Protasova, V. Meynen, G. Desmet, G.V. Baron and J.F.M. Denayer, Chem. Eng. J., 308, 719 (2017); https://doi.org/10.1016/j.cej.2016.09.046
- O. Cheung, D. Wardecki, Z. Bacsik, P. Vasiliev, L.B. McCusker and N. Hedin, Phys. Chem. Chem. Phys., 18, 16080 (2016); https://doi.org/10.1039/C6CP02443B
- B. Metz, O. Davidson, H. De Coninck, M. Loos and L. Meyer, IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press (2005).
- M. Mostafa, C. Antonicelli, C. Varela, D. Barletta and E. Zondervan, Carbon Capture Sci. Technol, 4, 100060 (2022).
- C. Breyer, M. Fasihi, C. Bajamundi and F. Creutzig, Joule, 3, 2053 (2019); https://doi.org/10.1016/j.joule.2019.08.010
- A. Kumar, D. Madden, M. Lusi, K.-J. Chen, E.A. Daniels, T. Curtin, J.J. Perry IV and M.J. Zaworotko, Angew. Chem. Int. Ed., 54, 14372 (2015); https://doi.org/10.1002/anie.201506952
- R. Custelcean, Chem. Sci., 12, 12518 (2021); https://doi.org/10.1039/D1SC04097A
- Y.-S. Bae and R.Q. Snurr, Angew. Chem. Int. Ed., 50, 11586 (2011); https://doi.org/10.1002/anie.201101891
- A.N. Stuckert and R.T. Yang, Environ. Sci. Technol., 45, 10257 (2011); https://doi.org/10.1021/es202647a
- Z. Tao, Y. Tian, A. Hanif, V. Chan, Q. Gu and J. Shang, Carbon Capture Sci. Technol., 8, 100126 (2023); https://doi.org/10.1016/j.ccst.2023.100126
- S. Liu, Y. Chen, B. Yue, C. Wang, B. Qin, Y. Chai, G. Wu, J. Li, X. Han, I. da-Silva, P. Manuel, S.J. Day, S.P. Thompson, N. Guan, S. Yang and L. Li, Chemistry, 28, e202201659 (2022); https://doi.org/10.1002/chem.202201659
- A. Oda, S. Hiraki, E. Harada, I. Kobayashi, T. Ohkubo, Y. Ikemoto, T. Moriwaki and Y. Kuroda, J. Mater. Chem. A Mater. Energy Sustain., 9, 7531 (2021); https://doi.org/10.1039/D0TA09944A
- D. Fu, Y. Park and M.E. Davis, Angew. Chem. Int. Ed., 61, e202112916 (2022); https://doi.org/10.1002/anie.202112916
- D. Fu, Y. Park and M.E. Davis, Proc. Natl. Acad. Sci. USA, 119, e2211544119 (2022); https://doi.org/10.1073/pnas.2211544119
- X. Xiang, T. Guo, Y. Yin, Z. Gao, Y. Wang, R. Wang, M. An, Q. Guo and X. Hu, Ind. Eng. Chem. Res., 62, 5420 (2023); https://doi.org/10.1021/acs.iecr.2c04458
- W. Rahmah, G.T.M. Kadja, M.H. Mahyuddin, A.G. Saputro, H.K. Dipojono and I.G. Wenten, J. Environ. Chem. Eng., 10, 108707 (2022); https://doi.org/10.1016/j.jece.2022.108707
- X. Tan, S. Robijns, R. Thür, Q. Ke, N. De Witte, A. Lamaire, Y. Li, I. Aslam, D. Van Havere, T. Donckels, T. Van Assche, V. Van Speybroeck, M. Dusselier and I. Vankelecom, Science, 378, 1189 (2022); https://doi.org/10.1126/science.ade1411
- O. Nanako, S. Tadashi, M. Seiji, T. Daisaku and M. Ai, Pressure Swing Adsorption (PSA) Device and Pressure Swing Adsorption Method, US Patent 12,377,382 B2 (2025).
- G. Kraus, C. Millet, S. Moreau and J.P. Gabillard, Process for Purifying Air by Adsorption Over a Barium-Exchanged Zeolite, US Patent 6425937 B1 (2002).
- G. Reiss, L. Puppe and B. Hees, Canada Patent CA 2182641 A1 (1997).
- S. Moreau and B. Sardan, Process for Separating Nitrogen from a Gas Mixture Containing Nitrogen and atleast One Gas which is Less Polar than Nitrogen, Employing Differential Gas Adsorption (PSA) using a Zeolite-Type Adsorbent, US Patent 6336956 B1 (2002).
- X. Vigor, P. Petit, S. Moreau and B. Sardan, US Patent 005658370A (1997).
- F. Akhtar, L. Andersson, S. Ogunwumi, N. Hedin and L. Bergström, J. Eur. Ceram. Soc., 34, 1643 (2014); https://doi.org/10.1016/j.jeurceramsoc.2014.01.008
- J.A.C. Silva, K. Schumann and A.E. Rodrigues, Micropor. Mesopor. Mater., 158, 219 (2012); https://doi.org/10.1016/j.micromeso.2012.03.042
- M.J. Regufe, A.F.P. Ferreira, J.M. Loureiro, A. Rodrigues and A.M. Ribeiro, Ind. Eng. Chem. Res., 59, 12197 (2020); https://doi.org/10.1021/acs.iecr.0c00184
- A. Pereira, A.F.P. Ferreira, A. Rodrigues, A.M. Ribeiro and M.J. Regufe, Chem. Eng. J., 450, 138197 (2022); https://doi.org/10.1016/j.cej.2022.138197
- A. Pereira, A.F.P. Ferreira, A. Rodrigues, A.M. Ribeiro and M.J. Regufe, J. Adv. Manuf. Process., 4, e10108 (2022); https://doi.org/10.1002/amp2.10108
- M.J. Regufe, A.F.P. Ferreira, J.M. Loureiro, Y. Shi, A.E. Rodrigues and A.M. Ribeiro, Adsorption, 24, 249 (2018); https://doi.org/10.1007/s10450-018-9938-1
- M.J. Regufe, A.F.P. Ferreira, J.M. Loureiro, A. Rodrigues and A.M. Ribeiro, Micropor. Mesopor. Mater., 278, 403 (2019); https://doi.org/10.1016/j.micromeso.2019.01.009
- S. Lawson, K. Newport, Q. Al-Naddaf, A.E. Ameh, A.A. Rownaghi, L.F. Petrik and F. Rezaei, Chem. Eng. J., 407, 128011 (2021); https://doi.org/10.1016/j.cej.2020.128011
- D.G. Boer, J. Langerak, B. Bakker and P.P. Pescarmona, Micropor. Mesopor. Mater., 344, 112208 (2022); https://doi.org/10.1016/j.micromeso.2022.112208
- K. Schumann, B. Unger, A. Brandt and F. Scheffler, Micropor. Mesopor. Mater., 154, 119 (2012); https://doi.org/10.1016/j.micromeso.2011.07.015
- L. Yu, J. Gong, C. Zeng and L. Zhang, Sep. Purif. Technol., 118, 188 (2013); https://doi.org/10.1016/j.seppur.2013.06.035
References
International Energy Agency, CO2 Emissions in 2022; Paris: IEA, November 2023; https://www.iea.org/reports/co2-emissions-in-2022 (Accessed on 16 June 2025).
Z. Liu, Z. Deng, S. J. Davis and P. Ciais, Nat. Rev. Earth Environ., 4, 205 (2023); https://doi.org/10.1038/s43017-023-00406-z
Y. Li, X. Wang and M. Cao, J. CO2 Util., 27, 204 (2018); https://doi.org/10.1016/j.jcou.2018.07.019
Z. Liu, Appl. Energy, 166, 239 (2016); https://doi.org/10.1016/j.apenergy.2015.11.005
F. Sher, S.Z. Iqbal, S. Albazzaz, U. Ali, D.A. Mortari and T. Rashid, Fuel, 282, 118506 (2020); https://doi.org/10.1016/j.fuel.2020.118506
R.V. Siriwardane, M.-S. Shen, E.P. Fisher and J. Losch, Energy Fuels, 19, 1153 (2005); https://doi.org/10.1021/ef040059h
http://www.ipcc.ch/report/sr15/
R.L. Siegelman, E.J. Kim and J.R. Long, Nat. Mater., 20, 1060 (2021); https://doi.org/10.1038/s41563-021-01054-8
M. Irani, A.T. Jacobson, K.A.M. Gasem and M. Fan, Fuel, 206, 10 (2017); https://doi.org/10.1016/j.fuel.2017.05.087
B. Sreenivasulu, D.V. Gayatri, I. Sreedhar and K.V. Raghavan, Renew. Sustain. Energy Rev., 41, 1324 (2015); https://doi.org/10.1016/j.rser.2014.09.029
D. Tiwari, H. Bhunia and P.K. Bajpai, RSC Adv., 6, 111842 (2016); https://doi.org/10.1039/C6RA18291G
M. Deng and H.G. Park, Langmuir, 35, 4453 (2019); https://doi.org/10.1021/acs.langmuir.8b03980
N. Omidfar, A. Mohamadalizadeh and S.H. Mousavi, Asia-Pac. J. Chem. Eng., 10, 885 (2015); https://doi.org/10.1002/apj.1925
K.K. Jena, A.P. Panda, S. Verma, G.K. Mani, S.K. Swain and S.M. Alhassan, J. Alloys Compd., 800, 279 (2019); https://doi.org/10.1016/j.jallcom.2019.06.011
B. Kaur, R.K. Gupta and H. Bhunia, Chem. Eng. Commun., 207, 1031 (2020); https://doi.org/10.1080/00986445.2019.1635466
O.H.P. Gunawardene, C.A. Gunathilake, K. Vikrant and S.M. Amaraweera, Atmosphere, 13, 397 (2022); https://doi.org/10.3390/atmos13030397
H.A. Patel, J. Byun and C.T. Yavuz, ChemSusChem, 10, 1303 (2017); https://doi.org/10.1002/cssc.201601545
F.E.C. Othman, N. Yusof and A.F. Ismail, Chem. Eng. Technol., 43, 2023 (2020); https://doi.org/10.1002/ceat.201900480
R. Castro-Muñoz, M. Zamidi Ahmad, M. Malankowska and J. Coronas, Chem. Eng. J., 446, 137047 (2022); https://doi.org/10.1016/j.cej.2022.137047
S-Ichi, Nakao, K. Yogo, K. Goto, T. Kai and H. Yamada, Advanced CO2 Capture Technologies: Absorption, Adsorption and Membrane Separation Methods, Springer (2019).
Y. Bi and Y. Ju, Front. Energy, 16, 793 (2022); https://doi.org/10.1007/s11708-022-0821-0
B. Li, Y. Duan, D. Luebke and B. Morreale, Appl. Energy, 102, 1439 (2013); https://doi.org/10.1016/j.apenergy.2012.09.009
C.-H. Yu, C.-H. Huang and C.-S. Tan, Aerosol Air Qual. Res., 12, 745 (2012); https://doi.org/10.4209/aaqr.2012.05.0132
S. Boycheva, I. Marinov and D. Zgureva-Filipova, Energies, 14, 8279 (2021); https://doi.org/10.3390/en14248279
H. Pashaei, A. Ghaemi, M. Nasiri and B. Karami, ACS Omega, 5, 8432 (2020); https://doi.org/10.1021/acsomega.9b03363
A. Ghaemi, Pol. J. Chem. Technol., 19, 75 (2017); https://doi.org/10.1515/pjct-2017-0052
H. Pashaei, M.N. Zarandi and A. Ghaemi, Chem. Eng. Res. Des., 121, 32 (2017); https://doi.org/10.1016/j.cherd.2017.03.001
I.M. Bernhardsen and H.K. Knuutila, Int. J. Greenh. Gas Control, 61, 27 (2017); https://doi.org/10.1016/j.ijggc.2017.03.021
Q. Wang, J. Luo, Z. Zhong and A. Borgna, Energy Environ. Sci., 4, 42 (2011); https://doi.org/10.1039/C0EE00064G
W. Gao, S. Liang, R. Wang, Q. Jiang, Y. Zhang, Q. Zheng, B. Xie, C. Y. Toe, X. Zhu, J. Wang, L. Huang, Y. Gao, Z. Wang, C. Jo, Q. Wang, L. Wang, Y. Liu, B. Louis, J. Scott, A.-C. Roger, R. Amal, H. He and S.-E. Park, Chem. Soc. Rev., 49, 8584 (2020); https://doi.org/10.1039/D0CS00025F
F.M. Baena-Moreno, M. Rodriguez-Galan, F. Vega, B. Alonso-Fariñas, L.F. Vilches Arenas and B. Navarrete, Energy Sources A, 41, 1403 (2019); https://doi.org/10.1080/15567036.2018.1548518
X. Wang and C. Song, Front. Energy Res., 8, 560849 (2020); https://doi.org/10.3389/fenrg.2020.560849
M.J. Regufe, A. Pereira, A.F.P. Ferreira, A.M. Ribeiro and A.E. Rodrigues, Energies, 14, 2406 (2021); https://doi.org/10.3390/en14092406
International Association of Oil and Gas Producers, Potential for CCS and CCU in Europe (2019).
C.H. Huang and C.S. Tan, Aerosol Air Qual. Res., 14, 480 (2014); https://doi.org/10.4209/aaqr.2013.10.0326
E.I. Koytsoumpa, C. Bergins and E. Kakaras, J. Supercrit. Fluids, 132, 3 (2018); https://doi.org/10.1016/j.supflu.2017.07.029
A.J. Kamphuis, F. Picchioni and P.P. Pescarmona, Green Chem., 21, 406 (2019); https://doi.org/10.1039/C8GC03086C
S. Salehi and M. Anbia, Appl. Organomet. Chem., 32, 4390 (2018); https://doi.org/10.1002/aoc.4390
S. Lee and S. Park, J. Ind. Eng. Chem., 23, 1 (2015); https://doi.org/10.1016/j.jiec.2014.09.001
C. Gunathilake, R.S. Dassanayake, N. Abidi and M. Jaroniec, J. Mater. Chem. A Mater. Energy Sustain., 4, 4808 (2016); https://doi.org/10.1039/C6TA00261G
A. Alabadi, S. Razzaque, Y. Yang, S. Chen and B. Tan, Chem. Eng. J., 281, 606 (2015); https://doi.org/10.1016/j.cej.2015.06.032
R.S. Dassanayake, C. Gunathilake, A.C. Dassanayake, N. Abidi and M. Jaroniec, J. Mater. Chem. A Mater. Energy Sustain., 5, 7462 (2017); https://doi.org/10.1039/C7TA01038A
R. Dassanayake, C. Gunathilake, N. Abidi and M. Jaroniec, Cellulose, 25, 1911 (2018); https://doi.org/10.1007/s10570-018-1660-3
A.S. Lee, J.C. Eslick, D.C. Miller and J.R. Kitchin, Int. J. Greenh. Gas Control, 18, 68 (2013); https://doi.org/10.1016/j.ijggc.2013.06.020
M. Wang, A.S. Joel, C. Ramshaw, D. Eimer and N.M. Musa, Appl. Energy, 158, 275 (2015); https://doi.org/10.1016/j.apenergy.2015.08.083
N. Hedin, L. Andersson, L. Bergstrom and J. Yan, Appl. Energy, 104, 418 (2013); https://doi.org/10.1016/j.apenergy.2012.11.034
J.A. Mason, T.M. McDonald, T.H. Bae, J.E. Bachman, K. Sumida, J.J. Dutton, S.S. Kaye and J.R. Long, J. Am. Chem. Soc., 137, 4787 (2015); https://doi.org/10.1021/jacs.5b00838
X. Zhang, X. He and T. Gundersen, Energy Fuels, 27, 4137 (2013); https://doi.org/10.1021/ef3021798
S. Zhao, P.H.M. Feron, L. Deng, E. Favre, E. Chabanon, S. Yan, J. Hou, V. Chen and H. Qi, J. Membr. Sci., 511, 180 (2016); https://doi.org/10.1016/j.memsci.2016.03.051
F.S. Taheri, A. Ghaemi, A. Maleki and S. Shahhosseini, Energy Fuels, 33, 5384 (2019); https://doi.org/10.1021/acs.energyfuels.9b00703
Z. Khoshraftar, A. Ghaemi and H. Mashhadimoslem, Iran. J. Chem. Eng., 18, 64 (2021).
V. Indira and K. Abhitha, Energy Nexus, 7, 100095 (2022); https://doi.org/10.1016/j.nexus.2022.100095
F. Fashi, A. Ghaemi and A.H. Behroozi, Chem. Eng. Commun., 208, 1104 (2021); https://doi.org/10.1080/00986445.2020.1746657
M. Khajeh Amiri, A. Ghaemi and H. Arjomandi, Iran. J. Chem. Eng., 16, 54 (2019); https://doi.org/10.1001.1.17355397.2019.16.1.4.8
S. Zhang, M.-S. Jang, J. Lee, P. Puthiaraj and W.-S. Ahn, ACS Sustain. Chem.& Eng., 8, 7078 (2020); https://doi.org/10.1021/acssuschemeng.0c00885
G. Mondino, A.I. Spjelkavik, T. Didriksen, S. Krishnamurthy, R.E. Stensrød, C.A. Grande, L.O. Nord and R. Blom, Ind. Eng. Chem. Res., 59, 7198 (2020); https://doi.org/10.1021/acs.iecr.9b06387
Z. Wang and S.M. Cohen, Chem. Soc. Rev., 38, 1315 (2009); https://doi.org/10.1039/b802258p
A. Ghaemi and A. Hemmati, Iranian Chem. Eng. J., 20, 22 (2021); https://doi.org/10.22034/ijche.2021.239817.1026
K.-M. Lee, Y.-H. Lim, C.-J. Park and Y.-M. Jo, Ind. Eng. Chem. Res., 51, 1355 (2012); https://doi.org/10.1021/ie2013532
Z. Khoshraftar and A. Ghaemi, Curr. Res. Green. Sustain. Chem., 5, 100342 (2022); https://doi.org/10.1016/j.crgsc.2022.100342
H. Mashhadimoslem, M. Safarzadeh Khosrowshahi, M. Jafari, A. Ghaemi and A. Maleki, ACS Omega, 7, 18409 (2022); https://doi.org/10.1021/acsomega.2c00673
H. Ramezanipour Penchah, A. Ghaemi and F. Jafari, Environ. Sci. Pollut. Res. Int., 29, 5134 (2022); https://doi.org/10.1007/s11356-021-16040-5
A.I. Pruna, A. Càrcel, A. Benedito and E. Giménez, Int. J. Mol. Sci., 24, 3865 (2023); https://doi.org/10.3390/ijms24043865
F. Fathalian, S. Aarabi, A. Ghaemi and A. Hemmati, Sci. Rep., 12, 21507 (2022); https://doi.org/10.1038/s41598-022-26138-6
X. Ma, X. Li, H. Cui, W. Zhang, Z. Cheng and Z. Zhou, AIChE J., 69, e17520 (2023); https://doi.org/10.1002/aic.17520
F. Fashi, A. Ghaemi and P. Moradi, Greenhouse Gas Sci. Technol., 9, 37 (2019); https://doi.org/10.1002/ghg.1829
A.M. Alloush, H. Abdulghani, H.A. Amasha, T.A. Saleh and O.C.S. Al Hamouz, J. Ind. Eng. Chem., 113, 215 (2022); https://doi.org/10.1016/j.jiec.2022.05.049
F. Maleki, A. Ghaemi and G.M. Mohamad Sadeghi, Environ. Prog. Sustain. Energy, 42, e13954 (2023); https://doi.org/10.1002/ep.13954
A. Torkashvand, H.R. Penchah and A. Ghaemi, Int. J. Environ. Sci. Technol., 19, 8835 (2022); https://doi.org/10.1007/s13762-022-04122-x
P. Najafi, H.R. Penchah and A. Ghaemi, Environ. Technol. Innov., 23, 101746 (2021); https://doi.org/10.1016/j.eti.2021.101746
H. Cui, J. Xu, J. Shi, N. Yan and Y. Liu, Energy, 187, 115936 (2019); https://doi.org/10.1016/j.energy.2019.115936
D. Saha and M.J. Kienbaum, Micropor. Mesopor. Mater., 287, 29 (2019); https://doi.org/10.1016/j.micromeso.2019.05.051
A.R. Millward and O.M. Yaghi, J. Am. Chem. Soc., 127, 17998 (2005); https://doi.org/10.1021/ja0570032
P.A.S. Moura, D.P. Bezerra, E. Vilarrasa-Garcia, M. Bastos-Neto and D.C.S. Azevedo, Adsorption, 22, 71 (2016); https://doi.org/10.1007/s10450-015-9738-9
T.H. Bae, M.R. Hudson, J.A. Mason, W.L. Queen, J.J. Dutton, K. Sumida, K.J. Micklash, S.S. Kaye, C.M. Brown and J.R. Long, Energy Environ. Sci., 6, 128 (2013); https://doi.org/10.1039/C2EE23337A
D.G. Madden, H.S. Scott, A. Kumar, K.-J. Chen, R. Sanii, A. Bajpai, M. Lusi, T. Curtin, J.J. Perry and M.J. Zaworotko, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 375, 2084 (2017); https://doi.org/10.1098/rsta.2016.0025
P. Nugent, Y. Belmabkhout, S.D. Burd, A.J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi and M.J. Zaworotko, Nature, 495, 80 (2013); https://doi.org/10.1038/nature11893
J. Liu, P.K. Thallapally, B.P. McGrail, D.R. Brown and J. Liu, Chem. Soc. Rev., 41, 2308 (2012); https://doi.org/10.1039/C1CS15221A
Q. Liu, A. Mace, Z. Bacsik, J. Sun, A. Laaksonen and N. Hedin, Chem. Commun., 46, 4502 (2010); https://doi.org/10.1039/c000900h
P. Vasiliev, O. Cheung, Z. Bacsik, N. Hedin, Zeolite Type a Sorbent, US 2017/0158519 A1 (2017).
C.J. Heard, L. Grajciar, C.M. Rice, S.M. Pugh, P. Nachtigall, S.E. Ashbrook and R.E. Morris, Nat. Commun., 10, 4690 (2019); https://doi.org/10.1038/s41467-019-12752-y
S. Prodinger and M.A. Derewinski, Petrol. Chem., 60, 420 (2020); https://doi.org/10.1134/S0965544120040143
B. Wu, X. Zhang, Y. Xu, D. Bao and S.J. Zhang, J. Clean. Prod., 101, 251 (2015); https://doi.org/10.1016/j.jclepro.2015.03.082
Y. Zheng, X. Li and P.K. Dutta, Sensors, 12, 5170 (2012); https://doi.org/10.3390/s120405170
C. Lu, H. Bai, B. Wu, F. Su and J.F. Hwang, Energy Fuels, 22, 3050 (2008); https://doi.org/10.1021/ef8000086
D. Fu and M.E. Davis, Chem. Soc. Rev., 51, 9340 (2022); https://doi.org/10.1039/D2CS00508E
K.C. Kemp, J.G. Min, H.J. Choi and S.B. Hong, in eds.: S. Valencia and F. Rey, New Developments in Adsorption/Separation of Small Molecules by Zeolites, In: Structure and Bonding, Springer International Publishing, edn. 1, pp.1–30 (2020).
B. Dutta, Asian J. Chem., 34, 3125 (2022); https://doi.org/10.14233/ajchem.2022.23960
B. Dutta, Asian J. Chem., 36, 1977 (2024); https://doi.org/10.14233/ajchem.2024.32083
K.S. Walton, M.B. Abney and M.D. LeVan, Micropor. Mesopor. Mater., 91, 78 (2006); https://doi.org/10.1016/j.micromeso.2005.11.023
A. Bakhtyari, M. Mofarahi and C.-H. Lee, in eds.: M.R. Rahimpour, M. Farsi and M.A. Makarem CO2 Adsorption by Conventional and Nanosized Zeolites, In: Advances in Carbon Capture, Woodhead Publishing, Chap. 19, pp. 193-228 (2020).
R. Szostak, Handbook of Molecular Sieves, Van Nostrand Reinhold, New York (1992).
D.W. Breck, Zeolite Molecular Sieves: Structure, Chemistry and Use. John Wiley & Sons Inc., New York (1984).
T. Maesen and B. Marcus, Stud. Surf. Sci. Catal., 137, 1 (2001); https://doi.org/10.1016/S0167-2991(01)80242-1
N. Mortazavi, M. Bahadori, A. Marandi, S. Tangestaninejad, M. Moghadam, V. Mirkhani and I. Mohammadpoor-Baltork, Sustain. Chem. Pharm., 22, 100495 (2021); https://doi.org/10.1016/j.scp.2021.100495
F. Bahmanzadegan and A. Ghaemi, Case Studies Chem. Environ. Eng., 9, 100564 (2024); https://doi.org/10.1016/j.cscee.2023.100564
Y. Li, H. Yi, X. Tang, F. Li and Q. Yuan, Chem. Eng. J., 229, 50 (2013); https://doi.org/10.1016/j.cej.2013.05.101
C. Chen, J. Yu, G. Song and K. Che, J. Environ. Chem. Eng., 11, 110253 (2023); https://doi.org/10.1016/j.jece.2023.110253
M. Cavallo, M. Dosa, N.G. Porcaro, F. Bonino, M. Piumetti and V. Crocellà, J. CO2 Util., 67, 102335 (2023); https://doi.org/10.1016/j.jcou.2022.102335
F. Bahmanzadegan and A. Ghaemi, Case Studies In Chem. Environ. Eng., 9, 100595 (2024); https://doi.org/10.1016/j.cscee.2023.100595
N. Chouikhi, J.A. Cecilia, E. Vilarrasa-García, S. Besghaier, M. Chlendi, F.I. Franco Duro, E. Rodriguez Castellon and M. Bagane, Minerals, 9, 514 (2019); https://doi.org/10.3390/min9090514
E.A. Roth, S. Agarwal and R.K. Gupta, Energy Fuels, 27, 4129 (2013); https://doi.org/10.1021/ef302017m
A. Ansari, S. Shahhosseini and A. Maleki, Sep. Sci. Technol., 58, 1252 (2023); https://doi.org/10.1080/01496395.2023.2189049
H. Gong, W. Liu, L. Liu, N. Goyal, P. Xiao, G. Li, Y. Wei and T. Du, J. Taiwan Inst. Chem. Eng., 103, 160 (2019); https://doi.org/10.1016/j.jtice.2019.07.006
E. Kim, T. Lee, H. Kim, W.-J. Jung, D.-Y. Han, H. Baik, N. Choi and J. Choi, Environ. Sci. Technol., 48, 14828 (2014); https://doi.org/10.1021/es504265p
R.P. Townsend and E.N. Coker, Stud. Surf. Sci. Catal., 137, 467 (2001); https://doi.org/10.1016/S0167-2991(01)80253-6
L. Ćurković, Š. Cerjan-Stefanović and T. Filipan, Water Res., 31, 1379 (1997); https://doi.org/10.1016/S0043-1354(96)00411-3
C. Baerlocher and L.B. McCusker, Database of Zeolite Structures. http://www.iza-structure.org/databases/
M. Dusselier and M.E. Davis, Chem. Rev., 118, 5265 (2018); https://doi.org/10.1021/acs.chemrev.7b00738
M.R. Hudson, W.L. Queen, J.A. Mason, D.W. Fickel, R.F. Lobo and C.M. Brown, J. Am. Chem. Soc., 134, 1970 (2012); https://doi.org/10.1021/ja210580b
Q. Jiang, J. Rentschler, G. Sethia, S. Weinman, R. Perrone and K. Liu, Chem. Eng. J., 230, 380 (2013); https://doi.org/10.1016/j.cej.2013.06.103
J.-R. Li, R.J. Kuppler and H.-C. Zhou, Chem. Soc. Rev., 38, 1477 (2009); https://doi.org/10.1039/b802426j
H. Chen, Y.J. Zhang, P.Y. He and C.J. Li, Energy, 179, 422 (2019); https://doi.org/10.1016/j.energy.2019.04.113
A. Pulido, P. Nachtigall, A. Zukal, I. Dominguez and J. Cejka, J. Phys. Chem. C, 113, 2928 (2009); https://doi.org/10.1021/jp810038b
G. Calleja, J. Pau and J.A. Calles, J. Chem. Eng. Data, 43, 994 (1998); https://doi.org/10.1021/je9702100
H. Chen, W. Wang, J. Ding, X. Wei and J. Lu, Energy Procedia, 105, 4370 (2017); https://doi.org/10.1016/j.egypro.2017.03.929
Y. Guo, T. Sun, Y. Gu, X. Liu, Q. Ke, X. Wei and S. Wang, Chem. Asian J., 13, 3222 (2018); https://doi.org/10.1002/asia.201800930
D.G. Boer, J. Langerak and P.P. Pescarmona, ACS Appl. Energy Mater., 6, 2634 (2023); https://doi.org/10.1021/acsaem.2c03605
P. Hu, R. Oishi, H. Ya, Y. Yonezawa, M. Matsukura, K. Iyoki, T. Okubo and T. Wakihara, Chem. Eng. J., 508, 161054 (2025); https://doi.org/10.1016/j.cej.2025.161054
M. Palomino, A. Corma, F. Rey and S. Valencia, Langmuir, 26, 1910 (2010); https://doi.org/10.1021/la9026656
D. Newsome, S. Gunawan, G. Baron, J. Denayer and M.O. Coppens, Adsorption, 20, 157 (2014); https://doi.org/10.1007/s10450-013-9560-1
R.T. Yang, Adsorbents: Fundamentals and Applications, Wiley-Interscience, John Wiley & Sons, Inc. (2003).
R.M. Barrer, Zeolites and Clay Minerals as Sorbents and Molecular Sieves, Academic Press (1978).
R.T. Yang, Gas Separation by Adsorption Processes, Imperial College Press (1997).
A.M. Najafi, S. Soltanali and H. Ghassabzadeh, Chem. Eng. J., 468, 143719 (2023); https://doi.org/10.1016/j.cej.2023.143719
P. Li and F.H. Tezel, Micropor. Mesopor. Mater., 98, 94 (2007); https://doi.org/10.1016/j.micromeso.2006.08.016
M. Mofarahi and F. Gholipour, Micropor. Mesopor. Mater., 200, 1 (2014); https://doi.org/10.1016/j.micromeso.2014.08.022
J.A. Dunne, M. Rao, S. Sircar, R.J. Gorte and A.L. Myers, Langmuir, 12, 5896 (1996); https://doi.org/10.1021/la960496r
E. Pérez-Botella, S. Valencia and F. Rey, Chem. Rev., 122, 17647 (2022); https://doi.org/10.1021/acs.chemrev.2c00140
T. Remy, E. Gobechiya, D. Danaci, S.A. Peter, P. Xiao, L. Van Tendeloo, S. Couck, J. Shang, C.E.A. Kirschhock, R.K. Singh, J.A. Martens, G.V. Baron, P.A. Webley and J.F.M. Denayer, RSC Adv., 4, 62511 (2014); https://doi.org/10.1039/C4RA12460J
T. Remy, S.A. Peter, L. Van Tendeloo, S. Van der Perre, Y. Lorgouilloux, C.E.A. Kirschhock, G.V. Baron and J.F.M. Denayer, Langmuir, 29, 4998 (2013); https://doi.org/10.1021/la400352r
N.K. Jensen, T.E. Rufford, G. Watson, D. Zhang, K.I. Chan and E.F. May, J. Chem. Eng. Data, 57, 106 (2012); https://doi.org/10.1021/je200817w
Z. Tao, Y. Tian, W. Wu, Z. Liu, W. Fu, C.-W. Kung and J. Shang, Mater. Sustain., 2, 20 (2024); https://doi.org/10.1038/s44296-024-00023-x
K. Chen, S.H. Mousavi, R. Singh, R.Q. Snurr, G. Li and P.A. Webley, Chem. Soc. Rev., 51, 1139 (2022); https://doi.org/10.1039/D1CS00822F
J. Shang, G. Li, R. Singh, Q. Gu, K.M. Nairn, T.J. Bastow, N. Medhekar, C.M. Doherty, A.J. Hill, J.Z. Liu and P.A. Webley, J. Am. Chem. Soc., 134, 19246 (2012); https://doi.org/10.1021/ja309274y
V.M. Georgieva, E.L. Bruce, M.C. Verbraeken, A.R. Scott, W.J. Casteel Jr., S. Brandani and P.A. Wright, J. Am. Chem. Soc., 141, 12744 (2019); https://doi.org/10.1021/jacs.9b05539
H.J. Choi, D. Jo, J.G. Min and S.B. Hong, Angew. Chem. Int. Ed., 60, 4307 (2021); https://doi.org/10.1002/anie.202012953
M.M. Lozinska, E. Mangano, J.P.S.S. Mowat, A.M. Shepherd, R.F. Howe, S.P. Thompson, J.E. Parker, S. Brandani and P.A. Wright, J. Am. Chem. Soc., 134, 17628 (2012); https://doi.org/10.1021/ja3070864
D. Barthomeuf, J. Phys. Chem., 88, 42 (1984); https://doi.org/10.1021/j150645a010
R. Bulanek, K. Frolich, E. Frýdova and P. Čičmanec, Top. Catal., 53, 1349 (2010); https://doi.org/10.1007/s11244-010-9593-6
G. Bhati, N.P.S.K. Dharanikota, R.V.S. Uppaluri and B. Mandal, Micropor. Mesopor. Mater., 387, 113537 (2025); https://doi.org/10.1016/j.micromeso.2025.113537
D. Bonenfant, M. Kharoune, P. Niquette, M. Mimeault and R. Hausler, Sci. Technol. Adv. Mater., 9, 013007 (2008); https://doi.org/10.1088/1468-6996/9/1/013007
M. Sakuth, J. Meyer and J. Gmehling, Chem. Eng. Process., 37, 267 (1998); https://doi.org/10.1016/S0255-2701(98)00038-5
D. Barthomeuf, Micropor. Mesopor. Mater., 66, 1 (2003); https://doi.org/10.1016/j.micromeso.2003.08.006
J.C. Lavalley, Catal. Today, 27, 377 (1996); https://doi.org/10.1016/0920-5861(95)00161-1
G.D. Pirngruber, P. Raybaud, Y. Belmabkhout, J. Čejka and A. Zukal, Phys. Chem. Chem. Phys., 12, 13534 (2010); https://doi.org/10.1039/b927476f
A. Zukal, A. Pulido, B. Gil, P. Nachtigall, O. Bludský, M. Rubes and J. Cejka, Phys. Chem. Chem. Phys., 12, 6413 (2010); https://doi.org/10.1039/c001950j
R.S. Pillai, S.A. Peter and R.V. Jasra, Micropor. Mesopor. Mater., 162, 143 (2012); https://doi.org/10.1016/j.micromeso.2011.12.039
S.T. Yang, J. Kim and W.S. Ahn, Micropor. Mesopor. Mater., 135, 90 (2010); https://doi.org/10.1016/j.micromeso.2010.06.015
Z. Bacsik, O. Cheung, P. Vasiliev and N. Hedin, Appl. Energy, 162, 613 (2016); https://doi.org/10.1016/j.apenergy.2015.10.109
J. Zhang, R. Singh and P.A. Webley, Micropor. Mesopor. Mater., 111, 478 (2008); https://doi.org/10.1016/j.micromeso.2007.08.022
L. Joos, J.A. Swisher and B. Smit, Langmuir, 29, 15936 (2013); https://doi.org/10.1021/la403824g
M.J. Purdue and Z. Qiao, Micropor. Mesopor. Mater., 261, 181 (2018); https://doi.org/10.1016/j.micromeso.2017.10.059
Y. Wang and M.D. LeVan, J. Chem. Eng. Data, 55, 3189 (2010); https://doi.org/10.1021/je100053g
H. Wang, Y. Yin, J. Bai and S. Wang, RSC Adv., 10, 6503 (2020); https://doi.org/10.1039/C9RA08334K
G. Li, P. Xiao, P.A. Webley, J. Zhang and R. Singh, Energy Procedia, 1, 1123 (2009); https://doi.org/10.1016/j.egypro.2009.01.148
A.A. Dabbawala, I. Ismail, B.V. Vaithilingam, K. Polychronopoulou, G. Singaravel, S. Morin, M. Berthod and Y. Al Wahedi, Micropor. Mesopor. Mater., 303, 110261 (2020); https://doi.org/10.1016/j.micromeso.2020.110261
S. Smeets, D. Xie, L.B. Mccusker, C. Baerlocher, S.I. Zones, J.A. Thompson, H.S. Lacheen and H. Huang, Chem. Mater., 26, 3909 (2014); https://doi.org/10.1021/cm501176j
S. Couck, J. Lefevere, S. Mullens, L. Protasova, V. Meynen, G. Desmet, G.V. Baron and J.F.M. Denayer, Chem. Eng. J., 308, 719 (2017); https://doi.org/10.1016/j.cej.2016.09.046
O. Cheung, D. Wardecki, Z. Bacsik, P. Vasiliev, L.B. McCusker and N. Hedin, Phys. Chem. Chem. Phys., 18, 16080 (2016); https://doi.org/10.1039/C6CP02443B
B. Metz, O. Davidson, H. De Coninck, M. Loos and L. Meyer, IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press (2005).
M. Mostafa, C. Antonicelli, C. Varela, D. Barletta and E. Zondervan, Carbon Capture Sci. Technol, 4, 100060 (2022).
C. Breyer, M. Fasihi, C. Bajamundi and F. Creutzig, Joule, 3, 2053 (2019); https://doi.org/10.1016/j.joule.2019.08.010
A. Kumar, D. Madden, M. Lusi, K.-J. Chen, E.A. Daniels, T. Curtin, J.J. Perry IV and M.J. Zaworotko, Angew. Chem. Int. Ed., 54, 14372 (2015); https://doi.org/10.1002/anie.201506952
R. Custelcean, Chem. Sci., 12, 12518 (2021); https://doi.org/10.1039/D1SC04097A
Y.-S. Bae and R.Q. Snurr, Angew. Chem. Int. Ed., 50, 11586 (2011); https://doi.org/10.1002/anie.201101891
A.N. Stuckert and R.T. Yang, Environ. Sci. Technol., 45, 10257 (2011); https://doi.org/10.1021/es202647a
Z. Tao, Y. Tian, A. Hanif, V. Chan, Q. Gu and J. Shang, Carbon Capture Sci. Technol., 8, 100126 (2023); https://doi.org/10.1016/j.ccst.2023.100126
S. Liu, Y. Chen, B. Yue, C. Wang, B. Qin, Y. Chai, G. Wu, J. Li, X. Han, I. da-Silva, P. Manuel, S.J. Day, S.P. Thompson, N. Guan, S. Yang and L. Li, Chemistry, 28, e202201659 (2022); https://doi.org/10.1002/chem.202201659
A. Oda, S. Hiraki, E. Harada, I. Kobayashi, T. Ohkubo, Y. Ikemoto, T. Moriwaki and Y. Kuroda, J. Mater. Chem. A Mater. Energy Sustain., 9, 7531 (2021); https://doi.org/10.1039/D0TA09944A
D. Fu, Y. Park and M.E. Davis, Angew. Chem. Int. Ed., 61, e202112916 (2022); https://doi.org/10.1002/anie.202112916
D. Fu, Y. Park and M.E. Davis, Proc. Natl. Acad. Sci. USA, 119, e2211544119 (2022); https://doi.org/10.1073/pnas.2211544119
X. Xiang, T. Guo, Y. Yin, Z. Gao, Y. Wang, R. Wang, M. An, Q. Guo and X. Hu, Ind. Eng. Chem. Res., 62, 5420 (2023); https://doi.org/10.1021/acs.iecr.2c04458
W. Rahmah, G.T.M. Kadja, M.H. Mahyuddin, A.G. Saputro, H.K. Dipojono and I.G. Wenten, J. Environ. Chem. Eng., 10, 108707 (2022); https://doi.org/10.1016/j.jece.2022.108707
X. Tan, S. Robijns, R. Thür, Q. Ke, N. De Witte, A. Lamaire, Y. Li, I. Aslam, D. Van Havere, T. Donckels, T. Van Assche, V. Van Speybroeck, M. Dusselier and I. Vankelecom, Science, 378, 1189 (2022); https://doi.org/10.1126/science.ade1411
O. Nanako, S. Tadashi, M. Seiji, T. Daisaku and M. Ai, Pressure Swing Adsorption (PSA) Device and Pressure Swing Adsorption Method, US Patent 12,377,382 B2 (2025).
G. Kraus, C. Millet, S. Moreau and J.P. Gabillard, Process for Purifying Air by Adsorption Over a Barium-Exchanged Zeolite, US Patent 6425937 B1 (2002).
G. Reiss, L. Puppe and B. Hees, Canada Patent CA 2182641 A1 (1997).
S. Moreau and B. Sardan, Process for Separating Nitrogen from a Gas Mixture Containing Nitrogen and atleast One Gas which is Less Polar than Nitrogen, Employing Differential Gas Adsorption (PSA) using a Zeolite-Type Adsorbent, US Patent 6336956 B1 (2002).
X. Vigor, P. Petit, S. Moreau and B. Sardan, US Patent 005658370A (1997).
F. Akhtar, L. Andersson, S. Ogunwumi, N. Hedin and L. Bergström, J. Eur. Ceram. Soc., 34, 1643 (2014); https://doi.org/10.1016/j.jeurceramsoc.2014.01.008
J.A.C. Silva, K. Schumann and A.E. Rodrigues, Micropor. Mesopor. Mater., 158, 219 (2012); https://doi.org/10.1016/j.micromeso.2012.03.042
M.J. Regufe, A.F.P. Ferreira, J.M. Loureiro, A. Rodrigues and A.M. Ribeiro, Ind. Eng. Chem. Res., 59, 12197 (2020); https://doi.org/10.1021/acs.iecr.0c00184
A. Pereira, A.F.P. Ferreira, A. Rodrigues, A.M. Ribeiro and M.J. Regufe, Chem. Eng. J., 450, 138197 (2022); https://doi.org/10.1016/j.cej.2022.138197
A. Pereira, A.F.P. Ferreira, A. Rodrigues, A.M. Ribeiro and M.J. Regufe, J. Adv. Manuf. Process., 4, e10108 (2022); https://doi.org/10.1002/amp2.10108
M.J. Regufe, A.F.P. Ferreira, J.M. Loureiro, Y. Shi, A.E. Rodrigues and A.M. Ribeiro, Adsorption, 24, 249 (2018); https://doi.org/10.1007/s10450-018-9938-1
M.J. Regufe, A.F.P. Ferreira, J.M. Loureiro, A. Rodrigues and A.M. Ribeiro, Micropor. Mesopor. Mater., 278, 403 (2019); https://doi.org/10.1016/j.micromeso.2019.01.009
S. Lawson, K. Newport, Q. Al-Naddaf, A.E. Ameh, A.A. Rownaghi, L.F. Petrik and F. Rezaei, Chem. Eng. J., 407, 128011 (2021); https://doi.org/10.1016/j.cej.2020.128011
D.G. Boer, J. Langerak, B. Bakker and P.P. Pescarmona, Micropor. Mesopor. Mater., 344, 112208 (2022); https://doi.org/10.1016/j.micromeso.2022.112208
K. Schumann, B. Unger, A. Brandt and F. Scheffler, Micropor. Mesopor. Mater., 154, 119 (2012); https://doi.org/10.1016/j.micromeso.2011.07.015
L. Yu, J. Gong, C. Zeng and L. Zhang, Sep. Purif. Technol., 118, 188 (2013); https://doi.org/10.1016/j.seppur.2013.06.035