Copyright (c) 2025 Adel Shehata, Fahd Alkharraa, Mohammed Alrasheed, Mohammed Alrasheed, Abdulrahman Alzahrani, Sowailem AlSowailem

This work is licensed under a Creative Commons Attribution 4.0 International License.
Development and Validation of a GC-ECD Method for the Determination of Trifluralin in Acetonitrile with Uncertainty Estimation
Corresponding Author(s) : Adel B. Shehata
Asian Journal of Chemistry,
Vol. 37 No. 10 (2025): Vol 37 Issue 10, 2025
Abstract
The use of trifluralin herbicide has raised concerns due to its persistence in the environment and potential toxicological impacts on human health and ecosystems. The aim of this study was to develop and validate a simple and reliable method for determining trifluralin residues in acetonitrile using gas chromatography with an electron capture detector (GC-ECD). The method was developed using internal standard calibration and validated in accordance with international guidelines. Validation parameters included LOD, LOQ, selectivity, linearity, precision, accuracy (recovery and bias) and measurement uncertainty. The method demonstrated high selectivity with no interfering peaks at the trifluralin retention time. A strong linear relationship was observed in the concentration range of 4-11 µg/g with a correlation coefficient (R2) of 0.9996. The precision, expressed as relative standard deviation (%RSD) was found 3.84% across all levels. Recovery values ranged from 98.45% to 100.06%, with % bias between 0.06% and 1.55% confirming the method accuracy. The expanded uncertainty was estimated to be 9.86% primarily influenced by sample and internal standard (IS) peak areas. The validated GC-ECD method provides a reliable, precise and accurate approach for quantifying trifluralin residues in environmental and food samples. It is suitable for routine monitoring, regulatory applications and risk assessments in agricultural and environmental contexts.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Eskenazi, L.G. Rosas, A.R. Marks, A. Bradman, K. Harley, N. Holland, C. Johnson, L. Fenster and D.B. Barr, Basic Clin. Pharmacol. Toxicol., 102, 228 (2008); https://doi.org/10.1111/j.1742-7843.2007.00171.x
- N.M. Antoine, K. Emmanuel, N. Claudine and I. Koca, Food Nutr. Sci., 13, 963 (2022); https://doi.org/10.4236/fns.2022.1312067
- A.R. Fernández-Alba and J.F. García-Reyes, Trac-Trend. Anal. Chem., 27, 973 (2008); https://doi.org/10.1016/j.trac.2008.09.009
- D.J. Ecobichon, Toxicology, 160, 27 (2001); https://doi.org/10.1016/S0300-483X(00)00452-2
- M. Głodowska and M. Wozniak, Agric. Sci., 10, 350 (2019); https://doi.org/10.4236/as.2019.103028
- G. Matthews, Crop Prot., 20, 539 (2001); https://doi.org/10.1016/S0261-2194(01)00019-9
- European Food Safety Authority, EFSA J., 11, 3193 (2013); https://doi.org/10.2903/j.efsa.2013.3193
- J. Shah, M.R. Jan, F. Shehzad and B. Ara, Environ. Chem. Lett., 8, 253 (2010); https://doi.org/10.1007/s10311-009-0214-1
- C. Raeppel, M. Nief, M. Fabritius, L. Racault, B.M. Appenzeller and M. Millet, J. Chromatogr. A, 1218, 8123 (2011); https://doi.org/10.1016/j.chroma.2011.08.098
- T. Zhang, Z. Qu, B. Li and Z. Yang, Food Anal. Methods, 12, 1179 (2019); https://doi.org/10.1007/s12161-019-01449-z
- M. Aramendia, V. Borau, F. Lafont, A. Marinas, J. Marinas, J. Moreno and F. Urbano, Food Chem., 105, 855 (2007); https://doi.org/10.1016/j.foodchem.2007.01.063
- S.J. Lehotay, A. Kok, M. Hiemstra and P.V. Bodegraven, J. AOAC Int., 88, 595 (2005); https://doi.org/10.1093/jaoac/88.2.595
- H. Karasali, G. Balayannis, A. Hourdakis and A. Ambrus, J. Chromatogr. A, 1129, 300 (2006); https://doi.org/10.1016/j.chroma.2006.08.040
- M. Anastassiades, S.J. Lehotay, D. Štajnbaher and F.J. Schenck, J. AOAC Int., 86, 412 (2003); https://doi.org/10.1093/jaoac/86.2.412
- JCGM 200. International vocabulary of metrology-Basic and general concepts and associated terms (VIM), edn 3 (2012); https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf
- Ö.G. Manav, S. Dinç-Zor and G. Alpdoğan, Microchem. J., 144, 124 (2019); https://doi.org/10.1016/j.microc.2018.08.056
- EURACHEM Guide, The Fitness for Purpose of Analytical Methods-A Laboratory Guide to Method Validation and Related Topics, edn 2 (2014);https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf
- A.B. Shehata, A.R. AlAskar, M.A. Alrasheed, A.S. AlOsaimi, F.A. AlKharraa and A.M. Alzahrani, J. Chem. Metrol., 14, 88 (2020); https://doi.org/10.25135/jcm.48.20.08.1780
- A.B. Shehata, A.R. AlAskar, M.A. AlRasheed, A.M. AlZahrany, F.A. AlKharraa and S.A. AlSowailem, Green Sustain. Chem., 13, 216 (2023); https://doi.org/10.4236/gsc.2023.133012
- EU SANCO/12571, Guidance Document on Analytical Quality Control And Validation Procedures for Pesticide Residues Analysis in Food and Feed (2013); https://www.eurl-pesticides.eu/library/docs/allcrl/AqcGuidance_ Sanco_2013_12571.pdf
- ISO 33405, Reference Materials-Approaches for Characterization and Assessment of Homogeneity and Stability, edn 1 (2024); https://www.iso.org/standard/84226.html
- A. Shehata, K. Almakhlifi, M. Alfohaid and A. Alnahdi, J. Chem. Metrol., 19, 23 (2025); https://doi.org/10.25135/jcm.113.2504.3481
- K. Danzer and L.A. Currie, Pure Appl. Chem., 70, 993 (1998); https://doi.org/10.1351/pac199870040993
- ISO GUM, Guide to the Expression of Uncertainty in Measurement. ISO, Geneva (1993); http://www.bipm.org
- Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical Measurement (2013); https://www.eurachem.org/
References
B. Eskenazi, L.G. Rosas, A.R. Marks, A. Bradman, K. Harley, N. Holland, C. Johnson, L. Fenster and D.B. Barr, Basic Clin. Pharmacol. Toxicol., 102, 228 (2008); https://doi.org/10.1111/j.1742-7843.2007.00171.x
N.M. Antoine, K. Emmanuel, N. Claudine and I. Koca, Food Nutr. Sci., 13, 963 (2022); https://doi.org/10.4236/fns.2022.1312067
A.R. Fernández-Alba and J.F. García-Reyes, Trac-Trend. Anal. Chem., 27, 973 (2008); https://doi.org/10.1016/j.trac.2008.09.009
D.J. Ecobichon, Toxicology, 160, 27 (2001); https://doi.org/10.1016/S0300-483X(00)00452-2
M. Głodowska and M. Wozniak, Agric. Sci., 10, 350 (2019); https://doi.org/10.4236/as.2019.103028
G. Matthews, Crop Prot., 20, 539 (2001); https://doi.org/10.1016/S0261-2194(01)00019-9
European Food Safety Authority, EFSA J., 11, 3193 (2013); https://doi.org/10.2903/j.efsa.2013.3193
J. Shah, M.R. Jan, F. Shehzad and B. Ara, Environ. Chem. Lett., 8, 253 (2010); https://doi.org/10.1007/s10311-009-0214-1
C. Raeppel, M. Nief, M. Fabritius, L. Racault, B.M. Appenzeller and M. Millet, J. Chromatogr. A, 1218, 8123 (2011); https://doi.org/10.1016/j.chroma.2011.08.098
T. Zhang, Z. Qu, B. Li and Z. Yang, Food Anal. Methods, 12, 1179 (2019); https://doi.org/10.1007/s12161-019-01449-z
M. Aramendia, V. Borau, F. Lafont, A. Marinas, J. Marinas, J. Moreno and F. Urbano, Food Chem., 105, 855 (2007); https://doi.org/10.1016/j.foodchem.2007.01.063
S.J. Lehotay, A. Kok, M. Hiemstra and P.V. Bodegraven, J. AOAC Int., 88, 595 (2005); https://doi.org/10.1093/jaoac/88.2.595
H. Karasali, G. Balayannis, A. Hourdakis and A. Ambrus, J. Chromatogr. A, 1129, 300 (2006); https://doi.org/10.1016/j.chroma.2006.08.040
M. Anastassiades, S.J. Lehotay, D. Štajnbaher and F.J. Schenck, J. AOAC Int., 86, 412 (2003); https://doi.org/10.1093/jaoac/86.2.412
JCGM 200. International vocabulary of metrology-Basic and general concepts and associated terms (VIM), edn 3 (2012); https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf
Ö.G. Manav, S. Dinç-Zor and G. Alpdoğan, Microchem. J., 144, 124 (2019); https://doi.org/10.1016/j.microc.2018.08.056
EURACHEM Guide, The Fitness for Purpose of Analytical Methods-A Laboratory Guide to Method Validation and Related Topics, edn 2 (2014);https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf
A.B. Shehata, A.R. AlAskar, M.A. Alrasheed, A.S. AlOsaimi, F.A. AlKharraa and A.M. Alzahrani, J. Chem. Metrol., 14, 88 (2020); https://doi.org/10.25135/jcm.48.20.08.1780
A.B. Shehata, A.R. AlAskar, M.A. AlRasheed, A.M. AlZahrany, F.A. AlKharraa and S.A. AlSowailem, Green Sustain. Chem., 13, 216 (2023); https://doi.org/10.4236/gsc.2023.133012
EU SANCO/12571, Guidance Document on Analytical Quality Control And Validation Procedures for Pesticide Residues Analysis in Food and Feed (2013); https://www.eurl-pesticides.eu/library/docs/allcrl/AqcGuidance_ Sanco_2013_12571.pdf
ISO 33405, Reference Materials-Approaches for Characterization and Assessment of Homogeneity and Stability, edn 1 (2024); https://www.iso.org/standard/84226.html
A. Shehata, K. Almakhlifi, M. Alfohaid and A. Alnahdi, J. Chem. Metrol., 19, 23 (2025); https://doi.org/10.25135/jcm.113.2504.3481
K. Danzer and L.A. Currie, Pure Appl. Chem., 70, 993 (1998); https://doi.org/10.1351/pac199870040993
ISO GUM, Guide to the Expression of Uncertainty in Measurement. ISO, Geneva (1993); http://www.bipm.org
Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical Measurement (2013); https://www.eurachem.org/