Copyright (c) 2025 Muhammad Yuspriyanto, Nelly Wahyuni, Anis Shofiyani

This work is licensed under a Creative Commons Attribution 4.0 International License.
Adsorption of Cd(II) and Cr(III) Ions using Magnetic Activated Carbon Derived from Plajau Wood (Pentaspadon motleyi)
Corresponding Author(s) : Nelly Wahyuni
Asian Journal of Chemistry,
Vol. 37 No. 10 (2025): Vol 37 Issue 10, 2025
Abstract
This study investigates the adsorption behaviour of Cd2+ and Cr3+ ions from aqueous solutions using magnetic activated carbon (MAC) synthesized from Plajau wood (P. motleyi). Magnetic activated carbon was synthesized by compositing activated carbon with magnetite (Fe3O4), using a Fe3+/Fe2+ mixture in a 2:1 molar ratio. The formation of Fe3O4 on the carbon surface introduced new active sites and modified the pore structure of the activated carbon. Infrared spectra show the presence of magnetite in infrared absorption at 570 cm–1, SEM-EDX analysis shows magnetite on the surface with oxide compound 6.8% and the XRD diffractogram confirms the suitability of magnetite. The optimum adsorption of Cd2+ and Cr3+ was achieved at pH 6 and 7, adsorbent doses of 0.04 g and 0.06 g, stirring speed of 150 rpm, contact times of 3 and 4 h and an initial concentration of 50 ppm, yielding maximum adsorption capacities of 48.36 mg/g and 39.27 mg/g, respectively. Adsorption of Cd2+ ion follows the Langmuir isotherm model (R2 = 0.9123) and pseudo-second order kinetic model (R2 = 0.9110). Meanwhile, the Cr3+ ion follows the Redlich-Peterson isotherm model (R2 = 0.9475) and pseudo-second order kinetic model (R2 = 0.9983). The efficiency of magnetic activated carbon recovery after adsorption was 81.18% indicating good magnetic responsiveness and potential for reuse with minimal material loss.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Del Sole, A.A. Fogel, V.A. Somin, G. Vasapollo and L. Mergola, Materials, 16, 5322 (2023); https://doi.org/10.3390/ma16155322
- X. Yang, H. Yi, X. Tang, S. Zhao, Z. Yang, Y. Ma, T. Feng and X. Cui, J. Environ. Sci., 67, 104 (2018); https://doi.org/10.1016/j.jes.2017.06.032
- Y. Zhou, X. Liu, Y. Xiang, P. Wang, J. Zhang, F. Zhang, J. Wei, L. Luo, M. Lei and L. Tang, Bioresour. Technol., 245, 266 (2017); https://doi.org/10.1016/j.biortech.2017.08.178
- S.J. Guo, X. Liu, M. Han, Y. Liu and S. Ji, Cellulose, 27, 8155 (2020); https://doi.org/10.1007/s10570-020-03347-8
- W. Jing, C. Yang, X. Lin, M. Tang, D. Lian, Y. Yu and D. Liu, RSC Adv., 14, 39995 (2024); https://doi.org/10.1039/D4RA06363
- B. Verougstraete, M. Gholami, E. Pérez-Botella, M. Schoukens, T.R.C. Van Assche, Y.G. Rueda and J.F.M. Denayer, Sep. Purif. Technol., 353C, 128522 (2025); https://doi.org/10.1016/j.seppur.2024.128522
- H.E. Reynel-Ávila, K.I. Camacho-Aguilar, A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.A. González-Ponce and R. Trejo-Valencia, Adsorpt. Sci. Technol., 2021, 9917444 (2021); https://doi.org/10.1155/2021/9917444
- Z. Shen, Y. Kuang, S. Zhou, J. Zheng, and G. Ouyang, TrAC Trends Anal. Chem., 167, 117241 (2023); https://doi.org/10.1016/j.trac.2023.117241
- E.H. Alfiyani, N. Nurlina and N. Wahyuni, Alchemy J., 18, 130 (2022); https://doi.org/10.20961/alchemy.18.2.53647.130-139
- W. Astuti, A. Trisyani, M. Biladudin, T. Sulistyaningsih and D. Prastiyanto, IOP Conf. Ser. Earth Environ. Sci., 700, 012043 (2021); https://doi.org/10.1088/1755-1315/700/1/012043
- E. Mirzaee and M. Sartaj, J. Hazardous Mater. Adv., 6, 100083 (2022); https://doi.org/10.1016/j.hazadv.2022.100083
- Y. A.B. Neolaka, Y. Lawa, J. Naat, Y.E. Lindu, H. Darmokoesoemo, A.A.P. Riwu, B.A. Widyaningrum, M. Iqbal and H.S. Kusuma, React. Funct. Polym., 166, 105000 (2021); https://doi.org/10.1016/j.react functpolym.2021.105000
- V. Nejadshafiee and M.R. Islami, Mater. Sci. Eng. C, 101, 42 (2019); https://doi.org/10.1016/j.msec.2019.03.081
- Z. Sudarmono and Dodo, Proc. Indon. Biodiver. Soc. Semester Meet., 1, 602 (2015); https://doi.org/10.13057/psnmbi/m010337
- R. Nofiani, Rio, K. Komalasari, P. Ardiningsih and S.J. Santosa, Sains Malays., 51, 1753 (2022); https://doi.org/10.17576/jsm-2022-5106-12
- V. Poursorkhabi, M.A. Abdelwahab, M. Misra, B. Gharabaghi, H. Khalil and A.K. Mohanty, Front. Energy Res., 8, 208 (2020); https://doi.org/10.3389/fenrg.2020.00208
- J. Lou, X. Xu, Y. Gao, D. Zheng, J. Wang and Z. Li, RSC Adv., 6, 112166 (2016); https://doi.org/10.1039/C6RA24397E
- S. Rodríguez-Sánchez, B. Ruiz, D. Martínez-Blanco, M. Sánchez-Arenillas, M.A. Diez, J.F. Marco, P. Gorria and E. Fuente, Appl. Surf. Sci., 551, 149407 (2021); https://doi.org/10.1016/j.apsusc.2021.149407
- A.H. Pinto, J.K. Taylor, R. Chandradat, E. Lam, Y. Liu, A.C.W. Leung, M. Keating and R. Sunasee, J. Environ. Chem. Eng., 8, 104187 (2020); https://doi.org/10.1016/j.jece.2020.104187
- H.K. Yagmur and İ. Kaya, J. Mol. Struct., 1232, 130071 (2021); https://doi.org/10.1016/j.molstruc.2021.130071
- Z. Zhang, T. Wang, H. Zhang, Y. Liu and B. Xing, Sci. Total Environ., 757, 143910 (2021); https://doi.org/10.1016/j.scitotenv.2020.143910
- A.A. Alluhaybi, A. Alharbi, A.M. Hameed, A.A. Gouda, F.S. Hassen, H.S. El-Gendy, B.M. Atia, A.R. Salem, M.A. Gado, A. Ene, H.A. Awad and H.M.H. Zakaly, Molecules, 27, 5087 (2022); https://doi.org/10.3390/molecules27165087
- C.M. Simonescu, V. Lavric, A. Musina, O.M. Antonescu, D.C. Culita, V. Marinescu, C. Tardei, O. Oprea and A.M. Pandele, J. Mol. Liq., 307, 112973 (2020); https://doi.org/10.1016/j.molliq.2020.112973
- B. Liu, C. Du, J.J. Chen, J.Y. Zhai, Y. Wang and H.L. Li, Chem. Phys. Lett., 771, 138535 (2021); https://doi.org/10.1016/j.cplett.2021.138535
- A.S. Zulaicha, Buhani and Suharso, J. Phys. Conf. Ser., 1751, 012086 (2021); https://doi.org/10.1088/1742-6596/1751/1/012086
- Y.A.B. Neolaka, A.A.P. Riwu, U.O. Aigbe, K.E. Ukhurebor, R.B. Onyancha, H. Darmokoesoemo and H.S. Kusuma, Results Chem., 5, 100711 (2023); https://doi.org/10.1016/j.rechem.2022.100711
- Q. Lin, Q. Wang, M. Liao, M. Xiong, X. Feng, X. Zhang, H. Dong, D. Zhu, F. Wu and Z. Mu, ACS Appl. Mater. Interfaces, 13, 18274 (2021); https://doi.org/10.1021/acsami.1c01417
- H. Ghorbani, M. Eshraghi and A.A.S. Dodaran, Physica B, 634, 413816 (2022); https://doi.org/10.1016/j.physb.2022.413816
- R. Dungani, S.S. Munawar, T. Karliati, J. Malik, P. Aditiawati and Sulistyono, J. Korean Wood Sci. Technol., 50, 256 (2022); https://doi.org/10.5658/WOOD.2022.50.4.256
- D. Gu, Y. Zhu, Z. Xu, N. Wang and C. Zhang, J. Adv. Mater. Phys. Chem., 4, 187 (2014); https://doi.org/10.4236/ampc.2014.410022
- R. Aziam, M. Chiban, H. Eddaoudi, A. Soudani, M. Zerbet and F. Sinan, Eur. Phys. J. Spec. Top., 226, 977 (2017); https://doi.org/10.1140/epjst/e2016-60256-x
- O.A. Oyetade, V.O. Nyamori, S.B. Jonnalagadda and B.S. Martincigh, Desalination Water Treat., 108, 253 (2018); https://doi.org/10.5004/dwt.2018.21955
- M.A. Abu‑Daabes, E.A. Zeitoun and W. Mazi, Water, 15, 1070 (2023); https://doi.org/10.3390/w15061070
- M. Zhang, W. Wang, Z. Lv and S. Wang, Environ. Sci. Pollut. Res. Int., 30, 11926 (2023); https://doi.org/10.1007/s11356-022-22961-6
- G.B. Adebayo, H.I. Adegoke and S. Fauzeeyat, Appl. Water Sci., 10, 213 (2020); https://doi.org/10.1007/s13201-020-01295-z
- K. Kuśmierek and A. Świątkowski, React. Kinet. Mech. Cat., 116, 261 (2015); https://doi.org/10.1007/s11144-015-0889-1
- Z. Yi, J. Yao, M. Zhu, H. Chen, F. Wang and X. Liu, SpringerPlus, 5, 1160 (2016); https://doi.org/10.1186/s40064-016-2839-4
- S. Alafnan, A. Awotunde, G. Glatz, S. Adjei, I. Alrumaih and A. Gowida, J. Petrol. Sci. Eng., 207, 109172 (2021); https://doi.org/10.1016/j.petrol.2021.109172
- T.A. Nugroho, C.A. Riyanto and N.R. Aminu, Indones. J. Chem. Anal., 7, 12 (2024); https://doi.org/10.20885/ijca.vol7.iss1.art2
- Livia, W.B. Kurniawan and H. Aldila, Indones. J. Phys. Res., 2, 31 (2022); https://doi.org/10.33019/jrfi.v2i2.3221
References
R. Del Sole, A.A. Fogel, V.A. Somin, G. Vasapollo and L. Mergola, Materials, 16, 5322 (2023); https://doi.org/10.3390/ma16155322
X. Yang, H. Yi, X. Tang, S. Zhao, Z. Yang, Y. Ma, T. Feng and X. Cui, J. Environ. Sci., 67, 104 (2018); https://doi.org/10.1016/j.jes.2017.06.032
Y. Zhou, X. Liu, Y. Xiang, P. Wang, J. Zhang, F. Zhang, J. Wei, L. Luo, M. Lei and L. Tang, Bioresour. Technol., 245, 266 (2017); https://doi.org/10.1016/j.biortech.2017.08.178
S.J. Guo, X. Liu, M. Han, Y. Liu and S. Ji, Cellulose, 27, 8155 (2020); https://doi.org/10.1007/s10570-020-03347-8
W. Jing, C. Yang, X. Lin, M. Tang, D. Lian, Y. Yu and D. Liu, RSC Adv., 14, 39995 (2024); https://doi.org/10.1039/D4RA06363
B. Verougstraete, M. Gholami, E. Pérez-Botella, M. Schoukens, T.R.C. Van Assche, Y.G. Rueda and J.F.M. Denayer, Sep. Purif. Technol., 353C, 128522 (2025); https://doi.org/10.1016/j.seppur.2024.128522
H.E. Reynel-Ávila, K.I. Camacho-Aguilar, A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.A. González-Ponce and R. Trejo-Valencia, Adsorpt. Sci. Technol., 2021, 9917444 (2021); https://doi.org/10.1155/2021/9917444
Z. Shen, Y. Kuang, S. Zhou, J. Zheng, and G. Ouyang, TrAC Trends Anal. Chem., 167, 117241 (2023); https://doi.org/10.1016/j.trac.2023.117241
E.H. Alfiyani, N. Nurlina and N. Wahyuni, Alchemy J., 18, 130 (2022); https://doi.org/10.20961/alchemy.18.2.53647.130-139
W. Astuti, A. Trisyani, M. Biladudin, T. Sulistyaningsih and D. Prastiyanto, IOP Conf. Ser. Earth Environ. Sci., 700, 012043 (2021); https://doi.org/10.1088/1755-1315/700/1/012043
E. Mirzaee and M. Sartaj, J. Hazardous Mater. Adv., 6, 100083 (2022); https://doi.org/10.1016/j.hazadv.2022.100083
Y. A.B. Neolaka, Y. Lawa, J. Naat, Y.E. Lindu, H. Darmokoesoemo, A.A.P. Riwu, B.A. Widyaningrum, M. Iqbal and H.S. Kusuma, React. Funct. Polym., 166, 105000 (2021); https://doi.org/10.1016/j.react functpolym.2021.105000
V. Nejadshafiee and M.R. Islami, Mater. Sci. Eng. C, 101, 42 (2019); https://doi.org/10.1016/j.msec.2019.03.081
Z. Sudarmono and Dodo, Proc. Indon. Biodiver. Soc. Semester Meet., 1, 602 (2015); https://doi.org/10.13057/psnmbi/m010337
R. Nofiani, Rio, K. Komalasari, P. Ardiningsih and S.J. Santosa, Sains Malays., 51, 1753 (2022); https://doi.org/10.17576/jsm-2022-5106-12
V. Poursorkhabi, M.A. Abdelwahab, M. Misra, B. Gharabaghi, H. Khalil and A.K. Mohanty, Front. Energy Res., 8, 208 (2020); https://doi.org/10.3389/fenrg.2020.00208
J. Lou, X. Xu, Y. Gao, D. Zheng, J. Wang and Z. Li, RSC Adv., 6, 112166 (2016); https://doi.org/10.1039/C6RA24397E
S. Rodríguez-Sánchez, B. Ruiz, D. Martínez-Blanco, M. Sánchez-Arenillas, M.A. Diez, J.F. Marco, P. Gorria and E. Fuente, Appl. Surf. Sci., 551, 149407 (2021); https://doi.org/10.1016/j.apsusc.2021.149407
A.H. Pinto, J.K. Taylor, R. Chandradat, E. Lam, Y. Liu, A.C.W. Leung, M. Keating and R. Sunasee, J. Environ. Chem. Eng., 8, 104187 (2020); https://doi.org/10.1016/j.jece.2020.104187
H.K. Yagmur and İ. Kaya, J. Mol. Struct., 1232, 130071 (2021); https://doi.org/10.1016/j.molstruc.2021.130071
Z. Zhang, T. Wang, H. Zhang, Y. Liu and B. Xing, Sci. Total Environ., 757, 143910 (2021); https://doi.org/10.1016/j.scitotenv.2020.143910
A.A. Alluhaybi, A. Alharbi, A.M. Hameed, A.A. Gouda, F.S. Hassen, H.S. El-Gendy, B.M. Atia, A.R. Salem, M.A. Gado, A. Ene, H.A. Awad and H.M.H. Zakaly, Molecules, 27, 5087 (2022); https://doi.org/10.3390/molecules27165087
C.M. Simonescu, V. Lavric, A. Musina, O.M. Antonescu, D.C. Culita, V. Marinescu, C. Tardei, O. Oprea and A.M. Pandele, J. Mol. Liq., 307, 112973 (2020); https://doi.org/10.1016/j.molliq.2020.112973
B. Liu, C. Du, J.J. Chen, J.Y. Zhai, Y. Wang and H.L. Li, Chem. Phys. Lett., 771, 138535 (2021); https://doi.org/10.1016/j.cplett.2021.138535
A.S. Zulaicha, Buhani and Suharso, J. Phys. Conf. Ser., 1751, 012086 (2021); https://doi.org/10.1088/1742-6596/1751/1/012086
Y.A.B. Neolaka, A.A.P. Riwu, U.O. Aigbe, K.E. Ukhurebor, R.B. Onyancha, H. Darmokoesoemo and H.S. Kusuma, Results Chem., 5, 100711 (2023); https://doi.org/10.1016/j.rechem.2022.100711
Q. Lin, Q. Wang, M. Liao, M. Xiong, X. Feng, X. Zhang, H. Dong, D. Zhu, F. Wu and Z. Mu, ACS Appl. Mater. Interfaces, 13, 18274 (2021); https://doi.org/10.1021/acsami.1c01417
H. Ghorbani, M. Eshraghi and A.A.S. Dodaran, Physica B, 634, 413816 (2022); https://doi.org/10.1016/j.physb.2022.413816
R. Dungani, S.S. Munawar, T. Karliati, J. Malik, P. Aditiawati and Sulistyono, J. Korean Wood Sci. Technol., 50, 256 (2022); https://doi.org/10.5658/WOOD.2022.50.4.256
D. Gu, Y. Zhu, Z. Xu, N. Wang and C. Zhang, J. Adv. Mater. Phys. Chem., 4, 187 (2014); https://doi.org/10.4236/ampc.2014.410022
R. Aziam, M. Chiban, H. Eddaoudi, A. Soudani, M. Zerbet and F. Sinan, Eur. Phys. J. Spec. Top., 226, 977 (2017); https://doi.org/10.1140/epjst/e2016-60256-x
O.A. Oyetade, V.O. Nyamori, S.B. Jonnalagadda and B.S. Martincigh, Desalination Water Treat., 108, 253 (2018); https://doi.org/10.5004/dwt.2018.21955
M.A. Abu‑Daabes, E.A. Zeitoun and W. Mazi, Water, 15, 1070 (2023); https://doi.org/10.3390/w15061070
M. Zhang, W. Wang, Z. Lv and S. Wang, Environ. Sci. Pollut. Res. Int., 30, 11926 (2023); https://doi.org/10.1007/s11356-022-22961-6
G.B. Adebayo, H.I. Adegoke and S. Fauzeeyat, Appl. Water Sci., 10, 213 (2020); https://doi.org/10.1007/s13201-020-01295-z
K. Kuśmierek and A. Świątkowski, React. Kinet. Mech. Cat., 116, 261 (2015); https://doi.org/10.1007/s11144-015-0889-1
Z. Yi, J. Yao, M. Zhu, H. Chen, F. Wang and X. Liu, SpringerPlus, 5, 1160 (2016); https://doi.org/10.1186/s40064-016-2839-4
S. Alafnan, A. Awotunde, G. Glatz, S. Adjei, I. Alrumaih and A. Gowida, J. Petrol. Sci. Eng., 207, 109172 (2021); https://doi.org/10.1016/j.petrol.2021.109172
T.A. Nugroho, C.A. Riyanto and N.R. Aminu, Indones. J. Chem. Anal., 7, 12 (2024); https://doi.org/10.20885/ijca.vol7.iss1.art2
Livia, W.B. Kurniawan and H. Aldila, Indones. J. Phys. Res., 2, 31 (2022); https://doi.org/10.33019/jrfi.v2i2.3221