Copyright (c) 2025 Pullarao Perla, Thiyyakur Yamini, Dr. Deepti Kolli, Mohamed Takhi, Srinu Bhoomandla, Pilli VVN Kishore

This work is licensed under a Creative Commons Attribution 4.0 International License.
Novel 1,3,4-Oxadiazolyltriazole-Derived Phthalazine Scaffolds: Design, Synthesis, Bioactive Evaluation and Computational Docking Study
Corresponding Author(s) : Deepti Kolli
Asian Journal of Chemistry,
Vol. 37 No. 11 (2025): Vol 37 Issue 11, 2025
Abstract
In this study, a series of novel hybrid compounds comprising phthalazine and 1,3,4-oxadiazolyl‒triazole moieties were synthesized. The structures of all synthesized compounds were characterized using FT-IR, 1H NMR, 13C NMR and mass spectrometric techniques. The antibacterial and antifungal activity of synthesized compounds was assessed in vitro using the inhibitory zone method against strains of fungi, Gram-negative and Gram-positive bacteria with the largest inhibition zone diameters ranging from 35.80 to 45.01 mm, respectively. Among the tested compounds, 5a, 5e, 7a and 7d demonstrated the superior antibacterial activity against S. aureus and E. coli when compared to the standard medication (levofloxacin). Compound 7d showed potent antifungal activity with zone of inhibition values of 30.24 ± 0.14 and 31.56 ± 1.20 mm against A. flavus and C. albicans, respectively. Furthermore, the most bacterial strains rely on DNA gyrase for nucleic acid synthesis, molecular docking studies were conducted against DNA gyrase from S. aureus (PDB ID: 2XCR) and topoisomerase IV from E. coli (PDB ID: 1S14). These results suggest that compound 7d holds a potential lead compound for the development of new antibiotics. The molecular docking analysis of compounds 5a, 7a and 7d demonstrated a good interaction with the target protein with a high docking score of -7.52, -7.12 and -6.96 kcal/mol, respectively. The synthesized novel compounds represent a valuable scaffold that can be further optimized to develop potent antimicrobial agents for future therapeutic applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.S. AlNeyadi, A.A. Salem, M.A. Ghattas, N. Atatreh and I.M. Abdou, Eur. J. Med. Chem., 136, 270 (2017); https://doi.org/10.1016/j.ejmech.2017.05.010
- L. Suresh, P. Sagar Vijay Kumar, Y. Poornachandra, C. Ganesh Kumar and G.V.P. Chandramouli, Bioorg. Med. Chem. Lett., 27, 1451 (2017); https://doi.org/10.1016/j.bmcl.2017.01.087
- P.K. Sharma, N. Chandak, P. Kumar, C. Sharma and K.R. Aneja, Eur. J. Med. Chem., 46, 1425 (2011); https://doi.org/10.1016/j.ejmech.2011.01.060
- D. Kruszewska, H.-G. Sahl, G. Bierbaum, U. Pag, S.O. Hynes and Å. Ljungh, J. Antimicrob. Chemother., 54, 648 (2004); https://doi.org/10.1093/jac/dkh387
- A.K. Dunga, T.R. Allaka, Y. Kethavarapu, S.K. Nechipadappu, P. Pothana, K. Ravada, J. Kashanna and P.V.V.N. Kishore, Results Chem., 4, 100605 (2022); https://doi.org/10.1016/j.rechem.2022.100605
- I.M. Gould and A.M. Bal, Virulence, 4, 185 (2013); https://doi.org/10.4161/viru.22507
- M.A. Salam, M.Y. Al-Amin, M.T. Salam, J.S. Pawar, N. Akhter, A.A. Rabaan and M.A.A. Alqumber, Healthcare, 11, 1946 (2023); https://doi.org/10.3390/healthcare11131946
- V. Straniero, Antibiotics, 13, 171 (2024); https://doi.org/10.3390/antibiotics13020171
- N. Kerru, L. Gummidi, S. Maddila, K.K. Gangu and S.B. Jonnalagadda, Molecules, 25, 1909 (2020); https://doi.org/10.3390/molecules25081909
- M.M. Heravi and V. Fathi-Vavsari, in eds.: E.F.V. Scriven and C.A. Ramsden, Recent Advances in Application of Amino Acids: Key Building Blocks in Design and Syntheses of Heterocyclic Compounds; In: Advances in Heterocyclic Chemistry, Academic Press, Chap. 2, vol. 114, pp 77 (2015).
- K. Bozorov, J. Zhao and H.A. Aisa, Bioorg. Med. Chem., 27, 3511 (2019); https://doi.org/10.1016/j.bmc.2019.07.005
- N. Nehra, R.K. Tittal and V.D. Ghule, ACS Omega, 6, 27089 (2021); https://doi.org/10.1021/acsomega.1c03668
- V.S.R. Avuthu, T.R. Allaka, P.R. Patel, S. Venkatesan, N. Honnappa, M. Afzal and P.V.V.N. Kishore, J. Mol. Struct., 1314, 138736 (2024); https://doi.org/10.1016/j.molstruc.2024.138736
- A. Basireddy, T.R. Allaka, A.R. Allam, S.R. Baddam, S. Basireddy and P.V.V.N. Kishore, Curr. Org. Chem., 27, 1882 (2023); https://doi.org/10.2174/0113852728276712231123111714
- Ş.G. Küçükgüzel, E.E. Oruç, S. Rollas, F. Şahin and A. Özbek, Eur. J. Med. Chem., 37, 197 (2002); https://doi.org/10.1016/S0223-5234(01)01326-5
- G. Venkateswara Rao, T.R. Allaka, M.K. Gandla, P.K. Veera Venkata Nanda, S.R. Pindi, P.R.R. Vaddi and H.B. Bollikolla, J. Heterocycl. Chem., 60, 1666 (2023); https://doi.org/10.1002/jhet.4700
- S.V. Bhandari, K.G. Bothara, M.K. Raut, A.A. Patil, A.P. Sarkate and V.J. Mokale, Bioorg. Med. Chem., 16, 1822 (2008); https://doi.org/10.1016/j.bmc.2007.11.014
- B. Alburquerque-González, Á. Bernabé-García, M. Bernabé-García, J. Ruiz-Sanz, F.F. López-Calderón, L. Gonnelli, L. Banci, J. Peña-García, I. Luque, F.J. Nicolás, M.L. Cayuela-Fuentes, E. Luchinat, H. Pérez-Sánchez, S. Montoro-García and P. Conesa-Zamora, Cancers, 13, 861 (2021); https://doi.org/10.3390/cancers13040861
- P. Mishra, G.K. Joshi, A.K. Shakya, R.K. Agrawal and G.K. Patnaik, Indian J. Pharmacol., 36, 247 (1992).
- X.-M. Zhang, M. Qiu, J. Sun, Y.-B. Zhang, Y.-S. Yang, X.-L. Wang, J.-F. Tang and H.-L. Zhu, Bioorg. Med. Chem., 19, 6518 (2011); https://doi.org/10.1016/j.bmc.2011.08.013
- A. Zarghi, S.A. Tabatabai, M. Faizi, A. Ahadian, V. Zanganeh, P. Navabi, and A. Shafiee, Bioorg. Med. Chem. Lett., 15, 1863 (2005); https://doi.org/10.1016/j.bmcl.2005.02.014
- J.H. Musser, R.E. Brown, B. Loev, K. Bailey, H. Jones, R. Kahen, F. Huang, A. Khandwala and M. Leibowitz, J. Med. Chem., 27, 121 (1984); https://doi.org/10.1021/jm00368a004
- Y. Wang, H. Zhang, W. Shen, P. He and Z. Zhou, J. Cancer Res. Clin. Oncol., 144, 1751 (2018); https://doi.org/10.1007/s00432-018-2664-y
- O. Sheikh and T. Yokota, Expert Opin. Investig. Drugs, 30, 167 (2021); https://doi.org/10.1080/13543784.2021.1868434
- W. Berger, F. Hampel Jr., J. Bernstein, S. Shah, H. Sacks and E.O. Meltzer, Ann. Allergy Asthma Immunol., 97, 375 (2006); https://doi.org/10.1016/S1081-1206(10)60804-6
- E.N. Scott, G. Meinhardt, C. Jacques, D. Laurent and A.L. Thomas, Expert Opin. Investig. Drugs, 16, 367 (2007); https://doi.org/10.1517/13543784.16.3.367
- S. Hasabelnaby, E.M. Mohi El-Deen and A. Goudah, Antiinflamm. Antiallergy Agents Med. Chem., 14, 148 (2015); https://doi.org/10.2174/1871523014666151103113544
- A.D. Lebsack, J. Gunzner, B. Wang, R. Pracitto, H. Schaffhauser, A. Santini, J. Aiyar, R. Bezverkov, B. Munoz, W. Liu and S. Venkatraman, Bioorg. Med. Chem. Lett., 14, 2463 (2004); https://doi.org/10.1016/j.bmcl.2004.03.008
- Q.-R. Zhang, D.-Q. Xue, P. He, K.-P. Shao, P.-J. Chen, Y.-F. Gu, J.-L. Ren, L.-H. Shan and H.-M. Liu, Bioorg. Med. Chem. Lett., 24, 1236 (2014); https://doi.org/10.1016/j.bmcl.2013.12.010
- Y.E. Sherif, R. Alansari and M.A. Gouda, Antiinflamm. Antiallergy Agents Med. Chem., 17, 3 (2018); https://doi.org/10.2174/1871523017666180413111321
- Y.E. Sherif, M.A. Gouda and A.A. El-Asmy, Med. Chem. Res., 24, 3853 (2015); https://doi.org/10.1007/s00044-015-1427-4
- M.S. Behalo, I.A. Gad El-karim and R. Rafaat, J. Heterocycl. Chem., 54, 3591 (2017); https://doi.org/10.1002/jhet.2985
- W.M. Eldehna, H. Almahli, G.H. Al-Ansary, H.A. Ghabbour, M.H. Aly, O.E. Ismael, A. Al-Dhfyan and H.A. Abdel-Aziz, J. Enzyme Inhib. Med. Chem., 32, 600 (2017); https://doi.org/10.1080/14756366.2017.1279155
- G. Gogisetti, U. Kanna, V. Sharma, T. Rao Allaka and B.R. Tadiboina, Chem. Biodivers., 19, e202200681 (2022); https://doi.org/10.1002/cbdv.202200681
- J.C. McPherson III, R. Runner, T.B. Buxton, J.F. Hartmann, D. Farcasiu, I. Bereczki, E. Rőth, S. Tollas, E. Ostorházi, F. Rozgonyi and P. Herczegh, Eur. J. Med. Chem., 47, 615 (2012); https://doi.org/10.1016/j.ejmech.2011.10.049
- M. Hu, J. Li and S.Q. Yao, Org. Lett., 10, 5529 (2008); https://doi.org/10.1021/ol802286g
- G.L. French, J. Antimicrob. Chemother., 58, 1107 (2006); https://doi.org/10.1093/jac/dkl393
- I. Castillo-Juárez, F. Rivero-Cruz, H. Celis and I. Romero, J. Ethnopharmacol., 114, 72 (2007); https://doi.org/10.1016/j.jep.2007.07.022
- E.J.L. Stéen, D.J. Vugts and A.D. Windhorst, Front. Nucl. Med., 2, 853475 (2022); https://doi.org/10.3389/fnume.2022.853475
- G. Venkanna, A.T. Rao, K.S. Kumar, M.S.N.A. Prasad, C. Kalyani, G.S. Kumar and V. Srinivas, Russ. J. Bioorg. Chem., 50, 1519 (2024); https://doi.org/10.1134/S1068162024040277
- A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
- S.K. Konda, S. Kuna, S. Pandiri, P. Akarapu, S. Bhoomandla and P.V.V.N. Kishore, Bull. Chem. Soc. Ethiop., 39, 731 (2025); https://doi.org/10.4314/bcse.v39i4.10
- V. Gujja, K. Sadineni, M.R. Epuru, T. Rao Allaka, V. Banothu, S.K. Gunda and S.K. Koppula, Chem. Biodivers., 20, e202301232 (2023); https://doi.org/10.1002/cbdv.202301232
- S. Bellon, J.D. Parsons, Y. Wei, K. Hayakawa, L.L. Swenson, P.S. Charifson, J.A. Lippke, R. Aldape and C.H. Gross, Antimicrob. Agents Chemother., 48, 1856 (2004); https://doi.org/10.1128/AAC.48.5.1856-1864.2004
- B.D. Bax, P.F. Chan, D.S. Eggleston, A. Fosberry, D.R. Gentry, F. Gorrec, I. Giordano, M.M. Hann, A. Hennessy, M. Hibbs, J. Huang, E. Jones, J. Jones, K.K. Brown, C.J. Lewis, E.W. May, M.R. Saunders, O. Singh, C.E. Spitzfaden, C. Shen, A. Shillings, A.J. Theobald, A. Wohlkonig, N.D. Pearson and M.N. Gwynn, Nature, 466, 935 (2010); https://doi.org/10.1038/nature09197
- S.K. Gandham, A.A. Kudale, T.R. Allaka, K. Chepuri and A. Jha, J. Mol. Struct., 1295, 136714 (2024); https://doi.org/10.1016/j.molstruc.2023.136714
- R.A. Laskowski, J. Jabłońska, L. Pravda, R.S. Vařeková and J.M. Thornton, Protein Sci., 27, 129 (2018); https://doi.org/10.1002/pro.3289
- K. Sadineni, S. Reddy Basireddy, T. Rao Allaka, S. Bhoomandla, S. Yatam, V. Muvvala and S. Babu Haridasyam, Chem. Biodivers., 21, e202400389 (2024); https://doi.org/10.1002/cbdv.202400389
- S. Dallakyan and A.J. Olson, Methods Mol. Biol., 1263, 243 (2015); https://doi.org/10.1007/978-1-4939-2269-7_19
References
S.S. AlNeyadi, A.A. Salem, M.A. Ghattas, N. Atatreh and I.M. Abdou, Eur. J. Med. Chem., 136, 270 (2017); https://doi.org/10.1016/j.ejmech.2017.05.010
L. Suresh, P. Sagar Vijay Kumar, Y. Poornachandra, C. Ganesh Kumar and G.V.P. Chandramouli, Bioorg. Med. Chem. Lett., 27, 1451 (2017); https://doi.org/10.1016/j.bmcl.2017.01.087
P.K. Sharma, N. Chandak, P. Kumar, C. Sharma and K.R. Aneja, Eur. J. Med. Chem., 46, 1425 (2011); https://doi.org/10.1016/j.ejmech.2011.01.060
D. Kruszewska, H.-G. Sahl, G. Bierbaum, U. Pag, S.O. Hynes and Å. Ljungh, J. Antimicrob. Chemother., 54, 648 (2004); https://doi.org/10.1093/jac/dkh387
A.K. Dunga, T.R. Allaka, Y. Kethavarapu, S.K. Nechipadappu, P. Pothana, K. Ravada, J. Kashanna and P.V.V.N. Kishore, Results Chem., 4, 100605 (2022); https://doi.org/10.1016/j.rechem.2022.100605
I.M. Gould and A.M. Bal, Virulence, 4, 185 (2013); https://doi.org/10.4161/viru.22507
M.A. Salam, M.Y. Al-Amin, M.T. Salam, J.S. Pawar, N. Akhter, A.A. Rabaan and M.A.A. Alqumber, Healthcare, 11, 1946 (2023); https://doi.org/10.3390/healthcare11131946
V. Straniero, Antibiotics, 13, 171 (2024); https://doi.org/10.3390/antibiotics13020171
N. Kerru, L. Gummidi, S. Maddila, K.K. Gangu and S.B. Jonnalagadda, Molecules, 25, 1909 (2020); https://doi.org/10.3390/molecules25081909
M.M. Heravi and V. Fathi-Vavsari, in eds.: E.F.V. Scriven and C.A. Ramsden, Recent Advances in Application of Amino Acids: Key Building Blocks in Design and Syntheses of Heterocyclic Compounds; In: Advances in Heterocyclic Chemistry, Academic Press, Chap. 2, vol. 114, pp 77 (2015).
K. Bozorov, J. Zhao and H.A. Aisa, Bioorg. Med. Chem., 27, 3511 (2019); https://doi.org/10.1016/j.bmc.2019.07.005
N. Nehra, R.K. Tittal and V.D. Ghule, ACS Omega, 6, 27089 (2021); https://doi.org/10.1021/acsomega.1c03668
V.S.R. Avuthu, T.R. Allaka, P.R. Patel, S. Venkatesan, N. Honnappa, M. Afzal and P.V.V.N. Kishore, J. Mol. Struct., 1314, 138736 (2024); https://doi.org/10.1016/j.molstruc.2024.138736
A. Basireddy, T.R. Allaka, A.R. Allam, S.R. Baddam, S. Basireddy and P.V.V.N. Kishore, Curr. Org. Chem., 27, 1882 (2023); https://doi.org/10.2174/0113852728276712231123111714
Ş.G. Küçükgüzel, E.E. Oruç, S. Rollas, F. Şahin and A. Özbek, Eur. J. Med. Chem., 37, 197 (2002); https://doi.org/10.1016/S0223-5234(01)01326-5
G. Venkateswara Rao, T.R. Allaka, M.K. Gandla, P.K. Veera Venkata Nanda, S.R. Pindi, P.R.R. Vaddi and H.B. Bollikolla, J. Heterocycl. Chem., 60, 1666 (2023); https://doi.org/10.1002/jhet.4700
S.V. Bhandari, K.G. Bothara, M.K. Raut, A.A. Patil, A.P. Sarkate and V.J. Mokale, Bioorg. Med. Chem., 16, 1822 (2008); https://doi.org/10.1016/j.bmc.2007.11.014
B. Alburquerque-González, Á. Bernabé-García, M. Bernabé-García, J. Ruiz-Sanz, F.F. López-Calderón, L. Gonnelli, L. Banci, J. Peña-García, I. Luque, F.J. Nicolás, M.L. Cayuela-Fuentes, E. Luchinat, H. Pérez-Sánchez, S. Montoro-García and P. Conesa-Zamora, Cancers, 13, 861 (2021); https://doi.org/10.3390/cancers13040861
P. Mishra, G.K. Joshi, A.K. Shakya, R.K. Agrawal and G.K. Patnaik, Indian J. Pharmacol., 36, 247 (1992).
X.-M. Zhang, M. Qiu, J. Sun, Y.-B. Zhang, Y.-S. Yang, X.-L. Wang, J.-F. Tang and H.-L. Zhu, Bioorg. Med. Chem., 19, 6518 (2011); https://doi.org/10.1016/j.bmc.2011.08.013
A. Zarghi, S.A. Tabatabai, M. Faizi, A. Ahadian, V. Zanganeh, P. Navabi, and A. Shafiee, Bioorg. Med. Chem. Lett., 15, 1863 (2005); https://doi.org/10.1016/j.bmcl.2005.02.014
J.H. Musser, R.E. Brown, B. Loev, K. Bailey, H. Jones, R. Kahen, F. Huang, A. Khandwala and M. Leibowitz, J. Med. Chem., 27, 121 (1984); https://doi.org/10.1021/jm00368a004
Y. Wang, H. Zhang, W. Shen, P. He and Z. Zhou, J. Cancer Res. Clin. Oncol., 144, 1751 (2018); https://doi.org/10.1007/s00432-018-2664-y
O. Sheikh and T. Yokota, Expert Opin. Investig. Drugs, 30, 167 (2021); https://doi.org/10.1080/13543784.2021.1868434
W. Berger, F. Hampel Jr., J. Bernstein, S. Shah, H. Sacks and E.O. Meltzer, Ann. Allergy Asthma Immunol., 97, 375 (2006); https://doi.org/10.1016/S1081-1206(10)60804-6
E.N. Scott, G. Meinhardt, C. Jacques, D. Laurent and A.L. Thomas, Expert Opin. Investig. Drugs, 16, 367 (2007); https://doi.org/10.1517/13543784.16.3.367
S. Hasabelnaby, E.M. Mohi El-Deen and A. Goudah, Antiinflamm. Antiallergy Agents Med. Chem., 14, 148 (2015); https://doi.org/10.2174/1871523014666151103113544
A.D. Lebsack, J. Gunzner, B. Wang, R. Pracitto, H. Schaffhauser, A. Santini, J. Aiyar, R. Bezverkov, B. Munoz, W. Liu and S. Venkatraman, Bioorg. Med. Chem. Lett., 14, 2463 (2004); https://doi.org/10.1016/j.bmcl.2004.03.008
Q.-R. Zhang, D.-Q. Xue, P. He, K.-P. Shao, P.-J. Chen, Y.-F. Gu, J.-L. Ren, L.-H. Shan and H.-M. Liu, Bioorg. Med. Chem. Lett., 24, 1236 (2014); https://doi.org/10.1016/j.bmcl.2013.12.010
Y.E. Sherif, R. Alansari and M.A. Gouda, Antiinflamm. Antiallergy Agents Med. Chem., 17, 3 (2018); https://doi.org/10.2174/1871523017666180413111321
Y.E. Sherif, M.A. Gouda and A.A. El-Asmy, Med. Chem. Res., 24, 3853 (2015); https://doi.org/10.1007/s00044-015-1427-4
M.S. Behalo, I.A. Gad El-karim and R. Rafaat, J. Heterocycl. Chem., 54, 3591 (2017); https://doi.org/10.1002/jhet.2985
W.M. Eldehna, H. Almahli, G.H. Al-Ansary, H.A. Ghabbour, M.H. Aly, O.E. Ismael, A. Al-Dhfyan and H.A. Abdel-Aziz, J. Enzyme Inhib. Med. Chem., 32, 600 (2017); https://doi.org/10.1080/14756366.2017.1279155
G. Gogisetti, U. Kanna, V. Sharma, T. Rao Allaka and B.R. Tadiboina, Chem. Biodivers., 19, e202200681 (2022); https://doi.org/10.1002/cbdv.202200681
J.C. McPherson III, R. Runner, T.B. Buxton, J.F. Hartmann, D. Farcasiu, I. Bereczki, E. Rőth, S. Tollas, E. Ostorházi, F. Rozgonyi and P. Herczegh, Eur. J. Med. Chem., 47, 615 (2012); https://doi.org/10.1016/j.ejmech.2011.10.049
M. Hu, J. Li and S.Q. Yao, Org. Lett., 10, 5529 (2008); https://doi.org/10.1021/ol802286g
G.L. French, J. Antimicrob. Chemother., 58, 1107 (2006); https://doi.org/10.1093/jac/dkl393
I. Castillo-Juárez, F. Rivero-Cruz, H. Celis and I. Romero, J. Ethnopharmacol., 114, 72 (2007); https://doi.org/10.1016/j.jep.2007.07.022
E.J.L. Stéen, D.J. Vugts and A.D. Windhorst, Front. Nucl. Med., 2, 853475 (2022); https://doi.org/10.3389/fnume.2022.853475
G. Venkanna, A.T. Rao, K.S. Kumar, M.S.N.A. Prasad, C. Kalyani, G.S. Kumar and V. Srinivas, Russ. J. Bioorg. Chem., 50, 1519 (2024); https://doi.org/10.1134/S1068162024040277
A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
S.K. Konda, S. Kuna, S. Pandiri, P. Akarapu, S. Bhoomandla and P.V.V.N. Kishore, Bull. Chem. Soc. Ethiop., 39, 731 (2025); https://doi.org/10.4314/bcse.v39i4.10
V. Gujja, K. Sadineni, M.R. Epuru, T. Rao Allaka, V. Banothu, S.K. Gunda and S.K. Koppula, Chem. Biodivers., 20, e202301232 (2023); https://doi.org/10.1002/cbdv.202301232
S. Bellon, J.D. Parsons, Y. Wei, K. Hayakawa, L.L. Swenson, P.S. Charifson, J.A. Lippke, R. Aldape and C.H. Gross, Antimicrob. Agents Chemother., 48, 1856 (2004); https://doi.org/10.1128/AAC.48.5.1856-1864.2004
B.D. Bax, P.F. Chan, D.S. Eggleston, A. Fosberry, D.R. Gentry, F. Gorrec, I. Giordano, M.M. Hann, A. Hennessy, M. Hibbs, J. Huang, E. Jones, J. Jones, K.K. Brown, C.J. Lewis, E.W. May, M.R. Saunders, O. Singh, C.E. Spitzfaden, C. Shen, A. Shillings, A.J. Theobald, A. Wohlkonig, N.D. Pearson and M.N. Gwynn, Nature, 466, 935 (2010); https://doi.org/10.1038/nature09197
S.K. Gandham, A.A. Kudale, T.R. Allaka, K. Chepuri and A. Jha, J. Mol. Struct., 1295, 136714 (2024); https://doi.org/10.1016/j.molstruc.2023.136714
R.A. Laskowski, J. Jabłońska, L. Pravda, R.S. Vařeková and J.M. Thornton, Protein Sci., 27, 129 (2018); https://doi.org/10.1002/pro.3289
K. Sadineni, S. Reddy Basireddy, T. Rao Allaka, S. Bhoomandla, S. Yatam, V. Muvvala and S. Babu Haridasyam, Chem. Biodivers., 21, e202400389 (2024); https://doi.org/10.1002/cbdv.202400389
S. Dallakyan and A.J. Olson, Methods Mol. Biol., 1263, 243 (2015); https://doi.org/10.1007/978-1-4939-2269-7_19