Copyright (c) 2025 Roxzanne Ray, Kaleiaresi Rajan, Vasudeva Rao Avupati

This work is licensed under a Creative Commons Attribution 4.0 International License.
Machine Learning Models for the Identification of SARS-CoV-2 Main Protease (Mpro) Inhibitors: Development and Validation of Three-dimensional (3D) Quantitative Structure-Activity Relationship (QSAR) and Pharmacophore Models
Corresponding Author(s) : Vasudeva Rao Avupati
Asian Journal of Chemistry,
Vol. 37 No. 10 (2025): Vol 37 Issue 10, 2025
Abstract
The global pandemic of coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent World Health Organization (WHO) statistics show 778 million reported COVID-19 cases. To date, no specific drug has been found to treat COVID-19 effectively, largely due to the emergence of variants of concerns (VOCs). The main protease of SARS-CoV-2 is a well-established drug target to control viral replication in human host. We used a group of chemotypes with experimental Mpro inhibitory properties for the development of atom-based 3D-QSAR and ligand-based 3D-pharmacophore models using advanced machine learning strategies. The established 3D QSAR model is statistically significant (R2Training set = 0.9897, Q2 (R2Test set) = 0.5017), which demonstrated the model’s strong predictive power. The 3D-QSAR model displays contour maps towards the positive and negative contribution of various functional groups based on the active and inactive ligands. On the other hand, we developed a ligand-based, three-point 3D pharmacophore model using 84 ligands (39 actives and 43 inactive) that has demonstrated statistically significant data related to the discrimination of active and inactive groups of compounds with a sensitivity of 97.4%, balanced accuracy of 63.8% and a perfect ROC-AUC of 1.0, internal validation revealed that AAD2 was the best-performing hypothesis. The three-point 3D-pharmacophore model shows fitness and alignment relative to the arrangement of atoms and groups within the active and inactive subsets. In summary, the 3D QSAR and pharmacophore models developed in this study could be used as a virtual screening tool to identify virtual hits as potential SARS-CoV-2 Mpro inhibitors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.M. Bar-On, A. Flamholz, R. Phillips and R. Milo, eLife, 9, e57309 (2020); https://doi.org/10.7554/eLife.57309
- B. Hu, H. Guo, P. Zhou and Z.L. Shi, Nat. Rev. Microbiol., 19, 141 (2021); https://doi.org/10.1038/s41579-020-00459-7.
- D.D. Singh, A. Parveen and D.K. Yadav, Front. Cell Infect. Microbiol., 11, 777212 (2021); https://doi.org/10.3389/fcimb.2021.777212
- A. Schuhmacher, O. Gassmann and M. Hinder, J. Transl. Med., 14, 105 (2016); https://doi.org/10.1186/s12967-016-0838-4
- S.A. Khedkar, A.K. Malde, E.C. Coutinho and S. Srivastava, Med. Chem., 3, 187 (2007); https://doi.org/10.2174/157340607780059521
- J. Zhang, T. Xiao, Y. Cai and B. Chen, Curr. Opin. Virol., 50, 173 (2021); https://doi.org/10.1016/j.coviro.2021.08.010
- S. Kwon, H. Bae, J. Jo and S. Yoon, BMC Bioinform., 20, 521 (2019); https://doi.org/10.1186/s12859-019-3135-4
- S. Ren, X. Liu, Y. Huang, C. Zhu, W. Zhu and H. Dong, J. Mol. Struct., 1321, 140286 (2025); https://doi.org/10.1016/j.molstruc.2024.140286
- M.S. Bahia, O. Kaspi, M. Touitou, I. Binayev, S. Dhail, J. Spiegel, N. Khazanov, A. Yosipof and H. Senderowitz, Mol. Inform., 42, 2200186 (2023); https://doi.org/10.1002/minf.202200186
- A. Tropsha, O. Isayev, A. Varnek, G. Schneider and A. Cherkasov, Nat. Rev. Drug Discov., 23, 141 (2024); https://doi.org/10.1038/s41573-023-00832-0
- D. Giordano, C. Biancaniello, M. A. Argenio and A. Facchiano, Pharmaceuticals, 15, 578 (2022); https://doi.org/10.3390/ph15050578
- D.B. Kitchen, H. Decornez, J.R. Furr and J. Bajorath, Nat. Rev. Drug Discov., 3, 935 (2004); https://doi.org/10.1038/nrd1549
- V. M. Balaramnavar, K. Ahmad, M. Saeed, I. Ahmad, M. Kamal and T. Jawed, RSC Adv., 10, 40264 (2020); https://doi.org/10.1039/D0RA06038K
- W.‑J. Shin and B.L. Seong, Expert Opin. Drug Discov., 8, 411 (2013); https://doi.org/10.1517/17460441.2013.767795
- A. Kutlushina, A. Khakimova, T. Madzhidov and P. Polishchuk, Molecules, 23, 3094 (2018); https://doi.org/10.3390/molecules23123094
- K.A. Qusay, A. Vasudeva Rao, H. Husniza and Z.T. Najeeb, Res. J. Biotechnol., 16, 50 (2021).
- F. Wang, R. Zeng, J. Qiao, A. Xia, Y. Li, F. Li, Y. Wu, Y. Liu, X. Zhao, J. Lei and S. Yang, Bioorg. Med. Chem. Lett., 92, 129407 (2023); https://doi.org/10.1016/j.bmcl.2023.129407
- C. Fischer, T.J. Van Oers, M.J. van Belkum, T. Lamer, A. Romney, P. Chen, M.J. Lemieux and J.C. Vederas, RSC Adv., 14, 35438 (2024); https://doi.org/10.1039/D4RA06573E
- C.A. Lipinski, F. Lombardo, B.W. Dominy and P.J. Feeney, Adv. Drug Deliv. Rev., 23, 3 (1997); https://doi.org/10.1016/S0169-409X(96)00423-1
- N. Kitamura, M.D. Sacco, C. Ma, Y. Hu, J.A. Townsend, X. Meng, F. Zhang, X. Zhang, M. Ba, T. Szeto, A. Kukuljac, M.T. Marty, D. Schultz, S. Cherry, Y. Xiang, Y. Chen and J. Wang, J. Med. Chem., 65, 2848 (2022); https://doi.org/10.1021/acs.jmedchem.1c00509
- C. Ma, Z. Xia, M.D. Sacco, Y. Hu, J.A. Townsend, X. Meng, J. Choza, H. Tan, J. Jang, M.V. Gongora, X. Zhang, F. Zhang, Y. Xiang, M.T. Marty, Y. Chen and J. Wang, J. Am. Chem. Soc., 143, 20697 (2021); https://doi.org/10.1021/jacs.1c08060
- Y.R. Alugubelli, Z.Z. Geng, K.S. Yang, N. Shaabani, K. Khatua, X.R. Ma, E.C. Vatansever, C.‑C. Cho, Y. Ma, J. Xiao, L.R. Blankenship, G. Yu, B. Sankaran, P. Li, R. Allen, H. Ji, S. Xu and W.R. Liu, Eur. J. Med. Chem., 240, 114596 (2022); https://doi.org/10.1016/j.ejmech.2022.114596
- Y. Ma, K.S. Yang, Z.Z. Geng, Y.R. Alugubelli, N. Shaabani, E.C. Vatansever, X.R. Ma, C.‑C. Cho, K. Khatua, L.R. Blankenship, J. Xiao, G. Yu, B. Sankaran, P. Li, R. Allen, H. Ji, S. Xu and W. R. Liu, Eur. J. Med. Chem., 240, 114570 (2022); https://doi.org/10.1016/j.ejmech.2022.114570
- S. Gao, L. Song, K. Sylvester, B. Mercorelli, A. Loregian, K. Toth, R.H. Weiße, A. Useini, N. Sträter, M. Yang, B. Ye, A.E. Tollefson, C.E. Müller, X. Liu and P. Zhan, J. Med. Chem., 66, 16426 (2023); https://doi.org/10.1021/acs.jmedchem.3c01876
- C. Ngo, W. Fried, S. Aliyari, J. Feng, C. Qin, S. Zhang, H. Yang, J. Shanaa, P. Feng, G. Cheng, X.S. Chen and C. Zhang, J. Med. Chem., 66, 12237 (2023); https://doi.org/10.1021/acs.jmedchem.3c00810
- K. Zhang, T. Wang, M. Li, M. Liu, H. Tang, L. Wang, K. Ye, J. Yang, S. Jiang, Y. Xiao, Y. Xie, M. Lu and X. Zhang, Eur. J. Med. Chem., 257, 115487 (2023); https://doi.org/10.1016/j.ejmech.2023.115487
- L. Brier, H. Hassan, X. Hanoulle, V. Landry, D. Moschidi, J. Dumont, L. Desmarets, Y. Rouillé, A. Herledan, S. Warenghem, C. Piveteau, P. Carré, S. Ikherbane, F.‑X. Cantrelle, E. Dupré, J. Dubuisson, S. Belouzard, F. Leroux, B. Deprez and J. Charton, Eur. J. Med. Chem., 250, 115186 (2023); https://doi.org/10.1016/j.ejmech.2023.115186
- C.S. Dampalla, A.D. Rathnayake, A.C. Galasiti Kankanamalage, Y. Kim, K.D. Perera, H.N. Nguyen, M.J. Miller, T.K. Madden, H.R. Picard, H.A. Thurman, M.M. Kashipathy, L. Liu, K.P. Battaile, S. Lovell, K.-O. Chang and W.C. Groutas, J. Med. Chem., 65, 7818 (2022); https://doi.org/10.1021/acs.jmedchem.2c00224
- J.‑W. Zhang, Y. Xiong, F. Wang, F.‑M. Zhang, X. Yang, G.‑Q. Lin, P. Tian, G. Ge and D. Gao, Eur. J. Med. Chem., 228, 114030 (2022); https://doi.org/10.1016/j.ejmech.2021.114030
- C.S.B. Chia and M. Inoue, ACS Med. Chem. Lett., 13, 1394 (2022); https://doi.org/10.1021/acsmedchemlett.2c00349
- X. Dou, Q. Sun, G. Xu, Y. Liu, C. Zhang, B. Wang, Y. Lu, Z. Guo, L. Su, T. Huo, X. Zhao and C. Wang, Eur. J. Med. Chem., 238, 114508 (2022); https://doi.org/10.1016/j.ejmech.2022.114508
- H. Wang, R. Pei, X. Li, W. Deng, S. Xing, Y. Zhang, C. Zhang, S. He, H. Sun, S. Xiao, J. Xiong, Y. Zhang, X. Chen, Y. Wang, Y. Guo, B. Zhang and L. Shang, Eur. J. Med. Chem., 238, 114458 (2022); https://doi.org/10.1016/j.ejmech.2022.114458
- D. Deodato, N. Asad and T.M. Dore, Bioorg. Med. Chem. Lett., 72, 128867 (2022); https://doi.org/10.1016/j.bmcl.2022.128867
- Y.B. Ryu, H.J. Jeong, J.H. Kim, Y.M. Kim, J.-Y. Park, D. Kim, T.T. H. Nguyen, S.-J. Park, J.S. Chang, K.H. Park, M.-C. Rho and W.S. Lee, Bioorg. Med. Chem., 18, 7940 (2010); https://doi.org/10.1016/j.bmc.2010.09.035
- G. Arthur, W. Oliver, B. Klaus, S. Thomas, I. Gökhan, B. Sharon, T. Isabelle, D. Pierre and L. Thierry, Front. Mol. Biosci., 7, 599059 (2020); https://doi.org/10.3389/fmolb.2020.599059
- J.C. Shelley, A. Cholleti, L.L. Frye, J.R. Greenwood, M.R. Timlin and M. Uchimaya, J. Comput. Aided Mol. Des., 21, 681 (2007); https://doi.org/10.1007/s10822-007-9133-z
- S.Y. Yang, Drug Discov. Today, 15, 444 (2010); https://doi.org/10.1016/j.drudis.2010.03.013
- A. Vuorinen and D. Schuster, Methods, 71, 113 (2015); https://doi.org/10.1016/j.ymeth.2014.10.013
- N. Moussa, A. Hassan and S. Gharaghani, Heliyon, 7, e06605 (2021); https://doi.org/10.1016/j.heliyon.2021.e06605
- D. Giordano, C. Biancaniello, M.A. Argenio and A. Facchiano, Pharmaceuticals, 15, 646 (2022); https://doi.org/10.3390/ph15050646
- S. Parveen, L. Shahbaz, N. Shafiq, M. Rashid, M. Mohany and M. Zhu, RSC Adv., 15, 2045 (2025); https://doi.org/10.1039/D4RA06536K
- K. Chu, Emerg. Med., 11, 175 (1999); https://doi.org/10.1046/j.1442-2026.1999.00041.x
- G. Varoquaux and O. Colliot, in eds.: O. Colliot, Evaluating Machine Learning Models and their Diagnostic Value, In: Machine Learning for Brain Disorders, New York, NY, USA: Humana, Chap. 20 (2023).
- Machine Learning Model Evaluation Metrics: Accuracy, Precision, Recall, F1; https://www.sanfoundry.com/machine-learning-model-evaluation-metrics-accuracy-precision-recall-f1/?utm_source=chatgpt.com (Accessed on 12 March 2025).
- D. Chicco and G. Jurman, BMC Genomics, 21, 6 (2020); https://doi.org/10.1186/s12864-019-6413-7
- D. Arnal, C. Moya, L. Filippelli, J. Segura-Garcia and S. Maicas, BioData Min., 16, 1 (2023); https://doi.org/10.1186/s13040-022-00318-6
References
Y.M. Bar-On, A. Flamholz, R. Phillips and R. Milo, eLife, 9, e57309 (2020); https://doi.org/10.7554/eLife.57309
B. Hu, H. Guo, P. Zhou and Z.L. Shi, Nat. Rev. Microbiol., 19, 141 (2021); https://doi.org/10.1038/s41579-020-00459-7.
D.D. Singh, A. Parveen and D.K. Yadav, Front. Cell Infect. Microbiol., 11, 777212 (2021); https://doi.org/10.3389/fcimb.2021.777212
A. Schuhmacher, O. Gassmann and M. Hinder, J. Transl. Med., 14, 105 (2016); https://doi.org/10.1186/s12967-016-0838-4
S.A. Khedkar, A.K. Malde, E.C. Coutinho and S. Srivastava, Med. Chem., 3, 187 (2007); https://doi.org/10.2174/157340607780059521
J. Zhang, T. Xiao, Y. Cai and B. Chen, Curr. Opin. Virol., 50, 173 (2021); https://doi.org/10.1016/j.coviro.2021.08.010
S. Kwon, H. Bae, J. Jo and S. Yoon, BMC Bioinform., 20, 521 (2019); https://doi.org/10.1186/s12859-019-3135-4
S. Ren, X. Liu, Y. Huang, C. Zhu, W. Zhu and H. Dong, J. Mol. Struct., 1321, 140286 (2025); https://doi.org/10.1016/j.molstruc.2024.140286
M.S. Bahia, O. Kaspi, M. Touitou, I. Binayev, S. Dhail, J. Spiegel, N. Khazanov, A. Yosipof and H. Senderowitz, Mol. Inform., 42, 2200186 (2023); https://doi.org/10.1002/minf.202200186
A. Tropsha, O. Isayev, A. Varnek, G. Schneider and A. Cherkasov, Nat. Rev. Drug Discov., 23, 141 (2024); https://doi.org/10.1038/s41573-023-00832-0
D. Giordano, C. Biancaniello, M. A. Argenio and A. Facchiano, Pharmaceuticals, 15, 578 (2022); https://doi.org/10.3390/ph15050578
D.B. Kitchen, H. Decornez, J.R. Furr and J. Bajorath, Nat. Rev. Drug Discov., 3, 935 (2004); https://doi.org/10.1038/nrd1549
V. M. Balaramnavar, K. Ahmad, M. Saeed, I. Ahmad, M. Kamal and T. Jawed, RSC Adv., 10, 40264 (2020); https://doi.org/10.1039/D0RA06038K
W.‑J. Shin and B.L. Seong, Expert Opin. Drug Discov., 8, 411 (2013); https://doi.org/10.1517/17460441.2013.767795
A. Kutlushina, A. Khakimova, T. Madzhidov and P. Polishchuk, Molecules, 23, 3094 (2018); https://doi.org/10.3390/molecules23123094
K.A. Qusay, A. Vasudeva Rao, H. Husniza and Z.T. Najeeb, Res. J. Biotechnol., 16, 50 (2021).
F. Wang, R. Zeng, J. Qiao, A. Xia, Y. Li, F. Li, Y. Wu, Y. Liu, X. Zhao, J. Lei and S. Yang, Bioorg. Med. Chem. Lett., 92, 129407 (2023); https://doi.org/10.1016/j.bmcl.2023.129407
C. Fischer, T.J. Van Oers, M.J. van Belkum, T. Lamer, A. Romney, P. Chen, M.J. Lemieux and J.C. Vederas, RSC Adv., 14, 35438 (2024); https://doi.org/10.1039/D4RA06573E
C.A. Lipinski, F. Lombardo, B.W. Dominy and P.J. Feeney, Adv. Drug Deliv. Rev., 23, 3 (1997); https://doi.org/10.1016/S0169-409X(96)00423-1
N. Kitamura, M.D. Sacco, C. Ma, Y. Hu, J.A. Townsend, X. Meng, F. Zhang, X. Zhang, M. Ba, T. Szeto, A. Kukuljac, M.T. Marty, D. Schultz, S. Cherry, Y. Xiang, Y. Chen and J. Wang, J. Med. Chem., 65, 2848 (2022); https://doi.org/10.1021/acs.jmedchem.1c00509
C. Ma, Z. Xia, M.D. Sacco, Y. Hu, J.A. Townsend, X. Meng, J. Choza, H. Tan, J. Jang, M.V. Gongora, X. Zhang, F. Zhang, Y. Xiang, M.T. Marty, Y. Chen and J. Wang, J. Am. Chem. Soc., 143, 20697 (2021); https://doi.org/10.1021/jacs.1c08060
Y.R. Alugubelli, Z.Z. Geng, K.S. Yang, N. Shaabani, K. Khatua, X.R. Ma, E.C. Vatansever, C.‑C. Cho, Y. Ma, J. Xiao, L.R. Blankenship, G. Yu, B. Sankaran, P. Li, R. Allen, H. Ji, S. Xu and W.R. Liu, Eur. J. Med. Chem., 240, 114596 (2022); https://doi.org/10.1016/j.ejmech.2022.114596
Y. Ma, K.S. Yang, Z.Z. Geng, Y.R. Alugubelli, N. Shaabani, E.C. Vatansever, X.R. Ma, C.‑C. Cho, K. Khatua, L.R. Blankenship, J. Xiao, G. Yu, B. Sankaran, P. Li, R. Allen, H. Ji, S. Xu and W. R. Liu, Eur. J. Med. Chem., 240, 114570 (2022); https://doi.org/10.1016/j.ejmech.2022.114570
S. Gao, L. Song, K. Sylvester, B. Mercorelli, A. Loregian, K. Toth, R.H. Weiße, A. Useini, N. Sträter, M. Yang, B. Ye, A.E. Tollefson, C.E. Müller, X. Liu and P. Zhan, J. Med. Chem., 66, 16426 (2023); https://doi.org/10.1021/acs.jmedchem.3c01876
C. Ngo, W. Fried, S. Aliyari, J. Feng, C. Qin, S. Zhang, H. Yang, J. Shanaa, P. Feng, G. Cheng, X.S. Chen and C. Zhang, J. Med. Chem., 66, 12237 (2023); https://doi.org/10.1021/acs.jmedchem.3c00810
K. Zhang, T. Wang, M. Li, M. Liu, H. Tang, L. Wang, K. Ye, J. Yang, S. Jiang, Y. Xiao, Y. Xie, M. Lu and X. Zhang, Eur. J. Med. Chem., 257, 115487 (2023); https://doi.org/10.1016/j.ejmech.2023.115487
L. Brier, H. Hassan, X. Hanoulle, V. Landry, D. Moschidi, J. Dumont, L. Desmarets, Y. Rouillé, A. Herledan, S. Warenghem, C. Piveteau, P. Carré, S. Ikherbane, F.‑X. Cantrelle, E. Dupré, J. Dubuisson, S. Belouzard, F. Leroux, B. Deprez and J. Charton, Eur. J. Med. Chem., 250, 115186 (2023); https://doi.org/10.1016/j.ejmech.2023.115186
C.S. Dampalla, A.D. Rathnayake, A.C. Galasiti Kankanamalage, Y. Kim, K.D. Perera, H.N. Nguyen, M.J. Miller, T.K. Madden, H.R. Picard, H.A. Thurman, M.M. Kashipathy, L. Liu, K.P. Battaile, S. Lovell, K.-O. Chang and W.C. Groutas, J. Med. Chem., 65, 7818 (2022); https://doi.org/10.1021/acs.jmedchem.2c00224
J.‑W. Zhang, Y. Xiong, F. Wang, F.‑M. Zhang, X. Yang, G.‑Q. Lin, P. Tian, G. Ge and D. Gao, Eur. J. Med. Chem., 228, 114030 (2022); https://doi.org/10.1016/j.ejmech.2021.114030
C.S.B. Chia and M. Inoue, ACS Med. Chem. Lett., 13, 1394 (2022); https://doi.org/10.1021/acsmedchemlett.2c00349
X. Dou, Q. Sun, G. Xu, Y. Liu, C. Zhang, B. Wang, Y. Lu, Z. Guo, L. Su, T. Huo, X. Zhao and C. Wang, Eur. J. Med. Chem., 238, 114508 (2022); https://doi.org/10.1016/j.ejmech.2022.114508
H. Wang, R. Pei, X. Li, W. Deng, S. Xing, Y. Zhang, C. Zhang, S. He, H. Sun, S. Xiao, J. Xiong, Y. Zhang, X. Chen, Y. Wang, Y. Guo, B. Zhang and L. Shang, Eur. J. Med. Chem., 238, 114458 (2022); https://doi.org/10.1016/j.ejmech.2022.114458
D. Deodato, N. Asad and T.M. Dore, Bioorg. Med. Chem. Lett., 72, 128867 (2022); https://doi.org/10.1016/j.bmcl.2022.128867
Y.B. Ryu, H.J. Jeong, J.H. Kim, Y.M. Kim, J.-Y. Park, D. Kim, T.T. H. Nguyen, S.-J. Park, J.S. Chang, K.H. Park, M.-C. Rho and W.S. Lee, Bioorg. Med. Chem., 18, 7940 (2010); https://doi.org/10.1016/j.bmc.2010.09.035
G. Arthur, W. Oliver, B. Klaus, S. Thomas, I. Gökhan, B. Sharon, T. Isabelle, D. Pierre and L. Thierry, Front. Mol. Biosci., 7, 599059 (2020); https://doi.org/10.3389/fmolb.2020.599059
J.C. Shelley, A. Cholleti, L.L. Frye, J.R. Greenwood, M.R. Timlin and M. Uchimaya, J. Comput. Aided Mol. Des., 21, 681 (2007); https://doi.org/10.1007/s10822-007-9133-z
S.Y. Yang, Drug Discov. Today, 15, 444 (2010); https://doi.org/10.1016/j.drudis.2010.03.013
A. Vuorinen and D. Schuster, Methods, 71, 113 (2015); https://doi.org/10.1016/j.ymeth.2014.10.013
N. Moussa, A. Hassan and S. Gharaghani, Heliyon, 7, e06605 (2021); https://doi.org/10.1016/j.heliyon.2021.e06605
D. Giordano, C. Biancaniello, M.A. Argenio and A. Facchiano, Pharmaceuticals, 15, 646 (2022); https://doi.org/10.3390/ph15050646
S. Parveen, L. Shahbaz, N. Shafiq, M. Rashid, M. Mohany and M. Zhu, RSC Adv., 15, 2045 (2025); https://doi.org/10.1039/D4RA06536K
K. Chu, Emerg. Med., 11, 175 (1999); https://doi.org/10.1046/j.1442-2026.1999.00041.x
G. Varoquaux and O. Colliot, in eds.: O. Colliot, Evaluating Machine Learning Models and their Diagnostic Value, In: Machine Learning for Brain Disorders, New York, NY, USA: Humana, Chap. 20 (2023).
Machine Learning Model Evaluation Metrics: Accuracy, Precision, Recall, F1; https://www.sanfoundry.com/machine-learning-model-evaluation-metrics-accuracy-precision-recall-f1/?utm_source=chatgpt.com (Accessed on 12 March 2025).
D. Chicco and G. Jurman, BMC Genomics, 21, 6 (2020); https://doi.org/10.1186/s12864-019-6413-7
D. Arnal, C. Moya, L. Filippelli, J. Segura-Garcia and S. Maicas, BioData Min., 16, 1 (2023); https://doi.org/10.1186/s13040-022-00318-6