Copyright (c) 2025 SOONMIN HO, R.M.G RAJAPAKSE R, H.M.N. BANDARA H, V.M.Y.S.U.BANDARA V

This work is licensed under a Creative Commons Attribution 4.0 International License.
Hydrogen-Oxygen Fuel Cells: Principles, Materials and Applications: A Review
Corresponding Author(s) : Soonmin Ho
Asian Journal of Chemistry,
Vol. 37 No. 10 (2025): Vol 37 Issue 10, 2025
Abstract
Hydrogen-oxygen (H2/O2) fuel cells offer a promising clean energy solution by converting the chemical energy from hydrogen and oxygen into electricity, with water as only the byproduct. This review outlines the principles behind H2/O2 fuel cells, including electrochemical reactions, thermodynamic considerations and the role of advanced materials like catalysts, membranes and electrodes. It addresses key challenges such as catalyst degradation, water management and hydrogen storage, alongside strategies to overcome these issues, including non-precious metal catalysts, high-temperature proton-exchange membranes and optimized cell designs. The diverse applications of H2/O2 fuel cells, spanning transportation, stationary power generation and portable devices, highlight their potential to decarbonize various industries. The importance of green hydrogen production from renewable energy sources was emphasized and the need for infrastructure to support large-scale fuel cell deployment. As fuel cell technology advances, the transition to a hydrogen economy provides a pathway to achieving net-zero carbon emissions. Continued interdisciplinary research and development are crucial to overcoming existing barriers, enhancing scalability and ensuring the widespread adoption of H2/O2 fuel cells as a key component of sustainable energy systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Nowsherwan, G.A. Iqbal, M.A. Rehman, A. Zaib, M.I. Sadiq, M.A. Dogar, M. Azhar, S.S. Maidin, S.S. Hussain, K. Morsy and J.R. Choi, Sci. Rep., 13, 10431 (2023); https://doi.org/10.1038/s41598-023-37486-2
- K. Das, F. Barbir, K. Jiao, Y. Wang and X. Li, Fuel Cells for Transportation: Fundamental Principles and Applications, eds.: P. K. Das, K. Jiao, Y. Wang, B. Frano, and X. Li, Woodhead Publishing, Elsevier, Chap. 1, pp. 1-28 (2023); https://doi.org/10.1016/C2021-0-01629-1
- I. Staffell, D. Scamman, A. Velazquez Abad, P. Balcombe, P.E. Dodds, P. Ekins, N. Shah and K.R. Ward, Energy Environ. Sci., 12, 463 (2019); https://doi.org/10.1039/C8EE01157E
- S. Mo, L. Du, Z. Huang and J. Chen, Electrochem. Energy Rev., 6, 28 (2023); https://doi.org/10.1007/s41918-023-00190-w
- W. Ng, W. Wong, N. Rosli and K. Loh, Separations, 10, 424 (2023); https://doi.org/10.3390/separations10080424
- G. Das, J.-H. Choi, P.K.T. Nguyen, D.-J. Kim and Y.S. Yoon, Polymers, 14, 1197 (2022); https://doi.org/10.3390/polym14061197
- A.T. Hamada, M.F. Orhan and A.M. Kannan, Energy Rep., 9, 6396 (2023); https://doi.org/10.1016/j.egyr.2023.05.276
- A. Albarrak, A. Alshareef, A. Alshareef and A.M. Nahhas, Sustain. Energy, 10, 1 (2022); https://doi.org/10.12691/rse-10-1-1
- D. Madhav, J. Wang, R. Keloth, J. Mus, F. Buysschaert and V. Vandeginste, Energies, 17, 998 (2024): https://doi.org/10.3390/en17050998
- E. Timothy and Z. Adam, Fuel Cells and Hydrogen Production: A Volume in the Encyclopedia of Sustainability Science and Technology, Springer: New York, edn 2 (2018); https://doi.org/10.1007/978-1-4939-7789-5
- A. Vieira and J. Carlos, Fundamentals of Renewable Energy Processes Academic Press, edn 4 (2021); https://doi.org/10.1016/C2015-0-05615-5
- A.L. Dicks and D.A.J. Rand, Fuel Cell Systems Explained, John Wiley & Sons Ltd. (2018); https://doi.org/10.1002/9781118706992
- K.V. Kordesch and G.R. Simader, Fuel Cells: and Their Applications, VCH Verlagsgesellschaft mbH, (1996); https://doi.org/10.1002/352760653X
- Q. Hassan, I.D.J. Azzawi, A.Z. Sameen and H.M. Salman, Sustainability, 15, 11501 (2023); https://doi.org/10.3390/su151511501
- A.A.N. Ummah, F.R. Nadhifah, Sutarsis, A. Arifin and A. Jamaluddin, J. Hazard. Mater. Adv., 18, 100630 (2025); https://doi.org/10.1016/j.hazadv.2025.100630
- Hydrogen Council, Hydrogen Insights (2021); https://hydrogencouncil.com/en/hydrogen-insights-2021/
- M. Yang, R. Hunger, S. Berrettoni, B. Sprecher and B. Wang, Clean Energy, 7, 190 (2023); https://doi.org/10.1093/ce/zkad021
- M.R. Rahimpour, M.A. Makarem and P. Kiani, Hydrogen Transportation and Storage, CRC Press: Boca Raton, edn. 1 (2024); https://doi.org/10.1201/9781003382553
- A.A. Zasypkina, N.A. Ivanova, D.D. Spasov, R.M. Mensharapov, M.V. Sinyakov and S.A. Grigoriev, Catalysts, 14, 303 (2024); https://doi.org/10.3390/catal14050303
- Z. Zhang, J. Liu, J. Gu, L. Su and L. Cheng, Energy Environ. Sci., 7, 2535 (2014); https://doi.org/10.1039/C3EE43886D
- A. Chalgin, C. Song, P. Tao, W. Shang, T. Deng and J. Wu, Prog. Nat. Sci., 30, 289 (2020); https://doi.org/10.1016/j.pnsc.2020.01.003
- C. Song and J. Zhang, Electrocatalytic Oxygen Reduction Reaction. In: PEM Fuel Cell Electrocatalysts and Catalyst Layers, eds.: J. Zhang, Springer, London, pp. 89–134 (2008); https://doi.org/10.1007/978-1-84800-936-3_2
- A. Kostuch, I.A. Rutkowska, B. Dembinska, A. Wadas, E. Negro, K. Vezzù, V. Di Noto and P.J. Kulesza, Molecules, 26, 5147 (2021); https://doi.org/10.3390/molecules26175147
- L. Zhang, L. Wang, C.M.B. Holt, T. Navessin, K. Malek, M.H. Eikerling and D. Mitlin, J. Phys. Chem. C, 114, 16463 (2017); https://doi.org/10.1021/jp104306j
- N. Mohan and L. Cindrella, Int. J. Hydrogen Energy, 42, 21719 (2017); https://doi.org/10.1016/j.ijhydene.2017.07.037
- M.S. Ratsoma, B.L.O. Poho, K. Makgopa, K. Raju, K.D. Modibane, C.J. Jafta and K.O. Oyedotun, J. Electron. Mater., 52, 2264 (2023); https://doi.org/10.1007/s11664-023-10244-w
- A. Zafari, K. Kiran, I. Gimenez-Garcia, K. Xia, I. Gibson and D. Jafari, Mater. Des., 237, 112606 (2024); https://doi.org/10.1016/j.matdes.2023.112606
- I. Nicotera, L. Coppola and C. Simari, Mater. Renew. Sustain. Energy, 13, 307 (2024); https://doi.org/10.1007/s40243-024-00266-7
- O. Okafor, A. Popoola, O. Popoola and S. Adeosun, AIMS Mater. Sci., 11, 369 (2024); https://doi.org/10.3934/matersci.2024020
- L. Şanlı, B. Yarar, V. Bayram and S.A. Gürsel, J. Mater. Sci., 52, 2091 (2017); https://doi.org/10.1007/s10853-016-0497-0
- Z. Ji, J. Chen, M. Pérez-Page, Z. Guo, Z. Zhao, R. Cai, M. T.P. Rigby, S.J. Haigh, and S.M. Holmes, J. Energy Chem., 68, 143 (2022); https://doi.org/10.1016/j.jechem.2021.09.031
- Z. Li, Z. Xie, Y. Zhang, X. Mu, J. Xie, H.-J. Yin, Y.-W. Zhang, C. Ophus and J. Zhou, Nat. Commun., 14, 2934 (2023); https://doi.org/10.1038/s41467-023-38536-z
- S. Vijayapradeep, N. Logeshwaran, S. Ramakrishnan, A.R. Kim, P. Sampath, D.H. Kim and D.J. Yoo, Chem. Eng. J., 473, 145348 (2023); https://doi.org/10.1016/j.cej.2023.145348
- C. Li, N. Clament Sagaya Selvam and J. Fang, Nano-Micro Lett., 15, 83 (2023); https://doi.org/10.1007/s40820-023-01060-2
- L. Huo, C. Jin, K. Jiang, Q. Bao, Z. Hu and J. Chu, Adv. Sustain. Res., 3, 2100189 (2022); https://doi.org/10.1002/aesr.202100189
- J. Byeon, S. Kim, S. Lee, J.H. Jang, S.-K. Kim and J. Lee, Chem. Eng. J., 493, 152626 (2024); https://doi.org/10.1016/j.cej.2024.152626
- H. Zhong, C.A. Campos-Roldán, Y. Zhao, S. Zhang, Y. Feng and N. Alonso-Vante, Catalysts, 8, 559 (2018); https://doi.org/10.3390/catal8110559
- W. Zhang, L. Cui and J. Liu, J. Alloys Compd., 821, 153542 (2019); https://doi.org/10.1016/j.jallcom.2019.153542
- S. Kabir, K. Lemire, K. Artyushkova, A. Roy, M. Odgaard, D. Schlueter, A. Oshchepkov, A. Bonnefont, E. Savinova, D.C. Sabarirajan, P. Mandal, E.J. Crumlin, I.V. Zenyuk, P. Atanassov and A. Serov, J. Mater. Chem. A Mater. Energy Sustain., 5, 24433 (2017); https://doi.org/10.1039/C7TA08718G
- M. Muhyuddin, G. Tseberlidis, M. Acciarri, O. Lori, M. D'Arienzo, M. Cavallini, P. Atanassov, L. Elbaz, A. Lavacchi, and C. Santoro, J. Energy Chem., 87, 256 (2023); https://doi.org/10.1016/j.jechem.2023.08.011
- Y. Zhao, D. Wu and W. Luo, ACS Sustain. Chem.& Eng., 10, 1616 (2022); https://doi.org/10.1021/acssuschemeng.1c07306
- H. Yang, D. Ma, Y. Li, Q. Zhao, F. Pan, S. Zheng, and Z. Lou, Chin. J. Struct. Chem., 42, 100031 (2023); https://doi.org/10.1016/j.cjsc.2023.100031
- A.A. Feidenhans’l, Y.N. Regmi, C. Wei, D. Xia, J. Kibsgaard and L.A. King, Chem. Rev., 124, 5617 (2024); https://doi.org/10.1021/acs.chemrev.3c00712
- E.S. Davydova, S. Mukerjee, F. Jaouen and D.R. Dekel, ACS Catal., 8, 6665 (2018); https://doi.org/10.1021/acscatal.8b00689
- S. Xu, H. Zhao, T. Li, J. Liang, S. Lu, G. Chen, S. Gao, A.M. Asiri, Q. Wu and X. Sun, J. Mater. Chem. A Mater. Energy Sustain., 8, 19729 (2020); https://doi.org/10.1039/D0TA05628F
- L.K. Putri, B.-J. Ng, R.Y.Z. Yeo, W.-J. Ong, A.R. Mohamed and S.-P. Chai, Chem. Eng. J., 461, 141845 (2023); https://doi.org/10.1016/j.cej.2023.141845
- T. Ingsel and R.K. Gupta, Transition Metal Chalcogenides-based Electrocatalysts for ORR, OER, and HER, In: Nanomaterials for Electrocatalysis; Micro and Nano Technologies, eds.: T. Maiyalagan, M. Khandelwal, A. Kumar, T. A. Nguyen and G. Yasin, Elsevier, Chap. 5, pp. 83-111 (2022); https://doi.org/10.1016/B978-0-323-85710-9.00005-8
- C. Wei, W. Wu, H. Li, X. Lin, T. Wu, Y. Zhang, Q. Xu, L. Zhang, Y. Zhu, X. Yang, Z. Liu and Q. Xu, ACS Appl. Mater. Interfaces, 11, 25264 (2019); https://doi.org/10.1021/acsami.9b07856
- H. Gunaseelan, A.V. Munde, R. Patel and B.R. Sathe, Mater. Today Sustain., 22, 100371 (2023); https://doi.org/10.1016/j.mtsust.2023.100371
- Y. Sun, Z. Xue, Q. Liu, Y. Jia, Y. Li, K. Liu, Y. Lin, M. Liu, G. Li and C.-Y. Su, Nat. Commun., 12, 1369 (2021); https://doi.org/10.1038/s41467-021-21595-5
- C. Li, H. Zhang, M. Liu, F.-F. Lang, J. Pang and X.-H. Bu, Ind. Chem. Mater., 1, 23 (2023); https://doi.org/10.1039/D2IM00063F
- L. Qin, Q.-M. Zheng, J.-L. Liu, M.-D. Zhang, M.-X. Zhang and H.-G. Zheng, Mater. Chem. Front., 5, 7833 (2021); https://doi.org/10.1039/D1QM00984B
- T. Stefanos and A. Kosmas, Energy Eng., 119, 1745 (2022); https://doi.org/10.32604/ee.2022.020984
- N. Bhuvanendran, S. Ravichandran, S. Lee, F.D. Sanij, S. Kandasamy, P. Pandey, H. Su and S.Y. Lee, Coord. Chem. Rev., 521, 216191 (2024); https://doi.org/10.1016/j.ccr.2024.216191
- L. Huang, S. Zaman, X. Tian, Z. Wang, W. Fang and B.Y. Xia, Acc. Chem. Res., 54, 311 (2021); https://doi.org/10.1021/acs.accounts.0c00488
- A. Alekseenko, S. Belenov, D. Mauer, E. Moguchikh, I. Falina, J. Bayan, I. Pankov, D. Alekseenko and V. Guterman, Inorganics, 12, 23 (2024); https://doi.org/10.3390/inorganics12010023
- J. Wu and H. Yang, Acc. Chem. Res., 46, 1848 (2013); https://doi.org/10.1021/ar300359w
- M. Janssen, P. Weber and M. Oezaslan, Curr. Opin. Electrochem., 40, 101337 (2023); https://doi.org/10.1016/j.coelec.2023.101337
- F. Qian, C. Hu, W. Jiang, J. Zhang, L. Peng, L. Song and Q. Chen, Chem. Eng. J., 468, 143665 (2023); https://doi.org/10.1016/j.cej.2023.143665
- F. Kong, Z. Ren, M. Norouzi Banis, L. Du, X. Zhou, G. Chen, L. Zhang, J. Li, S. Wang, M. Li, K. Doyle-Davis, Y. Ma, R. Li, A. Young, L. Yang, M. Markiewicz, Y. Tong, G. Yin, C. Du, J. Luo and X. Sun, ACS Catal., 10, 4205 (2020); https://doi.org/10.1021/acscatal.9b05133
- E. Wang, L. Luo, Y. Feng, A. Wu, H. Li, X. Luo, Y. Guo, Z. Tan, F. Zhu, X. Yan, Q. Kang, Z. Zhuang, D. Yang, S. Shen and J. Zhang, J. Energy Chem., 93, 157 (2024); https://doi.org/10.1016/j.jechem.2024.01.054
- E. Antolini, Int. J. Energy Res., 2018, 4134 (2018); https://doi.org/10.1002/er.4134
- U.A. Paulus, A. Wokaun, G.G. Scherer, T.J. Schmidt, V. Stamenkovic, V. Radmilovic, N.M. Markovic and P.N. Ross, J. Phys. Chem. B, 106, 4181 (2022); https://doi.org/10.1021/jp013442l
- P. Weber, D.J. Weber, C. Dosche and M. Oezaslan, ACS Catal., 12, 6394 (2022); https://doi.org/10.1021/acscatal.2c00514
- J. Cui, D. Zhang, Z. Liu, C. Li, T. Zhang, S. Yin, Y. Song, H. Li, H. Li and C. Li, Nat. Commun., 15, 9458 (2024); https://doi.org/10.1038/s41467-024-53808-y
- Y. Wan, L. Yu, B. Yang, C. Li, C. Fang, W. Guo, F.-X. Xiao and Y. Lin, J. Energy Chem., 93, 538 (2024); https://doi.org/10.1016/j.jechem.2024.01.074
- F.-D. Kong, S. Zhang, G.-P. Yin, N. Zhang, Z.-B. Wang and C.-Y. Du, Electrochem. Commun., 14, 63 (2012); https://doi.org/10.1016/j.elecom.2011.11.002
- Y. Zhou, R. Lu, X. Tao, Z. Qiu, G. Chen, J. Yang, Y. Zhao, X. Feng and K. Müllen, J. Am. Chem. Soc., 145, 3647 (2023); https://doi.org/10.1021/jacs.2c12933
- S. Liu, Q. Meyer, Y. Li, T. Zhao, Z. Su, K. Ching and C. Zhao, Chem. Commun., 58, 2323 (2022); https://doi.org/10.1039/D1CC07042H
- S. Yin, H. Yi, M. Liu, J. Yang, S. Yang, B.-W. Zhang, L. Chen, X. Cheng, H. Huang, R. Huang, Y. Jiang, H. Liao and S. Sun, Nat. Commun., 15, 6229 (2024); https://doi.org/10.1038/s41467-024-50629-x
- K. Dhanabalan, M. Perumalsamy, G. Sriram, N. Murugan, Shalu, T. Sadhasivam and T.H. Oh, Energies, 16, 4950 (2023); https://doi.org/10.3390/en16134950
- Q.H. Nguyen, V.D.C. Tinh, S. Oh, T.M. Pham, T.N. Tu, D. Kim, J. Han, K. Im and J. Kim, Chem. Eng. J., 481, 148508 (2024); https://doi.org/10.1016/j.cej.2023.148508
- W. Xiaojuan, Z. Junwen, F. He and L. Wei, J. Mater. Chem. A Mater. Energy Sustain., 2, 14064 (2014); https://doi.org/10.1039/C4TA01506A
- K. Senarathna, H. Randiligama and G. Rajapakse, RSC Adv., 6, 112853 (2016); https://doi.org/10.1039/C6RA23100D
- M. Rajapakse, K. Murakami, N. Bandara and R. Rajapakse, Electrochim. Acta, 55, 2490 (2010); https://doi.org/10.1016/j.electacta.2009.12.015
- C. Senarathna and R. Rajapakse, J. Mech. Eng. Automation, 8, 39 (2018); http://article.sapub.org/10.5923.j.jmea.20180802.01.html
- P. Trogadas, T.F. Fuller and P. Strasser, Carbon, 75, 5 (2014); https://doi.org/10.1016/j.carbon.2014.04.005
- E.C.M. Barbosa, L.S. Parreira, I.C. de Freitas, L.R. Aveiro, D.C. de Oliveira, M.C. dos Santos and P.H.C. Camargo, ACS Appl. Energy Mater., 2, 5759 (2019); https://doi.org/10.1021/acsaem.9b00879
- W. Shi, P. Ah, L. Zhengyang and X. Shiyu, Electrochim. Acta, 394, 139127 (2021); https://doi.org/10.1016/j.electacta.2021.139127
- S. Shanmugam and A. Gedanken, J. Phys. Chem. C, 113, 18707 (2009); https://doi.org/10.1021/jp908322h
- C. Zheng, X. Sun, Y. Qin, J. Li, G. Jin, X. Tong and N. Yang, Adv. Sustain. Syst., 8, 2300556 (2024); https://doi.org/10.1002/adsu.202300556
- F. Ando, T. Gunji, T. Tanabe, I. Fukano, H.D. Abruña, J. Wu, T. Ohsaka and F. Matsumoto, ACS Catal., 11, 9317 (2021); https://doi.org/10.1021/acscatal.1c01868
- J. Milikić, S. Stojanović, L. Damjanović and R. Vasili, Synth. Met., 292, 117231 (2023); https://doi.org/10.1016/j.synthmet.2022.117231
- L. Jing, Z. Hu, H. Zhuo and W. Zhongzhe, J. Mater. Chem. A Mater. Energy Sustain., 6, 2264 (2018); https://doi.org/10.1039/C7TA09831F
- J.T.L. Gamler, A. Leonardi, H.M. Ashberry, N.N. Daanen, Y. Losovyj, R.R. Unocic, M. Engel and S.E. Skrabalak, ACS Nano, 13, 4008 (2019); https://doi.org/10.1021/acsnano.8b08007
- H. Fan, L. Xin, B. Lei and Y. Liu, J. Alloys Compd., 913, 165257 (2022); https://doi.org/10.1016/j.jallcom.2022.165257
- X. Xiao, Z. Fang and D. Yu, Front. Mater., 6, 219 (2019); https://doi.org/10.3389/fmats.2019.00219
- L. Cao, H. Yang, X. Ai and F. Xiao, J. Electroanal. Chem., 557, 127 (2003); https://doi.org/10.1016/S0022-0728(03)00355-3
- F. Cheng, Y. Su, J. Liang, Z. Tao and J. Chen, Chem. Mater., 22, 898 (2009); https://doi.org/10.1021/cm901698s
- M. Yin, H. Miao, R. Hu, Z. Sun and H. Li, J. Power Sources, 494, 229779 (2021); https://doi.org/10.1016/j.jpowsour.2021.229779
References
G. Nowsherwan, G.A. Iqbal, M.A. Rehman, A. Zaib, M.I. Sadiq, M.A. Dogar, M. Azhar, S.S. Maidin, S.S. Hussain, K. Morsy and J.R. Choi, Sci. Rep., 13, 10431 (2023); https://doi.org/10.1038/s41598-023-37486-2
K. Das, F. Barbir, K. Jiao, Y. Wang and X. Li, Fuel Cells for Transportation: Fundamental Principles and Applications, eds.: P. K. Das, K. Jiao, Y. Wang, B. Frano, and X. Li, Woodhead Publishing, Elsevier, Chap. 1, pp. 1-28 (2023); https://doi.org/10.1016/C2021-0-01629-1
I. Staffell, D. Scamman, A. Velazquez Abad, P. Balcombe, P.E. Dodds, P. Ekins, N. Shah and K.R. Ward, Energy Environ. Sci., 12, 463 (2019); https://doi.org/10.1039/C8EE01157E
S. Mo, L. Du, Z. Huang and J. Chen, Electrochem. Energy Rev., 6, 28 (2023); https://doi.org/10.1007/s41918-023-00190-w
W. Ng, W. Wong, N. Rosli and K. Loh, Separations, 10, 424 (2023); https://doi.org/10.3390/separations10080424
G. Das, J.-H. Choi, P.K.T. Nguyen, D.-J. Kim and Y.S. Yoon, Polymers, 14, 1197 (2022); https://doi.org/10.3390/polym14061197
A.T. Hamada, M.F. Orhan and A.M. Kannan, Energy Rep., 9, 6396 (2023); https://doi.org/10.1016/j.egyr.2023.05.276
A. Albarrak, A. Alshareef, A. Alshareef and A.M. Nahhas, Sustain. Energy, 10, 1 (2022); https://doi.org/10.12691/rse-10-1-1
D. Madhav, J. Wang, R. Keloth, J. Mus, F. Buysschaert and V. Vandeginste, Energies, 17, 998 (2024): https://doi.org/10.3390/en17050998
E. Timothy and Z. Adam, Fuel Cells and Hydrogen Production: A Volume in the Encyclopedia of Sustainability Science and Technology, Springer: New York, edn 2 (2018); https://doi.org/10.1007/978-1-4939-7789-5
A. Vieira and J. Carlos, Fundamentals of Renewable Energy Processes Academic Press, edn 4 (2021); https://doi.org/10.1016/C2015-0-05615-5
A.L. Dicks and D.A.J. Rand, Fuel Cell Systems Explained, John Wiley & Sons Ltd. (2018); https://doi.org/10.1002/9781118706992
K.V. Kordesch and G.R. Simader, Fuel Cells: and Their Applications, VCH Verlagsgesellschaft mbH, (1996); https://doi.org/10.1002/352760653X
Q. Hassan, I.D.J. Azzawi, A.Z. Sameen and H.M. Salman, Sustainability, 15, 11501 (2023); https://doi.org/10.3390/su151511501
A.A.N. Ummah, F.R. Nadhifah, Sutarsis, A. Arifin and A. Jamaluddin, J. Hazard. Mater. Adv., 18, 100630 (2025); https://doi.org/10.1016/j.hazadv.2025.100630
Hydrogen Council, Hydrogen Insights (2021); https://hydrogencouncil.com/en/hydrogen-insights-2021/
M. Yang, R. Hunger, S. Berrettoni, B. Sprecher and B. Wang, Clean Energy, 7, 190 (2023); https://doi.org/10.1093/ce/zkad021
M.R. Rahimpour, M.A. Makarem and P. Kiani, Hydrogen Transportation and Storage, CRC Press: Boca Raton, edn. 1 (2024); https://doi.org/10.1201/9781003382553
A.A. Zasypkina, N.A. Ivanova, D.D. Spasov, R.M. Mensharapov, M.V. Sinyakov and S.A. Grigoriev, Catalysts, 14, 303 (2024); https://doi.org/10.3390/catal14050303
Z. Zhang, J. Liu, J. Gu, L. Su and L. Cheng, Energy Environ. Sci., 7, 2535 (2014); https://doi.org/10.1039/C3EE43886D
A. Chalgin, C. Song, P. Tao, W. Shang, T. Deng and J. Wu, Prog. Nat. Sci., 30, 289 (2020); https://doi.org/10.1016/j.pnsc.2020.01.003
C. Song and J. Zhang, Electrocatalytic Oxygen Reduction Reaction. In: PEM Fuel Cell Electrocatalysts and Catalyst Layers, eds.: J. Zhang, Springer, London, pp. 89–134 (2008); https://doi.org/10.1007/978-1-84800-936-3_2
A. Kostuch, I.A. Rutkowska, B. Dembinska, A. Wadas, E. Negro, K. Vezzù, V. Di Noto and P.J. Kulesza, Molecules, 26, 5147 (2021); https://doi.org/10.3390/molecules26175147
L. Zhang, L. Wang, C.M.B. Holt, T. Navessin, K. Malek, M.H. Eikerling and D. Mitlin, J. Phys. Chem. C, 114, 16463 (2017); https://doi.org/10.1021/jp104306j
N. Mohan and L. Cindrella, Int. J. Hydrogen Energy, 42, 21719 (2017); https://doi.org/10.1016/j.ijhydene.2017.07.037
M.S. Ratsoma, B.L.O. Poho, K. Makgopa, K. Raju, K.D. Modibane, C.J. Jafta and K.O. Oyedotun, J. Electron. Mater., 52, 2264 (2023); https://doi.org/10.1007/s11664-023-10244-w
A. Zafari, K. Kiran, I. Gimenez-Garcia, K. Xia, I. Gibson and D. Jafari, Mater. Des., 237, 112606 (2024); https://doi.org/10.1016/j.matdes.2023.112606
I. Nicotera, L. Coppola and C. Simari, Mater. Renew. Sustain. Energy, 13, 307 (2024); https://doi.org/10.1007/s40243-024-00266-7
O. Okafor, A. Popoola, O. Popoola and S. Adeosun, AIMS Mater. Sci., 11, 369 (2024); https://doi.org/10.3934/matersci.2024020
L. Şanlı, B. Yarar, V. Bayram and S.A. Gürsel, J. Mater. Sci., 52, 2091 (2017); https://doi.org/10.1007/s10853-016-0497-0
Z. Ji, J. Chen, M. Pérez-Page, Z. Guo, Z. Zhao, R. Cai, M. T.P. Rigby, S.J. Haigh, and S.M. Holmes, J. Energy Chem., 68, 143 (2022); https://doi.org/10.1016/j.jechem.2021.09.031
Z. Li, Z. Xie, Y. Zhang, X. Mu, J. Xie, H.-J. Yin, Y.-W. Zhang, C. Ophus and J. Zhou, Nat. Commun., 14, 2934 (2023); https://doi.org/10.1038/s41467-023-38536-z
S. Vijayapradeep, N. Logeshwaran, S. Ramakrishnan, A.R. Kim, P. Sampath, D.H. Kim and D.J. Yoo, Chem. Eng. J., 473, 145348 (2023); https://doi.org/10.1016/j.cej.2023.145348
C. Li, N. Clament Sagaya Selvam and J. Fang, Nano-Micro Lett., 15, 83 (2023); https://doi.org/10.1007/s40820-023-01060-2
L. Huo, C. Jin, K. Jiang, Q. Bao, Z. Hu and J. Chu, Adv. Sustain. Res., 3, 2100189 (2022); https://doi.org/10.1002/aesr.202100189
J. Byeon, S. Kim, S. Lee, J.H. Jang, S.-K. Kim and J. Lee, Chem. Eng. J., 493, 152626 (2024); https://doi.org/10.1016/j.cej.2024.152626
H. Zhong, C.A. Campos-Roldán, Y. Zhao, S. Zhang, Y. Feng and N. Alonso-Vante, Catalysts, 8, 559 (2018); https://doi.org/10.3390/catal8110559
W. Zhang, L. Cui and J. Liu, J. Alloys Compd., 821, 153542 (2019); https://doi.org/10.1016/j.jallcom.2019.153542
S. Kabir, K. Lemire, K. Artyushkova, A. Roy, M. Odgaard, D. Schlueter, A. Oshchepkov, A. Bonnefont, E. Savinova, D.C. Sabarirajan, P. Mandal, E.J. Crumlin, I.V. Zenyuk, P. Atanassov and A. Serov, J. Mater. Chem. A Mater. Energy Sustain., 5, 24433 (2017); https://doi.org/10.1039/C7TA08718G
M. Muhyuddin, G. Tseberlidis, M. Acciarri, O. Lori, M. D'Arienzo, M. Cavallini, P. Atanassov, L. Elbaz, A. Lavacchi, and C. Santoro, J. Energy Chem., 87, 256 (2023); https://doi.org/10.1016/j.jechem.2023.08.011
Y. Zhao, D. Wu and W. Luo, ACS Sustain. Chem.& Eng., 10, 1616 (2022); https://doi.org/10.1021/acssuschemeng.1c07306
H. Yang, D. Ma, Y. Li, Q. Zhao, F. Pan, S. Zheng, and Z. Lou, Chin. J. Struct. Chem., 42, 100031 (2023); https://doi.org/10.1016/j.cjsc.2023.100031
A.A. Feidenhans’l, Y.N. Regmi, C. Wei, D. Xia, J. Kibsgaard and L.A. King, Chem. Rev., 124, 5617 (2024); https://doi.org/10.1021/acs.chemrev.3c00712
E.S. Davydova, S. Mukerjee, F. Jaouen and D.R. Dekel, ACS Catal., 8, 6665 (2018); https://doi.org/10.1021/acscatal.8b00689
S. Xu, H. Zhao, T. Li, J. Liang, S. Lu, G. Chen, S. Gao, A.M. Asiri, Q. Wu and X. Sun, J. Mater. Chem. A Mater. Energy Sustain., 8, 19729 (2020); https://doi.org/10.1039/D0TA05628F
L.K. Putri, B.-J. Ng, R.Y.Z. Yeo, W.-J. Ong, A.R. Mohamed and S.-P. Chai, Chem. Eng. J., 461, 141845 (2023); https://doi.org/10.1016/j.cej.2023.141845
T. Ingsel and R.K. Gupta, Transition Metal Chalcogenides-based Electrocatalysts for ORR, OER, and HER, In: Nanomaterials for Electrocatalysis; Micro and Nano Technologies, eds.: T. Maiyalagan, M. Khandelwal, A. Kumar, T. A. Nguyen and G. Yasin, Elsevier, Chap. 5, pp. 83-111 (2022); https://doi.org/10.1016/B978-0-323-85710-9.00005-8
C. Wei, W. Wu, H. Li, X. Lin, T. Wu, Y. Zhang, Q. Xu, L. Zhang, Y. Zhu, X. Yang, Z. Liu and Q. Xu, ACS Appl. Mater. Interfaces, 11, 25264 (2019); https://doi.org/10.1021/acsami.9b07856
H. Gunaseelan, A.V. Munde, R. Patel and B.R. Sathe, Mater. Today Sustain., 22, 100371 (2023); https://doi.org/10.1016/j.mtsust.2023.100371
Y. Sun, Z. Xue, Q. Liu, Y. Jia, Y. Li, K. Liu, Y. Lin, M. Liu, G. Li and C.-Y. Su, Nat. Commun., 12, 1369 (2021); https://doi.org/10.1038/s41467-021-21595-5
C. Li, H. Zhang, M. Liu, F.-F. Lang, J. Pang and X.-H. Bu, Ind. Chem. Mater., 1, 23 (2023); https://doi.org/10.1039/D2IM00063F
L. Qin, Q.-M. Zheng, J.-L. Liu, M.-D. Zhang, M.-X. Zhang and H.-G. Zheng, Mater. Chem. Front., 5, 7833 (2021); https://doi.org/10.1039/D1QM00984B
T. Stefanos and A. Kosmas, Energy Eng., 119, 1745 (2022); https://doi.org/10.32604/ee.2022.020984
N. Bhuvanendran, S. Ravichandran, S. Lee, F.D. Sanij, S. Kandasamy, P. Pandey, H. Su and S.Y. Lee, Coord. Chem. Rev., 521, 216191 (2024); https://doi.org/10.1016/j.ccr.2024.216191
L. Huang, S. Zaman, X. Tian, Z. Wang, W. Fang and B.Y. Xia, Acc. Chem. Res., 54, 311 (2021); https://doi.org/10.1021/acs.accounts.0c00488
A. Alekseenko, S. Belenov, D. Mauer, E. Moguchikh, I. Falina, J. Bayan, I. Pankov, D. Alekseenko and V. Guterman, Inorganics, 12, 23 (2024); https://doi.org/10.3390/inorganics12010023
J. Wu and H. Yang, Acc. Chem. Res., 46, 1848 (2013); https://doi.org/10.1021/ar300359w
M. Janssen, P. Weber and M. Oezaslan, Curr. Opin. Electrochem., 40, 101337 (2023); https://doi.org/10.1016/j.coelec.2023.101337
F. Qian, C. Hu, W. Jiang, J. Zhang, L. Peng, L. Song and Q. Chen, Chem. Eng. J., 468, 143665 (2023); https://doi.org/10.1016/j.cej.2023.143665
F. Kong, Z. Ren, M. Norouzi Banis, L. Du, X. Zhou, G. Chen, L. Zhang, J. Li, S. Wang, M. Li, K. Doyle-Davis, Y. Ma, R. Li, A. Young, L. Yang, M. Markiewicz, Y. Tong, G. Yin, C. Du, J. Luo and X. Sun, ACS Catal., 10, 4205 (2020); https://doi.org/10.1021/acscatal.9b05133
E. Wang, L. Luo, Y. Feng, A. Wu, H. Li, X. Luo, Y. Guo, Z. Tan, F. Zhu, X. Yan, Q. Kang, Z. Zhuang, D. Yang, S. Shen and J. Zhang, J. Energy Chem., 93, 157 (2024); https://doi.org/10.1016/j.jechem.2024.01.054
E. Antolini, Int. J. Energy Res., 2018, 4134 (2018); https://doi.org/10.1002/er.4134
U.A. Paulus, A. Wokaun, G.G. Scherer, T.J. Schmidt, V. Stamenkovic, V. Radmilovic, N.M. Markovic and P.N. Ross, J. Phys. Chem. B, 106, 4181 (2022); https://doi.org/10.1021/jp013442l
P. Weber, D.J. Weber, C. Dosche and M. Oezaslan, ACS Catal., 12, 6394 (2022); https://doi.org/10.1021/acscatal.2c00514
J. Cui, D. Zhang, Z. Liu, C. Li, T. Zhang, S. Yin, Y. Song, H. Li, H. Li and C. Li, Nat. Commun., 15, 9458 (2024); https://doi.org/10.1038/s41467-024-53808-y
Y. Wan, L. Yu, B. Yang, C. Li, C. Fang, W. Guo, F.-X. Xiao and Y. Lin, J. Energy Chem., 93, 538 (2024); https://doi.org/10.1016/j.jechem.2024.01.074
F.-D. Kong, S. Zhang, G.-P. Yin, N. Zhang, Z.-B. Wang and C.-Y. Du, Electrochem. Commun., 14, 63 (2012); https://doi.org/10.1016/j.elecom.2011.11.002
Y. Zhou, R. Lu, X. Tao, Z. Qiu, G. Chen, J. Yang, Y. Zhao, X. Feng and K. Müllen, J. Am. Chem. Soc., 145, 3647 (2023); https://doi.org/10.1021/jacs.2c12933
S. Liu, Q. Meyer, Y. Li, T. Zhao, Z. Su, K. Ching and C. Zhao, Chem. Commun., 58, 2323 (2022); https://doi.org/10.1039/D1CC07042H
S. Yin, H. Yi, M. Liu, J. Yang, S. Yang, B.-W. Zhang, L. Chen, X. Cheng, H. Huang, R. Huang, Y. Jiang, H. Liao and S. Sun, Nat. Commun., 15, 6229 (2024); https://doi.org/10.1038/s41467-024-50629-x
K. Dhanabalan, M. Perumalsamy, G. Sriram, N. Murugan, Shalu, T. Sadhasivam and T.H. Oh, Energies, 16, 4950 (2023); https://doi.org/10.3390/en16134950
Q.H. Nguyen, V.D.C. Tinh, S. Oh, T.M. Pham, T.N. Tu, D. Kim, J. Han, K. Im and J. Kim, Chem. Eng. J., 481, 148508 (2024); https://doi.org/10.1016/j.cej.2023.148508
W. Xiaojuan, Z. Junwen, F. He and L. Wei, J. Mater. Chem. A Mater. Energy Sustain., 2, 14064 (2014); https://doi.org/10.1039/C4TA01506A
K. Senarathna, H. Randiligama and G. Rajapakse, RSC Adv., 6, 112853 (2016); https://doi.org/10.1039/C6RA23100D
M. Rajapakse, K. Murakami, N. Bandara and R. Rajapakse, Electrochim. Acta, 55, 2490 (2010); https://doi.org/10.1016/j.electacta.2009.12.015
C. Senarathna and R. Rajapakse, J. Mech. Eng. Automation, 8, 39 (2018); http://article.sapub.org/10.5923.j.jmea.20180802.01.html
P. Trogadas, T.F. Fuller and P. Strasser, Carbon, 75, 5 (2014); https://doi.org/10.1016/j.carbon.2014.04.005
E.C.M. Barbosa, L.S. Parreira, I.C. de Freitas, L.R. Aveiro, D.C. de Oliveira, M.C. dos Santos and P.H.C. Camargo, ACS Appl. Energy Mater., 2, 5759 (2019); https://doi.org/10.1021/acsaem.9b00879
W. Shi, P. Ah, L. Zhengyang and X. Shiyu, Electrochim. Acta, 394, 139127 (2021); https://doi.org/10.1016/j.electacta.2021.139127
S. Shanmugam and A. Gedanken, J. Phys. Chem. C, 113, 18707 (2009); https://doi.org/10.1021/jp908322h
C. Zheng, X. Sun, Y. Qin, J. Li, G. Jin, X. Tong and N. Yang, Adv. Sustain. Syst., 8, 2300556 (2024); https://doi.org/10.1002/adsu.202300556
F. Ando, T. Gunji, T. Tanabe, I. Fukano, H.D. Abruña, J. Wu, T. Ohsaka and F. Matsumoto, ACS Catal., 11, 9317 (2021); https://doi.org/10.1021/acscatal.1c01868
J. Milikić, S. Stojanović, L. Damjanović and R. Vasili, Synth. Met., 292, 117231 (2023); https://doi.org/10.1016/j.synthmet.2022.117231
L. Jing, Z. Hu, H. Zhuo and W. Zhongzhe, J. Mater. Chem. A Mater. Energy Sustain., 6, 2264 (2018); https://doi.org/10.1039/C7TA09831F
J.T.L. Gamler, A. Leonardi, H.M. Ashberry, N.N. Daanen, Y. Losovyj, R.R. Unocic, M. Engel and S.E. Skrabalak, ACS Nano, 13, 4008 (2019); https://doi.org/10.1021/acsnano.8b08007
H. Fan, L. Xin, B. Lei and Y. Liu, J. Alloys Compd., 913, 165257 (2022); https://doi.org/10.1016/j.jallcom.2022.165257
X. Xiao, Z. Fang and D. Yu, Front. Mater., 6, 219 (2019); https://doi.org/10.3389/fmats.2019.00219
L. Cao, H. Yang, X. Ai and F. Xiao, J. Electroanal. Chem., 557, 127 (2003); https://doi.org/10.1016/S0022-0728(03)00355-3
F. Cheng, Y. Su, J. Liang, Z. Tao and J. Chen, Chem. Mater., 22, 898 (2009); https://doi.org/10.1021/cm901698s
M. Yin, H. Miao, R. Hu, Z. Sun and H. Li, J. Power Sources, 494, 229779 (2021); https://doi.org/10.1016/j.jpowsour.2021.229779