Copyright (c) 2025 SUBAPRIYA V

This work is licensed under a Creative Commons Attribution 4.0 International License.
Hydrothermal Synthesis and Characterization of Fe2(MoO4)3/g-C3N4 Composites for Improved Energy Storage Applications
Corresponding Author(s) : V. Subapriya
Asian Journal of Chemistry,
Vol. 37 No. 11 (2025): Vol 37 Issue 11, 2025
Abstract
In this study, pristine Fe2(MoO4)3 and its composite with g-C3N4 were synthesized via a hydrothermal approach. The resultant crystal structure was verified through X-ray diffraction, while energy dispersive spectroscopy and field emission scanning electron microscopy were utilized to determine elemental composition and sample morphology, respectively. Fourier transform infrared spectroscopy further affirmed the successful preparation of the target materials. Both pure and composite samples underwent photo-electrochemical evaluation, revealing that Fe2(MoO4)3 combined with 2 g of g-C3N4 exhibited a remarkable specific capacitance of 1157.16 F g–1 and retained 99.70% of its capacitance after 2500 cycles, demonstrating exceptional electrochemical stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Zhang, X. Zhang, Y. Chen, C. Wang, Y. Ma, H. Dong, L. Jiang, Q. Meng and W. Hu, Phys. Chem. Chem. Phys., 14, 10899 (2012); https://doi.org/10.1039/C2CP41051F
- A. Patel, S. K. Patel, R. S. Singh and R.P. Patel, Discover Nano, 19, 188 (2024); https://doi.org/10.1186/s11671-024-04053-1
- M. Neelakandan, P. Dhandapani, S. Ramasamy, R. Duraisamy, S.J. Lee and S. Angaiah, RSC Adv., 15, 16766 (2025); https://doi.org/10.1039/D5RA01950H
- C. Cheng and G. Lai, Mater. Lett., 301, 130246 (2021); https://doi.org/10.1016/j.matlet.2021.130246
- S.K. Ghosh, ACS Omega, 40, 25493 (2020); https://doi.org/10.1021/acsomega.0c03455
- H.T. Huu and W.B. Im, ACS Appl. Mater. Interfaces, 12, 35152 (2020); https://doi.org/10.1021/acsami.0c11862
- B. Hu, S. Jian, G. Yin, W. Feng, Y. Cao, J. Bai, Y. Lai, H. Tan, and Y. Dong, Nanomaterials, 11, 3302 (2021); https://doi.org/10.3390/nano11123302
- M. Gowtham, N.S. Kumar, C. Sivakumar and K. Mohanraj, NanoNEXT, 3, 1 (2022); https://doi.org/10.54392/nnxt2221
- Y. Kimura, S. Kobayashi, S. Kawaguchi, K. Ohara, Y. Suzuki, T. Nakamura, Y. Iriyama, and K. Amezawa, RSC Adv., 14, 18109 (2024); https://doi.org/10.1039/d4ra03058c
- D.K. Ponelakkia, V. Balaji, K. Muhil Eswari, R.M. Nivetha, R. Yuvakkumar and G. Ravi, Mater. Lett., 363, 136269 (2024); https://doi.org/10.1016/j.matlet.2024.136269
- Q. Yang, Z. Hu, A. Yang and Y.F. Yuan, J. Electron. Mater., 54, 1029 (2025); https://doi.org/10.1007/s11664-024-11619-3
- X. Chang, X. Zhai, S. Sun, D. Gu, L. Dong, Y. Yin and Y. Zhu, Nanotechnology, 28, 135705 (2017); https://doi.org/10.1088/1361-6528/aa6107
- M.M. Taha, L.G. Ghanem, M.A. Hamza and N.K. Allam, ACS Appl. Energy Mater., 4, 10344 (2021); https://doi.org/10.1021/acsaem.1c02280
- S. Vinoth, K. Subramani, W.J. Ong, M. Sathish and A. Pandikumar, J. Colloid Interface Sci., 584, 204 (2021); https://doi.org/10.1016/j.jcis.2020.09.071
- M.G. da Silva Júnior, L.C.C. Arzuza, H.B. Sales, R.M. da C. Farias, G. de A. Neves, H. de L. Lira and R.R. Menezes, Materials, 16, 7657 (2023); https://doi.org/10.3390/ma16247657
- S. Parveen, I.A. Bhatti, A. Ashar, T. Javed, M. Mohsin, M.T. Hussain, M.I. Khan, S. Naz and M. Iqbal, Mater. Res. Express, 7, 035016 (2020); https://doi.org/10.1088/2053-1591/ab73fa
- K. Thiagarajan, T. Bavani, P. Arunachalam, S.J. Lee, J. Theerthagiri, J. Madhavan, B.G. Pollet and M.Y. Choi, Nanomaterials, 10, 392 (2020); https://doi.org/10.3390/nano10020392
- L. Ge, C. Han, J. Liu and Y. Li, Appl. Catal. A Gen., 409-410, 215 (2011); https://doi.org/10.1016/j.apcata.2011.10.006
- U. Kersen and R.L. Keiski, Catal. Commun., 10, 1039 (2009); https://doi.org/10.1016/j.catcom.2008.12.052
- H. Oudghiri-Hassani, Catal. Commun., 60, 19 (2015); https://doi.org/10.1016/j.catcom.2014.11.019
- A. Mohmoud, S. Rakass, H. Oudghiri Hassani, F. Kooli, M. Abboudi and S. Ben Aoun, Molecules, 25, 5100 (2020); https://doi.org/10.3390/molecules25215100
- K. Seevakan, A. Manikandan, P. Devendran, S.A. Antony and T.J.A.S. Alagesan, Adv. Sci. Eng. Med., 8, 566 (2016); https://doi.org/10.1166/asem.2016.1884
- A. Dutta, S. Adhikari, P. Johari, R. Nag, A. Bera, S.K. Saha and A.J. Akhtar, J. Energy Storage, 85, 111082 (2024); https://doi.org/10.1016/j.est.2024.111082
- Y. Su, S. Chen, Q. Yang and Y. Wang, Chem. Eng. Sci., 217, 115517 (2020); https://doi.org/10.1016/j.ces.2020.115517
- H. Liang, H. Zhang, L. Zhao, Z. Chen, C. Huang, C. Zhang, Z. Liang, Y. Wang, X. Wang, Q. Li, X. Guo and H. Li, Chem. Eng. J., 427, 131481 (2022); https://doi.org/10.1016/j.cej.2021.131481
- H.T. Huu, N.S.M. Viswanath, N.H. Vu, J.W. Lee and W.B. Im, Nano Res., 14, 3977 (2021); https://doi.org/10.1007/s12274-021-3323-1
- M. Seethalakshmi, D.M. Shanthi, S. Dhanapandian and D.K. Ashokkumar, Asian J. Chem., 37, 39 (2024); https://doi.org/10.14233/ajchem.2025.32787
- T. Chen, C. Xiang, Y. Zou, F. Xu and L. Sun, Energy Fuels, 35, 10250 (2021); https://doi.org/10.1021/acs.energyfuels.1c00913
References
D. Zhang, X. Zhang, Y. Chen, C. Wang, Y. Ma, H. Dong, L. Jiang, Q. Meng and W. Hu, Phys. Chem. Chem. Phys., 14, 10899 (2012); https://doi.org/10.1039/C2CP41051F
A. Patel, S. K. Patel, R. S. Singh and R.P. Patel, Discover Nano, 19, 188 (2024); https://doi.org/10.1186/s11671-024-04053-1
M. Neelakandan, P. Dhandapani, S. Ramasamy, R. Duraisamy, S.J. Lee and S. Angaiah, RSC Adv., 15, 16766 (2025); https://doi.org/10.1039/D5RA01950H
C. Cheng and G. Lai, Mater. Lett., 301, 130246 (2021); https://doi.org/10.1016/j.matlet.2021.130246
S.K. Ghosh, ACS Omega, 40, 25493 (2020); https://doi.org/10.1021/acsomega.0c03455
H.T. Huu and W.B. Im, ACS Appl. Mater. Interfaces, 12, 35152 (2020); https://doi.org/10.1021/acsami.0c11862
B. Hu, S. Jian, G. Yin, W. Feng, Y. Cao, J. Bai, Y. Lai, H. Tan, and Y. Dong, Nanomaterials, 11, 3302 (2021); https://doi.org/10.3390/nano11123302
M. Gowtham, N.S. Kumar, C. Sivakumar and K. Mohanraj, NanoNEXT, 3, 1 (2022); https://doi.org/10.54392/nnxt2221
Y. Kimura, S. Kobayashi, S. Kawaguchi, K. Ohara, Y. Suzuki, T. Nakamura, Y. Iriyama, and K. Amezawa, RSC Adv., 14, 18109 (2024); https://doi.org/10.1039/d4ra03058c
D.K. Ponelakkia, V. Balaji, K. Muhil Eswari, R.M. Nivetha, R. Yuvakkumar and G. Ravi, Mater. Lett., 363, 136269 (2024); https://doi.org/10.1016/j.matlet.2024.136269
Q. Yang, Z. Hu, A. Yang and Y.F. Yuan, J. Electron. Mater., 54, 1029 (2025); https://doi.org/10.1007/s11664-024-11619-3
X. Chang, X. Zhai, S. Sun, D. Gu, L. Dong, Y. Yin and Y. Zhu, Nanotechnology, 28, 135705 (2017); https://doi.org/10.1088/1361-6528/aa6107
M.M. Taha, L.G. Ghanem, M.A. Hamza and N.K. Allam, ACS Appl. Energy Mater., 4, 10344 (2021); https://doi.org/10.1021/acsaem.1c02280
S. Vinoth, K. Subramani, W.J. Ong, M. Sathish and A. Pandikumar, J. Colloid Interface Sci., 584, 204 (2021); https://doi.org/10.1016/j.jcis.2020.09.071
M.G. da Silva Júnior, L.C.C. Arzuza, H.B. Sales, R.M. da C. Farias, G. de A. Neves, H. de L. Lira and R.R. Menezes, Materials, 16, 7657 (2023); https://doi.org/10.3390/ma16247657
S. Parveen, I.A. Bhatti, A. Ashar, T. Javed, M. Mohsin, M.T. Hussain, M.I. Khan, S. Naz and M. Iqbal, Mater. Res. Express, 7, 035016 (2020); https://doi.org/10.1088/2053-1591/ab73fa
K. Thiagarajan, T. Bavani, P. Arunachalam, S.J. Lee, J. Theerthagiri, J. Madhavan, B.G. Pollet and M.Y. Choi, Nanomaterials, 10, 392 (2020); https://doi.org/10.3390/nano10020392
L. Ge, C. Han, J. Liu and Y. Li, Appl. Catal. A Gen., 409-410, 215 (2011); https://doi.org/10.1016/j.apcata.2011.10.006
U. Kersen and R.L. Keiski, Catal. Commun., 10, 1039 (2009); https://doi.org/10.1016/j.catcom.2008.12.052
H. Oudghiri-Hassani, Catal. Commun., 60, 19 (2015); https://doi.org/10.1016/j.catcom.2014.11.019
A. Mohmoud, S. Rakass, H. Oudghiri Hassani, F. Kooli, M. Abboudi and S. Ben Aoun, Molecules, 25, 5100 (2020); https://doi.org/10.3390/molecules25215100
K. Seevakan, A. Manikandan, P. Devendran, S.A. Antony and T.J.A.S. Alagesan, Adv. Sci. Eng. Med., 8, 566 (2016); https://doi.org/10.1166/asem.2016.1884
A. Dutta, S. Adhikari, P. Johari, R. Nag, A. Bera, S.K. Saha and A.J. Akhtar, J. Energy Storage, 85, 111082 (2024); https://doi.org/10.1016/j.est.2024.111082
Y. Su, S. Chen, Q. Yang and Y. Wang, Chem. Eng. Sci., 217, 115517 (2020); https://doi.org/10.1016/j.ces.2020.115517
H. Liang, H. Zhang, L. Zhao, Z. Chen, C. Huang, C. Zhang, Z. Liang, Y. Wang, X. Wang, Q. Li, X. Guo and H. Li, Chem. Eng. J., 427, 131481 (2022); https://doi.org/10.1016/j.cej.2021.131481
H.T. Huu, N.S.M. Viswanath, N.H. Vu, J.W. Lee and W.B. Im, Nano Res., 14, 3977 (2021); https://doi.org/10.1007/s12274-021-3323-1
M. Seethalakshmi, D.M. Shanthi, S. Dhanapandian and D.K. Ashokkumar, Asian J. Chem., 37, 39 (2024); https://doi.org/10.14233/ajchem.2025.32787
T. Chen, C. Xiang, Y. Zou, F. Xu and L. Sun, Energy Fuels, 35, 10250 (2021); https://doi.org/10.1021/acs.energyfuels.1c00913