Copyright (c) 2025 Asadjon Kambarov

This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Nanocomposite Materials Based on TiO2 Nanotubes and Polymethylene Naphthylene Sulfonate and their Electrophysical Properties
Corresponding Author(s) : Sherzod Djumagulov
Asian Journal of Chemistry,
Vol. 37 No. 10 (2025): Vol 37 Issue 10, 2025
Abstract
In this study, nanocomposite materials composed of titanium dioxide (TiO2) nanotubes and polymethylene naphthylene sulfonate (PMNS) were successfully synthesized and extensively characterized. TiO2 nanotubes were fabricated via electrochemical anodization in an ethylene glycol-based electrolyte containing ammonium fluoride, under varying voltage and time conditions. Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) analyses confirmed the formation of well-aligned, porous nanotube structures with diverse lengths and morphologies. A detailed investigation was carried out to evaluate the influence of anodization voltage (ranging from 20 to 80 V) and electrolyte composition on the height and surface uniformity of the nanotubes. PMNS was synthesized through the sulfonation and subsequent polycondensation of b-naphthalene sulfonic acid with formaldehyde under precisely controlled thermal and stoichiometric conditions. The structural characteristics of the resulting polymer were examined using IR spectroscopy, complemented by quantum chemical calculations, including HOMO-LUMO energy gap analysis and charge distribution profiling. The TiO2 nanotubes were then combined with PMNS through an electrochemical polymerization technique to create the final nanocomposites. Their electrochemical behaviour was studied using voltammetric techniques, revealing that both the electrolyte composition and nanotube architecture significantly affect the electrical conductivity. These composites exhibited distinctive p-type and n-type semiconducting behavior, which is strongly influenced by the polymer/oxide interface. Overall, the TiO2-PMNS nanocomposites demonstrated promising electrical performance, suggesting their potential application in smart electrochemical devices, supercapacitors, and sensor technologies. This work contributes to the development of advanced nanomaterials based on semiconducting polymers and provides valuable insights into the structure-property relationships critical for next-generation electronic systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.-C. Dai, S. Hou, M.-H. Huang, Y.-B. Li, T. Li and F.-X. Xiao, J. Phys. Energy, 1, 022002 (2019); https://doi.org/10.1088/2515-7655/ab2677
- C. Yu, W. Zhang, S. Guo, B. Hu, Z. Zheng, J. Ye, S. Zhang and J. Zhu, Nano Energy, 66, 104135 (2019); https://doi.org/10.1016/j.nanoen.2019.104135
- K. Wang, G. Liu, N. Hoivik, E. Johannessen and H. Jakobsen, Chem. Soc. Rev., 43, 1476 (2014); https://doi.org/10.1039/C3CS60150A
- C. Li, Y. Ni, J. Gong, Y. Song, T. Gong and X. Zhu, Nanoscale Adv., 4, 322 (2022); https://doi.org/10.1039/D1NA00624J
- K. Lee, A. Mazare and P. Schmuki, Chem. Rev., 114, 9385 (2014); https://doi.org/10.1021/cr500061m
- A.M. El-Khawaga, A. Zidan and A.I.A.A. El-Mageed, J. Mol. Struct., 1281, 135148 (2023); https://doi.org/10.1016/j.molstruc.2023.135148
- J.S. Santos, P.D.S. Araujo, Y.B. Pissolitto, P.P. Lopes, A.P. Simon, M.D.S. Sikora and F. Trivinho-Strixino, Materials, 14, 383 (2021); https://doi.org/10.3390/ma14020383
- Y. Xu and G. Zangari, Coatings, 11, 931 (2021); https://doi.org/10.3390/coatings11080931
- S.A. Batool, M. Salman Maqbool, M.A. Javed, A. Niaz and M.A.U. Rehman, Surfaces, 5, 456 (2022); https://doi.org/10.3390/surfaces5040033
- X. Sun, X. Mo, L. Liu, H. Sun and C. Pan, ACS Appl. Mater. Interfaces, 11, 21661 (2019); https://doi.org/10.1021/acsami.9b02593
- L. Mohan, C. Dennis, N. Padmapriya, C. Anandan and N. Rajendran, Mater. Today Commun., 23, 101103 (2020); https://doi.org/10.1016/j.mtcomm.2020.101103
- K. Zhang, S. Cao, C. Li, J. Qi, L. Jiang, J. Zhang and X. Zhu, Electrochem. Commun., 103, 88 (2019); https://doi.org/10.1016/j.elecom.2019.05.015
- M. Zhang and J. Li, Mater. Today, 12, 12 (2009); https://doi.org/10.1016/S1369-7021(09)70176-2
- J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst and V. Meunier, Carbon, 49, 2581 (2011); https://doi.org/10.1016/j.carbon.2011.03.028
- R. Zhang, Y. Zhang and F. Wei, Chem. Soc. Rev., 46, 3661 (2017); https://doi.org/10.1039/C7CS00104E
- N. Bashirom, K.A. Razak, C.K. Yew and Z. Lockman, Procedia Chem., 19, 611 (2016); https://doi.org/10.1016/j.proche.2016.03.060
- K.S. Raja, T. Gandhi and M. Misra, Electrochem. Commun., 9, 1069 (2007); https://doi.org/10.1016/j.elecom.2006.12.024
- H. Zhang, Z. Chen, Y. Song, M. Yin, D. Li, X. Zhu, X. Chen, P.C. Chang and L. Lu, Electrochem. Commun., 68, 23 (2016); https://doi.org/10.1016/j.elecom.2016.04.004
- Y. Zhang, W. Cheng, F. Du, S. Zhang, W. Ma, D. Li, Y. Song and X. Zhu, Electrochim. Acta, 180, 147 (2015); https://doi.org/10.1016/j.electacta.2015.08.098
- J.R. González, R. Alcántara, F. Nacimiento, G.F. Ortiz, J.L. Tirado, E. Zhecheva and R. Stoyanova, J. Phys. Chem. C, 116, 20182 (2012); https://doi.org/10.1021/jp3050115
- Y. Zhang, W. Cheng, F. Du, S. Zhang, W. Ma, D. Li, Y. Song and X. Zhu, IOP Conf. Series: Mater. Sci. Eng., 116, 012025 (2015); https://doi.org/10.1016/j.electacta.2015.08.098
- Z. Chamanzadeh, M. Noormohammadi and M. Zahedifar, Mater. Res. Express, 5, 055025 (2018); https://doi.org/10.1088/2053-1591/aac1f5
- Y. Cheng, Z. Peng, X. Wu, J. Cao, P. Skeldon and G.E. Thompson, Electrochim. Acta, 165, 301 (2015); https://doi.org/10.1016/j.electacta.2015.03.020
- E. Montakhab, F. Rashchi and S. Sheibani, Appl. Surf. Sci., 534, 147581 (2020); https://doi.org/10.1016/j.apsusc.2020.147581
- S. Farsinezhad, Ph.D. Thesis, TiO2 Nanotube Arrays with Engineered Geometries: Growth, Characterization and Study of Selected Inter-faces, Department of Electrical and Computer Engineering Faculty of Engineering, University of Alberta, Edmonton, Canada (2016).
- P. Junbang, C. Aiempanakit and K. Aiempanakit, J. Metals, Mater. Miner., 32, 24 (2022); https://doi.org/10.55713/jmmm.v32i2.1256
- H.P. Quiroz, F. Quintero, P.J. Arias, A. Dussan and H.R. Zea, J. Phys. Conf. Ser., 614, 012001 (2015); https://doi.org/10.1088/1742-6596/614/1/012001
- A. Robin, M.B. de Almeida Ribeiro, J.L. Rosa, R.Z. Nakazato and M.B. Silva, J. Surf. Eng. Mater. Adv. Technol., 4, 123 (2014); http://dx.doi.org/10.4236/jsemat.2014.43016
- I.C. Turu and N. Cansever, Int. J. Electrochem. Sci., 17, 220624 (2022); https://doi.org/10.20964/2022.06.33
- Aamina, M.A. Hossen and A. Abd Aziz, Construction, 3, 230 (2023); https://doi.org/10.15282/construction.v3i2.9773
- Z. Endut, Ph.D. Thesis, Synthesis and Characterization of Anodic Titania Nanotubes for Supercapacitor Application, University of Malaya (Malaysia) (2013).
- Z. Zhang, Q. Liu, M. He, F. Tang, Z. Ying, H. Xu, Y. Song, J. Zhu, and X. Zhu, J. Electrochem. Soc., 167, 113501 (2020); https://doi.org/10.1149/1945-7111/aba00b
- A. Acquesta, A. Carangelo and T. Monetta, Metals, 8, 489 (2018); https://doi.org/10.3390/met8070489
- Y.H. Li, S. Wang, X. Zhang, J. Wei, C. Xu, Z. Luan and D. Wu, Mater. Res. Bull., 38, 469 (2003); https://doi.org/10.1016/S0025-5408(02)01063-2
- O.R. Aguirre and E.F. Echeverría, Appl. Surf. Sci., 445, 308 (2018); https://doi.org/10.1016/j.apsusc.2018.03.139
- M. Beygisangchin, S.A. Rashid, H.N. Lim, S. Shafie and A.R. Sadrolhosseini, Opt. Mater., 131, 112711 (2022); https://doi.org/10.1016/j.optmat.2022.112711
- H.M. Yusop and W.W. Ismail, Malaysian J. Chem., 23, 40 (2021).
- M.A. White, Physical Properties of Materials. CRC Press, Boca Raton (2018).
- V. Stone, B. Nowack, A. Baun, N. van den Brink, F. von der Kammer, M. Dusinska, R. Handy, S. Hankin, M. Hassellöv, E. Joner and T.F. Fernandes, Sci. Total Environ., 408, 1745 (2010); https://doi.org/10.1016/j.scitotenv.2009.10.035
- C. Nieto-Draghi, G. Fayet, B. Creton, X. Rozanska, P. Rotureau, J.C. de Hemptinne, P. Ungerer, B. Rousseau and C. Adamo, Chem. Rev., 115, 13093 (2015); https://doi.org/10.1021/acs.chemrev.5b00215
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven Jr., J.A. Montgomery, J.E. Peralta, F.M. Ogliaro, J. Bearpark, J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A.P. Salvador, S. Dapprich, J.J. Dannenberg, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz and J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., CT Wallingford (2009).
References
X.-C. Dai, S. Hou, M.-H. Huang, Y.-B. Li, T. Li and F.-X. Xiao, J. Phys. Energy, 1, 022002 (2019); https://doi.org/10.1088/2515-7655/ab2677
C. Yu, W. Zhang, S. Guo, B. Hu, Z. Zheng, J. Ye, S. Zhang and J. Zhu, Nano Energy, 66, 104135 (2019); https://doi.org/10.1016/j.nanoen.2019.104135
K. Wang, G. Liu, N. Hoivik, E. Johannessen and H. Jakobsen, Chem. Soc. Rev., 43, 1476 (2014); https://doi.org/10.1039/C3CS60150A
C. Li, Y. Ni, J. Gong, Y. Song, T. Gong and X. Zhu, Nanoscale Adv., 4, 322 (2022); https://doi.org/10.1039/D1NA00624J
K. Lee, A. Mazare and P. Schmuki, Chem. Rev., 114, 9385 (2014); https://doi.org/10.1021/cr500061m
A.M. El-Khawaga, A. Zidan and A.I.A.A. El-Mageed, J. Mol. Struct., 1281, 135148 (2023); https://doi.org/10.1016/j.molstruc.2023.135148
J.S. Santos, P.D.S. Araujo, Y.B. Pissolitto, P.P. Lopes, A.P. Simon, M.D.S. Sikora and F. Trivinho-Strixino, Materials, 14, 383 (2021); https://doi.org/10.3390/ma14020383
Y. Xu and G. Zangari, Coatings, 11, 931 (2021); https://doi.org/10.3390/coatings11080931
S.A. Batool, M. Salman Maqbool, M.A. Javed, A. Niaz and M.A.U. Rehman, Surfaces, 5, 456 (2022); https://doi.org/10.3390/surfaces5040033
X. Sun, X. Mo, L. Liu, H. Sun and C. Pan, ACS Appl. Mater. Interfaces, 11, 21661 (2019); https://doi.org/10.1021/acsami.9b02593
L. Mohan, C. Dennis, N. Padmapriya, C. Anandan and N. Rajendran, Mater. Today Commun., 23, 101103 (2020); https://doi.org/10.1016/j.mtcomm.2020.101103
K. Zhang, S. Cao, C. Li, J. Qi, L. Jiang, J. Zhang and X. Zhu, Electrochem. Commun., 103, 88 (2019); https://doi.org/10.1016/j.elecom.2019.05.015
M. Zhang and J. Li, Mater. Today, 12, 12 (2009); https://doi.org/10.1016/S1369-7021(09)70176-2
J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst and V. Meunier, Carbon, 49, 2581 (2011); https://doi.org/10.1016/j.carbon.2011.03.028
R. Zhang, Y. Zhang and F. Wei, Chem. Soc. Rev., 46, 3661 (2017); https://doi.org/10.1039/C7CS00104E
N. Bashirom, K.A. Razak, C.K. Yew and Z. Lockman, Procedia Chem., 19, 611 (2016); https://doi.org/10.1016/j.proche.2016.03.060
K.S. Raja, T. Gandhi and M. Misra, Electrochem. Commun., 9, 1069 (2007); https://doi.org/10.1016/j.elecom.2006.12.024
H. Zhang, Z. Chen, Y. Song, M. Yin, D. Li, X. Zhu, X. Chen, P.C. Chang and L. Lu, Electrochem. Commun., 68, 23 (2016); https://doi.org/10.1016/j.elecom.2016.04.004
Y. Zhang, W. Cheng, F. Du, S. Zhang, W. Ma, D. Li, Y. Song and X. Zhu, Electrochim. Acta, 180, 147 (2015); https://doi.org/10.1016/j.electacta.2015.08.098
J.R. González, R. Alcántara, F. Nacimiento, G.F. Ortiz, J.L. Tirado, E. Zhecheva and R. Stoyanova, J. Phys. Chem. C, 116, 20182 (2012); https://doi.org/10.1021/jp3050115
Y. Zhang, W. Cheng, F. Du, S. Zhang, W. Ma, D. Li, Y. Song and X. Zhu, IOP Conf. Series: Mater. Sci. Eng., 116, 012025 (2015); https://doi.org/10.1016/j.electacta.2015.08.098
Z. Chamanzadeh, M. Noormohammadi and M. Zahedifar, Mater. Res. Express, 5, 055025 (2018); https://doi.org/10.1088/2053-1591/aac1f5
Y. Cheng, Z. Peng, X. Wu, J. Cao, P. Skeldon and G.E. Thompson, Electrochim. Acta, 165, 301 (2015); https://doi.org/10.1016/j.electacta.2015.03.020
E. Montakhab, F. Rashchi and S. Sheibani, Appl. Surf. Sci., 534, 147581 (2020); https://doi.org/10.1016/j.apsusc.2020.147581
S. Farsinezhad, Ph.D. Thesis, TiO2 Nanotube Arrays with Engineered Geometries: Growth, Characterization and Study of Selected Inter-faces, Department of Electrical and Computer Engineering Faculty of Engineering, University of Alberta, Edmonton, Canada (2016).
P. Junbang, C. Aiempanakit and K. Aiempanakit, J. Metals, Mater. Miner., 32, 24 (2022); https://doi.org/10.55713/jmmm.v32i2.1256
H.P. Quiroz, F. Quintero, P.J. Arias, A. Dussan and H.R. Zea, J. Phys. Conf. Ser., 614, 012001 (2015); https://doi.org/10.1088/1742-6596/614/1/012001
A. Robin, M.B. de Almeida Ribeiro, J.L. Rosa, R.Z. Nakazato and M.B. Silva, J. Surf. Eng. Mater. Adv. Technol., 4, 123 (2014); http://dx.doi.org/10.4236/jsemat.2014.43016
I.C. Turu and N. Cansever, Int. J. Electrochem. Sci., 17, 220624 (2022); https://doi.org/10.20964/2022.06.33
Aamina, M.A. Hossen and A. Abd Aziz, Construction, 3, 230 (2023); https://doi.org/10.15282/construction.v3i2.9773
Z. Endut, Ph.D. Thesis, Synthesis and Characterization of Anodic Titania Nanotubes for Supercapacitor Application, University of Malaya (Malaysia) (2013).
Z. Zhang, Q. Liu, M. He, F. Tang, Z. Ying, H. Xu, Y. Song, J. Zhu, and X. Zhu, J. Electrochem. Soc., 167, 113501 (2020); https://doi.org/10.1149/1945-7111/aba00b
A. Acquesta, A. Carangelo and T. Monetta, Metals, 8, 489 (2018); https://doi.org/10.3390/met8070489
Y.H. Li, S. Wang, X. Zhang, J. Wei, C. Xu, Z. Luan and D. Wu, Mater. Res. Bull., 38, 469 (2003); https://doi.org/10.1016/S0025-5408(02)01063-2
O.R. Aguirre and E.F. Echeverría, Appl. Surf. Sci., 445, 308 (2018); https://doi.org/10.1016/j.apsusc.2018.03.139
M. Beygisangchin, S.A. Rashid, H.N. Lim, S. Shafie and A.R. Sadrolhosseini, Opt. Mater., 131, 112711 (2022); https://doi.org/10.1016/j.optmat.2022.112711
H.M. Yusop and W.W. Ismail, Malaysian J. Chem., 23, 40 (2021).
M.A. White, Physical Properties of Materials. CRC Press, Boca Raton (2018).
V. Stone, B. Nowack, A. Baun, N. van den Brink, F. von der Kammer, M. Dusinska, R. Handy, S. Hankin, M. Hassellöv, E. Joner and T.F. Fernandes, Sci. Total Environ., 408, 1745 (2010); https://doi.org/10.1016/j.scitotenv.2009.10.035
C. Nieto-Draghi, G. Fayet, B. Creton, X. Rozanska, P. Rotureau, J.C. de Hemptinne, P. Ungerer, B. Rousseau and C. Adamo, Chem. Rev., 115, 13093 (2015); https://doi.org/10.1021/acs.chemrev.5b00215
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven Jr., J.A. Montgomery, J.E. Peralta, F.M. Ogliaro, J. Bearpark, J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A.P. Salvador, S. Dapprich, J.J. Dannenberg, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz and J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., CT Wallingford (2009).