Copyright (c) 2025 S Rekha, S Tamilselvan, Mohd Asif, Malik Nasibullah, J. N. Cheerlin Mishma, P Manikandan, S Kaleeswaran

This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Spectroscopic, Electronic Charge Transfer and Non-covalent Interactions Studies on (E)-5-Bromo-3-((3-chloro-4-fluorophenyl)imino)indolin-2-one: In vitro Studies against the Cancer Cell Lines
Corresponding Author(s) : S. Tamilselvan
Asian Journal of Chemistry,
Vol. 37 No. 10 (2025): Vol 37 Issue 10, 2025
Abstract
This research focuses on synthesising an anticancer drug titled (E)-5-bromo-3-((3-chloro-4-fluorophenyl)imino)indolin-2-one (5BFIO) and validating its analytical values through theoretical and experimental evaluation using techniques such as FT-IR, FT-Raman, 1H and 13C NMR. Moreover, the anticancer activity of 5BFIO molecule was evaluated using molecular docking against cancer proteins (4B55, 5KYG and 6UGR) and 60 human cancer cell lines of NCI-60 under in silico and in vitro analyses, respectively. In the formation of docked complexes, low binding affinities -5.78 for 5BFIO-4B55, -6.72 for 5BFIO-5KYG and -8.86 for 5BFIO-6UGR) were noted in kcal/mol, respectively. Moreover, 5BFIO showed the best activity (49.59% GI) against the MCF7 breast cancer cell line. Density functional theory (DFT) was effectively employed to analyse the molecule’s stability under optimal conditions for comparative studies that incorporate both observational and computational data from gas phases. The outcomes of this study present a comprehensive analysis of gas-phase properties, including nonlinear optical (NLO) behaviour, molecular electrostatic potential (MEP), electron localization function (ELF), localized orbital locator (LOL) and reduced density gradient (RDG) descriptors. The pharmacological evaluation demonstrated significant anticancer activity and it could be derivatized into a more potent drug-like molecule using chemical reactions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Fatma, S. Parveen and S.S. Mir, Biochim. Biophys. Acta Rev. Cancer, 1880, 189309 (2025); https://doi.org/10.1016/j.bbcan.2025.189309
- I. Azad, P. Anand, N. Ahmad, F. Hassan, M. Faiyyaz and Y. Akhter, Chem. Phys., 581, 112243 (2024); https://doi.org/10.1016/j.chemphys.2024.112243
- M. Asif, T. Azaz, B. Tiwari and M. Nasibullah, Tetrahedron, 134, 133308 (2023); https://doi.org/10.1016/j.tet.2023.133308
- V.J. Reeda, V.B. Jothy, M. Asif, M. Nasibullah, S. Kadaikunnan, G. Abbas and S. Muthu, J. Mol. Struct., 1294, 136310 (2023); https://doi.org/10.1016/j.molstruc.2023.136310
- V.S. Jeba Reeda, V. Bena Jothy, M. Asif, M. Nasibullah, N.S. Alharbi, G. Abbas and S. Muthu, J. Mol. Liq., 380, 121709 (2023); https://doi.org/10.1016/j.molliq.2023.121709
- M. Asif, M. Saquib, A.R. Khan, F. Aqil, A.S. Almalki, F.A. Alasmary, J. Singh and M. Nasibullah, ChemistrySelect, 8, e202204536 (2023); https://doi.org/10.1002/slct.202204536
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision D.01, Gaussian Inc., Wallingford CT (2009).
- R. Dennington, T.A. Keith and J.M. Millam, GaussView 6.0. 16. Semichem Inc.: Shawnee Mission, KS, USA (2016).
- R. Krishnan, J.S. Binkley, R. Seeger and J.A. Pople, J. Chem. Phys., 72, 650 (1980); https://doi.org/10.1063/1.438955
- M.H. Jamróz, Spectrochim. Acta A Mol. Biomol. Spectrosc., 114, 220 (2013); https://doi.org/10.1016/j.saa.2013.05.096
- I.M. Alecu, J. Zheng, Y. Zhao and D.G. Truhlar, J. Chem. Theory Comput., 6, 2872 (2010); https://doi.org/10.1021/ct100326h
- G.A. Andrienko, Chemcraft-Graphical Software for Visualization of Quantum Chemistry Computations, Version 1.8, build 648 (2015).
- P. Politzer and D.G. Truhlar, Chemical Applications of Atomic and Molecular Electrostatic Potentials: Reactivity, Structure, Scattering, and Energetics of Organic, Inorganic and Biological Systems, Springer Science & Business Media (2013).
- R.S. Mulliken, J. Chem. Phys., 2, 782 (1934); https://doi.org/10.1063/1.1749394
- A.E. Reed, L.A. Curtiss and F. Weinhold, Chem. Rev., 88, 899 (1988); https://doi.org/10.1021/cr00088a005
- T. Lu and F. Chen, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885
- A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
- D. Schneidman-Duhovny, Y. Inbar, R. Nussinov and H.J. Wolfson, Nucleic Acids Res., 33(Web Server), W363 (2005); https://doi.org/10.1093/nar/gki481.
- C.P.S. Hsu, Infrared Spectroscopy, In: Handbook of Instrumental Techniques for Analytical Chemistry. Prentice-Hall, Englewood Cliffs, NJ, pp. 247-284 (1997).
- P. Mishra, A. Behera, D. Kandi and K. Parida, Nanoscale Adv., 1, 1864 (2019); https://doi.org/10.1039/C9NA00018F
- A. McIlroy and D.J. Nesbitt, J. Chem. Phys., 91, 104 (1989); https://doi.org/10.1063/1.457496
- B.Q. Sheeba, M.S. Michael Mary, M. Amalanathan and C.B. Job, Mol. Simul., 47, 1217 (2021); https://doi.org/10.1080/08927022.2021.1962862
- L. Kahovec and K.W.F. Kohlrausch, Monatsh. Chem., 74, 333 (1941); https://doi.org/10.1007/BF01512909
- P. Manikandan, M. Kumar, P. Swarnamughi, M. Asif, M. Nasibullah, V.S. Jeba Reeda, J.M. Khaled and S. Muthu, J. Mol. Liq., 405, 125064 (2024); https://doi.org/10.1016/j.molliq.2024.125064
- G. Kanimozhi, S. Tamilselvan, K.M. Potla, J.N. Cheerlin Mishma, F. Akman, M. Vimalan, N.S. Alharbi, G. Abbas and S. Muthu., J. Mol. Liq., 391, 123368 (2023); https://doi.org/10.1016/j.molliq.2023.123368
- S. Selvakumar, A. Prabakaran, P. Manikandan and M. Nikpassand, Biochem. Biophys. Res. Commun., 770, 151989 (2025); https://doi.org/10.1016/j.bbrc.2025.151989
- M. Essid, S. Muhammad, H. Marouani, A. Saeed, Z. Aloui and A.G. Al-Sehemi, J. Mol. Struct., 1211, 128075 (2020); https://doi.org/10.1016/j.molstruc.2020.128075
- K. Arulaabaranam, S. Muthu, G. Mani and A. Irfan, J. Mol. Liq., 341, 116934 (2021); https://doi.org/10.1016/j.molliq.2021.116934
- S. Janani, H. Rajagopal, S. Muthu, S. Aayisha and M. Raja, J. Mol. Struct., 1230, 129657 (2021); https://doi.org/10.1016/j.molstruc.2020.129657
- N. Elangovan, R. Sangeetha, S. Sowrirajan, S. Sarala and S. Muthu, Anal. Chem. Lett., 12, 58 (2022); https://doi.org/10.1080/22297928.2021.1933588
- F. Basha, F.L.A. Khan, S. Muthu and M. Raja, Comput. Theor. Chem., 1198, 113169 (2021); https://doi.org/10.1016/j.comptc.2021.113169
- A. Irfan, M. Hussien, A.R. Chaudhry, M.A. Qayyum, A.G. Al-Sehemi, S. Selvakumari and S. Muthu, J. Mol. Liq., 390, 122956 (2023); https://doi.org/10.1016/j.molliq.2023.122956
- R. Laskowski, P. Blaha and F. Tran, Phys. Rev. B Condens. Matter Mater. Phys., 87, 195130 (2013); https://doi.org/10.1103/PhysRevB.87.195130
- V. Pilepić and S. Uršić, J. Mol. Struct. THEOCHEM, 538, 41 (2001); https://doi.org/10.1016/S0166-1280(00)00642-4
- A.D. Isravel, J.K. Jeyaraj, S. Thangasamy and W.J. John, Comput. Theor. Chem., 1202, 113296 (2021); https://doi.org/10.1016/j.comptc.2021.113296
- A. Bendjeddou, T. Abbaz, A. Gouasmia and D. Villemin, Int. Res. J. Pure Appl. Chem., 12, 1 (2016); https://doi.org/10.9734/IRJPAC/2016/27066
- A. Fatima, G. Khanum, I. Verma, R.J. Butcher, N. Siddiqui, S.K. Srivastava and S. Javed, Polycycl. Aromat. Compd., 43, 1644 (2023); https://doi.org/10.1080/10406638.2022.2032769
- M. Timmer and P. Kratzer, Phys. Rev. B Condens. Matter Mater. Phys., 79, 165407 (2009); https://doi.org/10.1103/PhysRevB.79.165407
- J.J. Bhargiri, S.C. Parakkal, R. Datta, N.S. Alharbi, S. Kadaikunnan and S. Muthu, Comput. Theor. Chem., 1237, 114649 (2024); https://doi.org/10.1016/j.comptc.2024.114649
- C.S. Abraham, S. Muthu, J.C. Prasana, S. Armaković, S.J. Armaković, F. Rizwana B, B. Geoffrey and H.A. David R, Spectrochim. Acta A Mol. Biomol. Spectrosc., 222, 117188 (2019); https://doi.org/10.1016/j.saa.2019.117188
- N. Agarwal, I. Verma, N. Siddiqui and S. Javed, J. Mol. Struct., 1245, 131046 (2021); https://doi.org/10.1016/j.molstruc.2021.131046
- N. Issaoui, H. Ghalla, F. Bardak, M. Karabacak, N. Aouled Dlala, H.T. Flakus and B. Oujia, J. Mol. Struct., 1130, 659 (2017); https://doi.org/10.1016/j.molstruc.2016.11.019
- P.W. Rose, A. Prlić, A. Altunkaya, C. Bi, A.R. Bradley, C.H. Christie, L. Di Costanzo, J.M. Duarte, S. Dutta, Z. Feng, R.K. Green, D.S. Goodsell, B. Hudson, T. Kalro, R. Lowe, E. Peisach, C. Randle, A S. Rose, C. Shao, Y.-P. Tao, Y. Valasatava, M. Voigt, J.D. Westbrook, J. Woo, H. Yang, J.Y. Young, C. Zardecki, H.M. Berman and S.K. Burley, BMC Cancer, 16, 77 (2016); https://doi.org/10.1186/s12885-016-2082-y
References
M. Fatma, S. Parveen and S.S. Mir, Biochim. Biophys. Acta Rev. Cancer, 1880, 189309 (2025); https://doi.org/10.1016/j.bbcan.2025.189309
I. Azad, P. Anand, N. Ahmad, F. Hassan, M. Faiyyaz and Y. Akhter, Chem. Phys., 581, 112243 (2024); https://doi.org/10.1016/j.chemphys.2024.112243
M. Asif, T. Azaz, B. Tiwari and M. Nasibullah, Tetrahedron, 134, 133308 (2023); https://doi.org/10.1016/j.tet.2023.133308
V.J. Reeda, V.B. Jothy, M. Asif, M. Nasibullah, S. Kadaikunnan, G. Abbas and S. Muthu, J. Mol. Struct., 1294, 136310 (2023); https://doi.org/10.1016/j.molstruc.2023.136310
V.S. Jeba Reeda, V. Bena Jothy, M. Asif, M. Nasibullah, N.S. Alharbi, G. Abbas and S. Muthu, J. Mol. Liq., 380, 121709 (2023); https://doi.org/10.1016/j.molliq.2023.121709
M. Asif, M. Saquib, A.R. Khan, F. Aqil, A.S. Almalki, F.A. Alasmary, J. Singh and M. Nasibullah, ChemistrySelect, 8, e202204536 (2023); https://doi.org/10.1002/slct.202204536
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision D.01, Gaussian Inc., Wallingford CT (2009).
R. Dennington, T.A. Keith and J.M. Millam, GaussView 6.0. 16. Semichem Inc.: Shawnee Mission, KS, USA (2016).
R. Krishnan, J.S. Binkley, R. Seeger and J.A. Pople, J. Chem. Phys., 72, 650 (1980); https://doi.org/10.1063/1.438955
M.H. Jamróz, Spectrochim. Acta A Mol. Biomol. Spectrosc., 114, 220 (2013); https://doi.org/10.1016/j.saa.2013.05.096
I.M. Alecu, J. Zheng, Y. Zhao and D.G. Truhlar, J. Chem. Theory Comput., 6, 2872 (2010); https://doi.org/10.1021/ct100326h
G.A. Andrienko, Chemcraft-Graphical Software for Visualization of Quantum Chemistry Computations, Version 1.8, build 648 (2015).
P. Politzer and D.G. Truhlar, Chemical Applications of Atomic and Molecular Electrostatic Potentials: Reactivity, Structure, Scattering, and Energetics of Organic, Inorganic and Biological Systems, Springer Science & Business Media (2013).
R.S. Mulliken, J. Chem. Phys., 2, 782 (1934); https://doi.org/10.1063/1.1749394
A.E. Reed, L.A. Curtiss and F. Weinhold, Chem. Rev., 88, 899 (1988); https://doi.org/10.1021/cr00088a005
T. Lu and F. Chen, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885
A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
D. Schneidman-Duhovny, Y. Inbar, R. Nussinov and H.J. Wolfson, Nucleic Acids Res., 33(Web Server), W363 (2005); https://doi.org/10.1093/nar/gki481.
C.P.S. Hsu, Infrared Spectroscopy, In: Handbook of Instrumental Techniques for Analytical Chemistry. Prentice-Hall, Englewood Cliffs, NJ, pp. 247-284 (1997).
P. Mishra, A. Behera, D. Kandi and K. Parida, Nanoscale Adv., 1, 1864 (2019); https://doi.org/10.1039/C9NA00018F
A. McIlroy and D.J. Nesbitt, J. Chem. Phys., 91, 104 (1989); https://doi.org/10.1063/1.457496
B.Q. Sheeba, M.S. Michael Mary, M. Amalanathan and C.B. Job, Mol. Simul., 47, 1217 (2021); https://doi.org/10.1080/08927022.2021.1962862
L. Kahovec and K.W.F. Kohlrausch, Monatsh. Chem., 74, 333 (1941); https://doi.org/10.1007/BF01512909
P. Manikandan, M. Kumar, P. Swarnamughi, M. Asif, M. Nasibullah, V.S. Jeba Reeda, J.M. Khaled and S. Muthu, J. Mol. Liq., 405, 125064 (2024); https://doi.org/10.1016/j.molliq.2024.125064
G. Kanimozhi, S. Tamilselvan, K.M. Potla, J.N. Cheerlin Mishma, F. Akman, M. Vimalan, N.S. Alharbi, G. Abbas and S. Muthu., J. Mol. Liq., 391, 123368 (2023); https://doi.org/10.1016/j.molliq.2023.123368
S. Selvakumar, A. Prabakaran, P. Manikandan and M. Nikpassand, Biochem. Biophys. Res. Commun., 770, 151989 (2025); https://doi.org/10.1016/j.bbrc.2025.151989
M. Essid, S. Muhammad, H. Marouani, A. Saeed, Z. Aloui and A.G. Al-Sehemi, J. Mol. Struct., 1211, 128075 (2020); https://doi.org/10.1016/j.molstruc.2020.128075
K. Arulaabaranam, S. Muthu, G. Mani and A. Irfan, J. Mol. Liq., 341, 116934 (2021); https://doi.org/10.1016/j.molliq.2021.116934
S. Janani, H. Rajagopal, S. Muthu, S. Aayisha and M. Raja, J. Mol. Struct., 1230, 129657 (2021); https://doi.org/10.1016/j.molstruc.2020.129657
N. Elangovan, R. Sangeetha, S. Sowrirajan, S. Sarala and S. Muthu, Anal. Chem. Lett., 12, 58 (2022); https://doi.org/10.1080/22297928.2021.1933588
F. Basha, F.L.A. Khan, S. Muthu and M. Raja, Comput. Theor. Chem., 1198, 113169 (2021); https://doi.org/10.1016/j.comptc.2021.113169
A. Irfan, M. Hussien, A.R. Chaudhry, M.A. Qayyum, A.G. Al-Sehemi, S. Selvakumari and S. Muthu, J. Mol. Liq., 390, 122956 (2023); https://doi.org/10.1016/j.molliq.2023.122956
R. Laskowski, P. Blaha and F. Tran, Phys. Rev. B Condens. Matter Mater. Phys., 87, 195130 (2013); https://doi.org/10.1103/PhysRevB.87.195130
V. Pilepić and S. Uršić, J. Mol. Struct. THEOCHEM, 538, 41 (2001); https://doi.org/10.1016/S0166-1280(00)00642-4
A.D. Isravel, J.K. Jeyaraj, S. Thangasamy and W.J. John, Comput. Theor. Chem., 1202, 113296 (2021); https://doi.org/10.1016/j.comptc.2021.113296
A. Bendjeddou, T. Abbaz, A. Gouasmia and D. Villemin, Int. Res. J. Pure Appl. Chem., 12, 1 (2016); https://doi.org/10.9734/IRJPAC/2016/27066
A. Fatima, G. Khanum, I. Verma, R.J. Butcher, N. Siddiqui, S.K. Srivastava and S. Javed, Polycycl. Aromat. Compd., 43, 1644 (2023); https://doi.org/10.1080/10406638.2022.2032769
M. Timmer and P. Kratzer, Phys. Rev. B Condens. Matter Mater. Phys., 79, 165407 (2009); https://doi.org/10.1103/PhysRevB.79.165407
J.J. Bhargiri, S.C. Parakkal, R. Datta, N.S. Alharbi, S. Kadaikunnan and S. Muthu, Comput. Theor. Chem., 1237, 114649 (2024); https://doi.org/10.1016/j.comptc.2024.114649
C.S. Abraham, S. Muthu, J.C. Prasana, S. Armaković, S.J. Armaković, F. Rizwana B, B. Geoffrey and H.A. David R, Spectrochim. Acta A Mol. Biomol. Spectrosc., 222, 117188 (2019); https://doi.org/10.1016/j.saa.2019.117188
N. Agarwal, I. Verma, N. Siddiqui and S. Javed, J. Mol. Struct., 1245, 131046 (2021); https://doi.org/10.1016/j.molstruc.2021.131046
N. Issaoui, H. Ghalla, F. Bardak, M. Karabacak, N. Aouled Dlala, H.T. Flakus and B. Oujia, J. Mol. Struct., 1130, 659 (2017); https://doi.org/10.1016/j.molstruc.2016.11.019
P.W. Rose, A. Prlić, A. Altunkaya, C. Bi, A.R. Bradley, C.H. Christie, L. Di Costanzo, J.M. Duarte, S. Dutta, Z. Feng, R.K. Green, D.S. Goodsell, B. Hudson, T. Kalro, R. Lowe, E. Peisach, C. Randle, A S. Rose, C. Shao, Y.-P. Tao, Y. Valasatava, M. Voigt, J.D. Westbrook, J. Woo, H. Yang, J.Y. Young, C. Zardecki, H.M. Berman and S.K. Burley, BMC Cancer, 16, 77 (2016); https://doi.org/10.1186/s12885-016-2082-y