Copyright (c) 2025 Gan Bajracharya, Sanju Maharjan, Nawaraj Karki, Ganga Ram Upadhayay, Sabita Shrestha, Binjita Pandey, Amrita Neupane, Ankita Belbase

This work is licensed under a Creative Commons Attribution 4.0 International License.
Anomeric Distribution of Sugar Acetates Synthesized via Peracetylation of Monosaccharides under Acidic and Basic Conditions
Corresponding Author(s) : Gan B. Bajracharya
Asian Journal of Chemistry,
Vol. 37 No. 11 (2025): Vol 37 Issue 11, 2025
Abstract
Peracetylation of D-glucose (1a), D-galactose (1b), D-mannose (1c), D-fructose (1d) and L-arabinose (1e) with stoichiometric amount of acetic anhydride was performed in the presence of either 1.7 mol% HClO4 or 30 mol% NaOAc as catalyst to yield corresponding sugar acetates (2a-e). Upon direct column chromatography of the crude reaction mixtures, the products were obtained in good to excellent yield (up to 96.1%). Composition of α-pyranose, β-pyranose, α-furanose, β-furanose and open-chain anomers present in the sugar acetates (2a-e) was determined by 1H NMR. Pyranose was the major anomer produced in all the cases except, the NaOAc-catalyzed peracetylation of a ketohexose (1d) exclusively produced furanose.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Wlodarczyk, M. Paluch, A. Wlodarczykc and M. Hyra, Phys. Chem. Chem. Phys., 16, 4694 (2014); https://doi.org/10.1039/C3CP54833C
- S. Ha, J. Gao, B. Tidor, J.W. Brady and M. Karplus, J. Am. Chem. Soc., 113, 1553 (1991); https://doi.org/10.1021/ja00005a015
- G. Huang, Q. Tang, D. Li, Y. Huang and D. Zhang, Curr. Org. Synth., 13, 82 (2016); https://doi.org/10.2174/1570179412999150703112245
- P.J. Garegg, Acc. Chem. Res., 25, 575 (1992); https://doi.org/10.1021/ar00024a005
- K. Toshima and K. Tatsuta, Chem. Rev., 93, 1503 (1993); https://doi.org/10.1021/cr00020a006
- R.A. Dwek, Chem. Rev., 96, 683 (1996); https://doi.org/10.1021/cr940283b
- K.C. Nicolaou and H.J. Mitchell, Angew. Chem. Int. Ed., 40, 1576 (2001); https://doi.org/10.1002/1521-3773(20010504)40:9<1576::AID-ANIE15760>3.0.CO; 2-G
- B.G. Davis, Chem. Rev., 102, 579 (2002); https://doi.org/10.1021/cr0004310
- C.S. Hudson and J.K. Dale, J. Am. Chem. Soc., 37, 1264 (1915); https://doi.org/10.1021/ja02170a025
- G. Höfle, W. Steglich and H. Vorbrüggen, Angew. Chem. Int. Ed. Engl., 17, 569 (1978); https://doi.org/10.1002/anie.197805691
- R.B. Cohen, K.-C. Tsou, S.H. Rutenburg and A.M. Seligman, J. Biol. Chem., 195, 239 (1952); https://doi.org/10.1016/S0021-9258(19)50894-8
- R.U. Lemieux, R.K. Kullnig, H.J. Bernstein and W.G. Schneider, J. Am. Chem. Soc., 80, 6098 (1958); https://doi.org/10.1021/ja01555a051
- R. Ch, M. Tyagi, P.R. Patil and K.P.R. Kartha, Tetrahedron Lett., 52, 5841 (2011); https://doi.org/10.1016/j.tetlet.2011.08.141
- J. A. Hyatt and G. William Tindall, Heterocycles, 35, 227 (1993); https://doi.org/10.3987/COM-92-S8
- H. Binch, K. Stangier and J. Thiem, Carbohydr. Res., 306, 409 (1998); https://doi.org/10.1016/S0008-6215(97)10094-5
- C. Limousin, J. Cléophax, A. Petit, A. Loupy and G. Lukacs, J. Carbohydr. Chem., 16, 327 (1997); https://doi.org/10.1080/07328309708006533
- F. Dasgupta, P.P. Singh and H.C. Srivastava, Carbohydr. Res., 80, 346 (1980); https://doi.org/10.1016/S0008-6215(00)84876-4
- J.-C. Lee, C.-A. Tai and S.-C. Hung, Tetrahedron Lett., 43, 851 (2002); https://doi.org/10.1016/S0040-4039(01)02253-5
- C.-A. Tai, S.S. Kulkarni and S.-C. Hung, J. Org. Chem., 68, 8719 (2003); https://doi.org/10.1021/jo030073b
- K.K. Chauhan, C.G. Frost, I. Love and D. Waite, Synlett, 1999, 1743 (1999); https://doi.org/10.1055/s-1999-2941
- A. Orita, C. Tanahashi, A. Kakuda and J. Otera, Angew. Chem. Int. Ed., 39, 2877 (2000); https://doi.org/10.1002/1521-3773(20000818)39:16<2877::AID-ANIE2877>3.0.CO; 2-V
- G. Bartoli, R. Dalpozzo, A. De Nino, L. Maiuolo, M. Nardi, A. Procopio and A. Tagarelli, Green Chem., 6, 191 (2004); https://doi.org/10.1039/b400920g
- C.-T. Chen, J.-H. Kuo, C.-H. Li, N.B. Barhate, S.-W. Hon, T.-W. Li, S.-D. Chao, C.-C. Liu, Y.-C. Li, I.-H. Chang, J.-S. Lin, C.-J. Liu and Y.-C. Chou, Org. Lett., 3, 3729 (2001); https://doi.org/10.1021/ol016684c
- J.Ø. Duus, C.H. Gotfredsen and K. Bock, Chem. Rev., 100, 4589 (2000); https://doi.org/10.1021/cr990302n
- G.B. Bajracharya and S.S. Shrestha, Synth. Commun., 48, 1688 (2018); https://doi.org/10.1080/00397911.2018.1459721
- N. Bajracharya, S. Shrestha and G.B. Bajracharya, Asian J. Chem., 36, 859 (2024); https://doi.org/10.14233/ajchem.2024.31196
- M.U. Roslund, P. Tähtinen, M. Niemitz and R. Sjöholm, Carbohydr. Res., 343, 101 (2008); https://doi.org/10.1016/j.carres.2007.10.008
- J. Zhang, B. Zhang, J. Zhou, J. Li, C. Shi, T. Huang, Z. Wang and J. Tang, J. Carbohydr. Chem., 30, 165 (2011); https://doi.org/10.1080/07328303.2011.621042
- R.U. Lemieux and J.D. Stevens, Can. J. Chem., 43, 2059 (1965); https://doi.org/10.1139/v65-276
- J.D. Stevens, Carbohydr. Res., 347, 9 (2012); https://doi.org/10.1016/j.carres.2011.09.009
- Y. Zhu, J. Zajicek and A.S. Serianni, J. Org. Chem., 66, 6244 (2001); https://doi.org/10.1021/jo010541m
- T. Barclay, M. Ginic-Markovic, M.R. Johnston, P. Cooper and N. Petrovsky, Carbohydr. Res., 347, 136 (2012); https://doi.org/10.1016/j.carres.2011.11.003
- F. Franks, Pure Appl. Chem., 59, 1189 (1987); https://doi.org/10.1351/pac198759091189
- S.T. Summerfelt, E.J.-M. Selosse, P.J. Reilly and W.S. Trahanovsky, Carbohydr. Res., 203, 163 (1990); https://doi.org/10.1016/0008-6215(90)80014-T
- D. Horton and P.L. Durette, J. Org. Chem., 36, 2658 (1971); https://doi.org/10.1021/jo00817a019
References
P. Wlodarczyk, M. Paluch, A. Wlodarczykc and M. Hyra, Phys. Chem. Chem. Phys., 16, 4694 (2014); https://doi.org/10.1039/C3CP54833C
S. Ha, J. Gao, B. Tidor, J.W. Brady and M. Karplus, J. Am. Chem. Soc., 113, 1553 (1991); https://doi.org/10.1021/ja00005a015
G. Huang, Q. Tang, D. Li, Y. Huang and D. Zhang, Curr. Org. Synth., 13, 82 (2016); https://doi.org/10.2174/1570179412999150703112245
P.J. Garegg, Acc. Chem. Res., 25, 575 (1992); https://doi.org/10.1021/ar00024a005
K. Toshima and K. Tatsuta, Chem. Rev., 93, 1503 (1993); https://doi.org/10.1021/cr00020a006
R.A. Dwek, Chem. Rev., 96, 683 (1996); https://doi.org/10.1021/cr940283b
K.C. Nicolaou and H.J. Mitchell, Angew. Chem. Int. Ed., 40, 1576 (2001); https://doi.org/10.1002/1521-3773(20010504)40:9<1576::AID-ANIE15760>3.0.CO; 2-G
B.G. Davis, Chem. Rev., 102, 579 (2002); https://doi.org/10.1021/cr0004310
C.S. Hudson and J.K. Dale, J. Am. Chem. Soc., 37, 1264 (1915); https://doi.org/10.1021/ja02170a025
G. Höfle, W. Steglich and H. Vorbrüggen, Angew. Chem. Int. Ed. Engl., 17, 569 (1978); https://doi.org/10.1002/anie.197805691
R.B. Cohen, K.-C. Tsou, S.H. Rutenburg and A.M. Seligman, J. Biol. Chem., 195, 239 (1952); https://doi.org/10.1016/S0021-9258(19)50894-8
R.U. Lemieux, R.K. Kullnig, H.J. Bernstein and W.G. Schneider, J. Am. Chem. Soc., 80, 6098 (1958); https://doi.org/10.1021/ja01555a051
R. Ch, M. Tyagi, P.R. Patil and K.P.R. Kartha, Tetrahedron Lett., 52, 5841 (2011); https://doi.org/10.1016/j.tetlet.2011.08.141
J. A. Hyatt and G. William Tindall, Heterocycles, 35, 227 (1993); https://doi.org/10.3987/COM-92-S8
H. Binch, K. Stangier and J. Thiem, Carbohydr. Res., 306, 409 (1998); https://doi.org/10.1016/S0008-6215(97)10094-5
C. Limousin, J. Cléophax, A. Petit, A. Loupy and G. Lukacs, J. Carbohydr. Chem., 16, 327 (1997); https://doi.org/10.1080/07328309708006533
F. Dasgupta, P.P. Singh and H.C. Srivastava, Carbohydr. Res., 80, 346 (1980); https://doi.org/10.1016/S0008-6215(00)84876-4
J.-C. Lee, C.-A. Tai and S.-C. Hung, Tetrahedron Lett., 43, 851 (2002); https://doi.org/10.1016/S0040-4039(01)02253-5
C.-A. Tai, S.S. Kulkarni and S.-C. Hung, J. Org. Chem., 68, 8719 (2003); https://doi.org/10.1021/jo030073b
K.K. Chauhan, C.G. Frost, I. Love and D. Waite, Synlett, 1999, 1743 (1999); https://doi.org/10.1055/s-1999-2941
A. Orita, C. Tanahashi, A. Kakuda and J. Otera, Angew. Chem. Int. Ed., 39, 2877 (2000); https://doi.org/10.1002/1521-3773(20000818)39:16<2877::AID-ANIE2877>3.0.CO; 2-V
G. Bartoli, R. Dalpozzo, A. De Nino, L. Maiuolo, M. Nardi, A. Procopio and A. Tagarelli, Green Chem., 6, 191 (2004); https://doi.org/10.1039/b400920g
C.-T. Chen, J.-H. Kuo, C.-H. Li, N.B. Barhate, S.-W. Hon, T.-W. Li, S.-D. Chao, C.-C. Liu, Y.-C. Li, I.-H. Chang, J.-S. Lin, C.-J. Liu and Y.-C. Chou, Org. Lett., 3, 3729 (2001); https://doi.org/10.1021/ol016684c
J.Ø. Duus, C.H. Gotfredsen and K. Bock, Chem. Rev., 100, 4589 (2000); https://doi.org/10.1021/cr990302n
G.B. Bajracharya and S.S. Shrestha, Synth. Commun., 48, 1688 (2018); https://doi.org/10.1080/00397911.2018.1459721
N. Bajracharya, S. Shrestha and G.B. Bajracharya, Asian J. Chem., 36, 859 (2024); https://doi.org/10.14233/ajchem.2024.31196
M.U. Roslund, P. Tähtinen, M. Niemitz and R. Sjöholm, Carbohydr. Res., 343, 101 (2008); https://doi.org/10.1016/j.carres.2007.10.008
J. Zhang, B. Zhang, J. Zhou, J. Li, C. Shi, T. Huang, Z. Wang and J. Tang, J. Carbohydr. Chem., 30, 165 (2011); https://doi.org/10.1080/07328303.2011.621042
R.U. Lemieux and J.D. Stevens, Can. J. Chem., 43, 2059 (1965); https://doi.org/10.1139/v65-276
J.D. Stevens, Carbohydr. Res., 347, 9 (2012); https://doi.org/10.1016/j.carres.2011.09.009
Y. Zhu, J. Zajicek and A.S. Serianni, J. Org. Chem., 66, 6244 (2001); https://doi.org/10.1021/jo010541m
T. Barclay, M. Ginic-Markovic, M.R. Johnston, P. Cooper and N. Petrovsky, Carbohydr. Res., 347, 136 (2012); https://doi.org/10.1016/j.carres.2011.11.003
F. Franks, Pure Appl. Chem., 59, 1189 (1987); https://doi.org/10.1351/pac198759091189
S.T. Summerfelt, E.J.-M. Selosse, P.J. Reilly and W.S. Trahanovsky, Carbohydr. Res., 203, 163 (1990); https://doi.org/10.1016/0008-6215(90)80014-T
D. Horton and P.L. Durette, J. Org. Chem., 36, 2658 (1971); https://doi.org/10.1021/jo00817a019