Copyright (c) 2024 Jeyavijayan S, S. SUMATHI, N. KARTHIK, A. KARTHIKEYAN, PALANI MURUGAN, V.S. KUNJUMOL
This work is licensed under a Creative Commons Attribution 4.0 International License.
Molecular Structure, Spectroscopy, Molecular Docking and ADMET Studies of 2,5-Dimethylbenzaldehyde Semicarbazone as Potent Breast Cancer Agent
Corresponding Author(s) : S. Jeyavijayan
Asian Journal of Chemistry,
Vol. 36 No. 9 (2024): Vol 36 Issue 9, 2024
Abstract
The vibrational wavenumbers of 2,5-dimethylbenzaldehyde semicarbazone (DBS) were compared using the DFT-B3LYP/6-311++G(d,p) method after the FTIR and FT-Raman spectra were measured in the ranges of 4000-400 cm-1 and 4000-0 cm-1, respectively. The computed and experimental XRD results were compared with the optimized geometries. The energy gap between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) as well as the molecule electrostatic potentials (MEP) has been illustrated using charge density distributions indicative of the biological response. The absorption spectra were generated using time-dependent density functional theory calculations on the same basis set. An investigation of natural bonds has revealed strong electron delocalization whereas the electrical properties of the molecule have been elucidated using the Fukui function and Mulliken charge analysis. Molecular orbital contributions were investigated using densities of states (DOS) spectrum. The docking investigation, which was conducted against the protein 1AQU associated with breast cancer revealed that the largest binding energy was -8.3 kcal/mol. To assess the drug-likeness of the compound, an ADMET analysis has also been conducted and examined. Novel insights on the molecular structure will become possible as a result of these theoretical findings.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Ahmad, Adv. Exp. Med. Biol., 1152, 1 (2019); https://doi.org/10.1007/978-3-030-20301-6_1
- F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre and A. Jemal, CA Cancer J. Clin., 68, 394 (2018); https://doi.org/10.3322/caac.21492
- W. Cao, H.-D. Chen, Y.-W. Yu, N. Li, W.-Q. Chen and J. Ni, Chin. Med. J., 134, 783 (2021); https://doi.org/10.1097/CM9.0000000000001474
- J. Zhang, Y. Wu, Y. Li, S. Li, J. Liu, X. Yang, G. Xia and G. Wang, Phytomedicine, 129, 155600 (2024); https://doi.org/10.1016/j.phymed.2024.155600
- M. Muthukkumar, T. Bhuvaneswari, G. Venkatesh, C. Kamal, P. Vennila, S. Armakoviæ, S.J. Armakovic, Y.S. Mary and C.Y. Panicker, J. Mol. Liq., 272, 481 (2018); https://doi.org/10.1016/j.molliq.2018.09.123
- I.A. Mir, Q.U. Ain, T. Qadir, A.Q. Malik, S. Jan, S. Shahverdi and S.A. Nabi, J. Mol. Struct., 1295, 136216 (2024); https://doi.org/10.1016/j.molstruc.2023.136216
- R. Maity, B. Manna, S. Maity, K. Jana, T. Maity, M. Afzal, N. Sepay and B.C. Samanta, Inorganics, 12, 19 (2024); https://doi.org/10.3390/inorganics12010019
- A. Ramalingam, S. Sambandam, M. Medimagh, O. Al-Dossary, N. Issaoui and M.J. Wojcik, J. King Saud Univ. Sci., 33, 101632 (2021); https://doi.org/10.1016/j.jksus.2021.101632
- I. Jomaa, N. Issaoui, T. Roisnel and H. Marouani, J. Mol. Struct., 1242, 130730 (2021); https://doi.org/10.1016/j.molstruc.2021.130730
- A. Sagaama, N. Issaoui, O. Al-Dossary, A.S. Kazachenko and M.J. Wojcik, J. King Saud Univ. Sci., 33, 101606 (2021); https://doi.org/10.1016/j.jksus.2021.101606
- A.S. Kazachenko, Y.N. Malyar, N.Y. Vasilyeva, V.S. Borovkova and N. Issaoui, Biomass Convers. Biorefin., 13, 1004 (2021); https://doi.org/10.1007/s13399-021-01895-y
- S. Bahceli, E.K. Sarýkaya and O. Dereli, ChemistrySelect, 9, e202400054 (2024); https://doi.org/10.1002/slct.202400054
- A. Ramalingam, C. Duraisamy, R. Ramarajan, A. Imojara, S. Sambandam, H. Louis and I. Benjamin, J. Mol. Struct., 1299, 137031 (2024); https://doi.org/10.1016/j.molstruc.2023.137031
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- A. Mishra, D. Sharma and S.N. Tiwari, Indian J Pure Appl Phys., 61, 810 (2023); https://doi.org/10.56042/ijpap.v61i9.3125
- M. Raja, R. Raj Muhamed, S. Muthu and M. Suresh, J. Mol. Struct., 1141, 284 (2017); https://doi.org/10.1016/j.molstruc.2017.03.117
- V. Latha, V. Gomathi and A. Rajeshkanna, Indian J. Biochem. Biophys., 60, 844 (2023); https://doi.org/10.56042/ijbb.v60i11.6067
- M.J. Frisch, G.W. Trucks, H.B. Schlegal, G.E. Scuseria, M.A. Robb, J.R. Cheesman, V.G. Zakrzewski, J.A. Montgomerg Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, R. Cammi, B. Mennucci,M. Cossi, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J.J. Dannenberg, D.K. Malich, A.D. Rabuck, K. Raghavachari, J.V. Ortiz, J.B. Foresman, J. Cioslowski, A.G. Baboul, B.B. Stetanov, A. Liashenko, P. Piskorz, G. Liu, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle and J.A. Pople, GAUSSIAN 09, Revision A 11.4, Gaussian, Inc, Pittsburgh PA (2009).
- R. Dennington, T. Keith and J. Millam, GaussView, Version 5, Semichem Inc., Shawnee Mission KS (2009).
- M.H. Jamroz, Vibrational energy distribution analysis: VEDA 4 Program, Warsaw, Poland, (2004).
- N.M. O’boyle, A.L. Tenderholt and K.M. Langner, J. Comput. Chem., 29, 839 (2008); https://doi.org/10.1002/jcc.20823
- D. Seeliger and B.L. de Groot, J. Comput. Aided Mol. Des., 24, 417 (2010); https://doi.org/10.1007/s10822-010-9352-6
- O. Trott and A.J. Olson, J. Comput. Chem., 31, 455 (2010); https://doi.org/10.1002/jcc.21334
- U.P. Mohan, S. Kunjiappan, P.B. Tirupathi Pichiah and S. Arunachalam, 3 Biotech., 11, 1 (2021); https://doi.org/10.1007/s13205-020-02530-9
- S. Kim, P.A. Thiessen, E.E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B.A. Shoemaker, J. Wang, B. Yu, J. Zhang and S.H. Bryant, Nucleic Acids Res., 44(D1), D1202 (2016); https://doi.org/10.1093/nar/gkv951
- S. Duklan, S. Saha, V. Jakhmola, N. Gairola, P. Pandey, M.P. Singh and S.M.A. Kawsar, Adv. J. Chem. Sec. A, 7, 459 (2024); https://doi.org/10.48309/AJCA.2024.448978.1499
- A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
- Y. Kia, H. Osman, V. Murugaiyah, M. Hemamalini and H.-K. Fun, Acta Crystallogr. Sect. E Struct. Rep. Online, 67, o242 (2011); https://doi.org/10.1107/S1600536810052797
- Y. Unal, W. Nassif, B.C. Ozaydin and K. Sayin, Vib. Spectrosc., 112, 103189 (2021); https://doi.org/10.1016/j.vibspec.2020.103189
- S.L. Dhonnar, N.V. Sadgir, V.A. Adole and B.S. Jagdale, Adv. J. Chem. A, 4, 220 (2021); https://doi.org/10.22034/AJCA.2021.283003.1254
- E. Gobinath, S. Jeyavijayan, R.J. Xavier and J. Indian, Pure Appl. Phys., 55, 541 (2017).
- S. Ramalingam and S. Periandy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 78, 835 (2011); https://doi.org/10.1016/j.saa.2010.12.043
- M. Karabacak, E. Sahin, M. Cinar, I. Erol and M. Kurt, J. Mol. Struct., 886, 148 (2008); https://doi.org/10.1016/j.molstruc.2007.11.014
- N. Karthik, S. Jeyavijayan and S. Sumathi, Indian J. Biochem. Biophys., 61, 204 (2024); https://doi.org/10.56042/ijbb.v61i4.8236
- C.S. Abraham, J.C. Prasana, S. Muthu, F. Rizwana B and M. Raja, J. Mol. Struct., 1160, 393 (2018); https://doi.org/10.1016/j.molstruc.2018.02.022
- J.G. Malecki, Polyhedron, 29, 1973 (2010); https://doi.org/10.1016/j.poly.2010.03.015
- K. Parimala and V. Balachandran, Spectrochim. Acta A Mol. Biomol. Spectrosc., 81, 711 (2011); https://doi.org/10.1016/j.saa.2011.07.011
- S. Uzun, Z. Esen, E. Koç, N.C. Usta and M. Ceylan, J. Mol. Struct., 1178, 450 (2019); https://doi.org/10.1016/j.molstruc.2018.10.001
- N.A. Wazzan and F.M. Mahgoub, Open J. Phys. Chem., 4, 6 (2014); https://doi.org/10.4236/ojpc.2014.41002
- S. Halder, P.C. Mandal, M. Guin and S. Konar, J. Struct. Chem., 65, 1 (2024); https://doi.org/10.1134/S0022476624010013
- C. Morell, A. Grand and A. Toro-Labbe, J. Phys. Chem. A, 109, 205 (2005); https://doi.org/10.1021/jp046577a
- R. Singla, K.B. Gupta, S. Upadhyay, M. Dhiman and V. Jaitak, Eur. J. Med. Chem., 146, 206 (2018); https://doi.org/10.1016/j.ejmech.2018.01.051
- S. Dettmann, K. Szymanowitz, A. Wellner, A. Schiedel, C.E. Müller and R. Gust, Bioorg. Med. Chem., 18, 4905 (2010); https://doi.org/10.1016/j.bmc.2010.06.016
- S. Jeyavijayan, M. Ramuthai and P. Murugan, Asian J. Chem., 34, 2025 (2022); https://doi.org/10.14233/ajchem.2022.23677
- D.E.V. Pires, T.L. Blundell and D.B. Ascher, J. Med. Chem., 58, 4066 (2015); https://doi.org/10.1021/acs.jmedchem.5b00104
- S.N. Mali and A. Pandey, J. Comput. Biophys. Chem., 20, 267 (2021); https://doi.org/10.1142/S2737416521500125
- Z. Ya’u Ibrahim, A. Uzairu, G. Shallangwa and S. Abechi, Sci. Afr., 10, e00570 (2020); https://doi.org/10.1016/j.sciaf.2020.e00570
- F.A. Muslikh, E. Kurniawati, B. Maarif, S.Z. Zenmas, N. Salmasfattah, A.A. Dhafin and F. Prasetyawan, Int. J. Contemp. Sci., 1, 33 (2023).
- M.A. Zolotovskaia, M.I. Sorokin, A.A. Emelianova, N.M. Borisov, D.V. Kuzmin, P. Borger, A.V. Garazha and A.A. Buzdin, Front. Pharmacol., 10, 1 (2019); https://doi.org/10.3389/fphar.2019.00001
- K.A. Azzam, Eng. Technol., 325, 14 (2023); https://doi.org/10.31643/2023/6445.13
- G. Aditya, C. Aman, S. Abhishek, D. Nanzeen, J. Swati, S. Nischal, G. Pratik and M. Rajesh, Indian J. Biochem. Biophys., 59, 848 (2022); https://doi.org/10.56042/ijbb.v59i8.62908
References
A. Ahmad, Adv. Exp. Med. Biol., 1152, 1 (2019); https://doi.org/10.1007/978-3-030-20301-6_1
F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre and A. Jemal, CA Cancer J. Clin., 68, 394 (2018); https://doi.org/10.3322/caac.21492
W. Cao, H.-D. Chen, Y.-W. Yu, N. Li, W.-Q. Chen and J. Ni, Chin. Med. J., 134, 783 (2021); https://doi.org/10.1097/CM9.0000000000001474
J. Zhang, Y. Wu, Y. Li, S. Li, J. Liu, X. Yang, G. Xia and G. Wang, Phytomedicine, 129, 155600 (2024); https://doi.org/10.1016/j.phymed.2024.155600
M. Muthukkumar, T. Bhuvaneswari, G. Venkatesh, C. Kamal, P. Vennila, S. Armakoviæ, S.J. Armakovic, Y.S. Mary and C.Y. Panicker, J. Mol. Liq., 272, 481 (2018); https://doi.org/10.1016/j.molliq.2018.09.123
I.A. Mir, Q.U. Ain, T. Qadir, A.Q. Malik, S. Jan, S. Shahverdi and S.A. Nabi, J. Mol. Struct., 1295, 136216 (2024); https://doi.org/10.1016/j.molstruc.2023.136216
R. Maity, B. Manna, S. Maity, K. Jana, T. Maity, M. Afzal, N. Sepay and B.C. Samanta, Inorganics, 12, 19 (2024); https://doi.org/10.3390/inorganics12010019
A. Ramalingam, S. Sambandam, M. Medimagh, O. Al-Dossary, N. Issaoui and M.J. Wojcik, J. King Saud Univ. Sci., 33, 101632 (2021); https://doi.org/10.1016/j.jksus.2021.101632
I. Jomaa, N. Issaoui, T. Roisnel and H. Marouani, J. Mol. Struct., 1242, 130730 (2021); https://doi.org/10.1016/j.molstruc.2021.130730
A. Sagaama, N. Issaoui, O. Al-Dossary, A.S. Kazachenko and M.J. Wojcik, J. King Saud Univ. Sci., 33, 101606 (2021); https://doi.org/10.1016/j.jksus.2021.101606
A.S. Kazachenko, Y.N. Malyar, N.Y. Vasilyeva, V.S. Borovkova and N. Issaoui, Biomass Convers. Biorefin., 13, 1004 (2021); https://doi.org/10.1007/s13399-021-01895-y
S. Bahceli, E.K. Sarýkaya and O. Dereli, ChemistrySelect, 9, e202400054 (2024); https://doi.org/10.1002/slct.202400054
A. Ramalingam, C. Duraisamy, R. Ramarajan, A. Imojara, S. Sambandam, H. Louis and I. Benjamin, J. Mol. Struct., 1299, 137031 (2024); https://doi.org/10.1016/j.molstruc.2023.137031
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
A. Mishra, D. Sharma and S.N. Tiwari, Indian J Pure Appl Phys., 61, 810 (2023); https://doi.org/10.56042/ijpap.v61i9.3125
M. Raja, R. Raj Muhamed, S. Muthu and M. Suresh, J. Mol. Struct., 1141, 284 (2017); https://doi.org/10.1016/j.molstruc.2017.03.117
V. Latha, V. Gomathi and A. Rajeshkanna, Indian J. Biochem. Biophys., 60, 844 (2023); https://doi.org/10.56042/ijbb.v60i11.6067
M.J. Frisch, G.W. Trucks, H.B. Schlegal, G.E. Scuseria, M.A. Robb, J.R. Cheesman, V.G. Zakrzewski, J.A. Montgomerg Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, R. Cammi, B. Mennucci,M. Cossi, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J.J. Dannenberg, D.K. Malich, A.D. Rabuck, K. Raghavachari, J.V. Ortiz, J.B. Foresman, J. Cioslowski, A.G. Baboul, B.B. Stetanov, A. Liashenko, P. Piskorz, G. Liu, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle and J.A. Pople, GAUSSIAN 09, Revision A 11.4, Gaussian, Inc, Pittsburgh PA (2009).
R. Dennington, T. Keith and J. Millam, GaussView, Version 5, Semichem Inc., Shawnee Mission KS (2009).
M.H. Jamroz, Vibrational energy distribution analysis: VEDA 4 Program, Warsaw, Poland, (2004).
N.M. O’boyle, A.L. Tenderholt and K.M. Langner, J. Comput. Chem., 29, 839 (2008); https://doi.org/10.1002/jcc.20823
D. Seeliger and B.L. de Groot, J. Comput. Aided Mol. Des., 24, 417 (2010); https://doi.org/10.1007/s10822-010-9352-6
O. Trott and A.J. Olson, J. Comput. Chem., 31, 455 (2010); https://doi.org/10.1002/jcc.21334
U.P. Mohan, S. Kunjiappan, P.B. Tirupathi Pichiah and S. Arunachalam, 3 Biotech., 11, 1 (2021); https://doi.org/10.1007/s13205-020-02530-9
S. Kim, P.A. Thiessen, E.E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B.A. Shoemaker, J. Wang, B. Yu, J. Zhang and S.H. Bryant, Nucleic Acids Res., 44(D1), D1202 (2016); https://doi.org/10.1093/nar/gkv951
S. Duklan, S. Saha, V. Jakhmola, N. Gairola, P. Pandey, M.P. Singh and S.M.A. Kawsar, Adv. J. Chem. Sec. A, 7, 459 (2024); https://doi.org/10.48309/AJCA.2024.448978.1499
A. Daina, O. Michielin and V. Zoete, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
Y. Kia, H. Osman, V. Murugaiyah, M. Hemamalini and H.-K. Fun, Acta Crystallogr. Sect. E Struct. Rep. Online, 67, o242 (2011); https://doi.org/10.1107/S1600536810052797
Y. Unal, W. Nassif, B.C. Ozaydin and K. Sayin, Vib. Spectrosc., 112, 103189 (2021); https://doi.org/10.1016/j.vibspec.2020.103189
S.L. Dhonnar, N.V. Sadgir, V.A. Adole and B.S. Jagdale, Adv. J. Chem. A, 4, 220 (2021); https://doi.org/10.22034/AJCA.2021.283003.1254
E. Gobinath, S. Jeyavijayan, R.J. Xavier and J. Indian, Pure Appl. Phys., 55, 541 (2017).
S. Ramalingam and S. Periandy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 78, 835 (2011); https://doi.org/10.1016/j.saa.2010.12.043
M. Karabacak, E. Sahin, M. Cinar, I. Erol and M. Kurt, J. Mol. Struct., 886, 148 (2008); https://doi.org/10.1016/j.molstruc.2007.11.014
N. Karthik, S. Jeyavijayan and S. Sumathi, Indian J. Biochem. Biophys., 61, 204 (2024); https://doi.org/10.56042/ijbb.v61i4.8236
C.S. Abraham, J.C. Prasana, S. Muthu, F. Rizwana B and M. Raja, J. Mol. Struct., 1160, 393 (2018); https://doi.org/10.1016/j.molstruc.2018.02.022
J.G. Malecki, Polyhedron, 29, 1973 (2010); https://doi.org/10.1016/j.poly.2010.03.015
K. Parimala and V. Balachandran, Spectrochim. Acta A Mol. Biomol. Spectrosc., 81, 711 (2011); https://doi.org/10.1016/j.saa.2011.07.011
S. Uzun, Z. Esen, E. Koç, N.C. Usta and M. Ceylan, J. Mol. Struct., 1178, 450 (2019); https://doi.org/10.1016/j.molstruc.2018.10.001
N.A. Wazzan and F.M. Mahgoub, Open J. Phys. Chem., 4, 6 (2014); https://doi.org/10.4236/ojpc.2014.41002
S. Halder, P.C. Mandal, M. Guin and S. Konar, J. Struct. Chem., 65, 1 (2024); https://doi.org/10.1134/S0022476624010013
C. Morell, A. Grand and A. Toro-Labbe, J. Phys. Chem. A, 109, 205 (2005); https://doi.org/10.1021/jp046577a
R. Singla, K.B. Gupta, S. Upadhyay, M. Dhiman and V. Jaitak, Eur. J. Med. Chem., 146, 206 (2018); https://doi.org/10.1016/j.ejmech.2018.01.051
S. Dettmann, K. Szymanowitz, A. Wellner, A. Schiedel, C.E. Müller and R. Gust, Bioorg. Med. Chem., 18, 4905 (2010); https://doi.org/10.1016/j.bmc.2010.06.016
S. Jeyavijayan, M. Ramuthai and P. Murugan, Asian J. Chem., 34, 2025 (2022); https://doi.org/10.14233/ajchem.2022.23677
D.E.V. Pires, T.L. Blundell and D.B. Ascher, J. Med. Chem., 58, 4066 (2015); https://doi.org/10.1021/acs.jmedchem.5b00104
S.N. Mali and A. Pandey, J. Comput. Biophys. Chem., 20, 267 (2021); https://doi.org/10.1142/S2737416521500125
Z. Ya’u Ibrahim, A. Uzairu, G. Shallangwa and S. Abechi, Sci. Afr., 10, e00570 (2020); https://doi.org/10.1016/j.sciaf.2020.e00570
F.A. Muslikh, E. Kurniawati, B. Maarif, S.Z. Zenmas, N. Salmasfattah, A.A. Dhafin and F. Prasetyawan, Int. J. Contemp. Sci., 1, 33 (2023).
M.A. Zolotovskaia, M.I. Sorokin, A.A. Emelianova, N.M. Borisov, D.V. Kuzmin, P. Borger, A.V. Garazha and A.A. Buzdin, Front. Pharmacol., 10, 1 (2019); https://doi.org/10.3389/fphar.2019.00001
K.A. Azzam, Eng. Technol., 325, 14 (2023); https://doi.org/10.31643/2023/6445.13
G. Aditya, C. Aman, S. Abhishek, D. Nanzeen, J. Swati, S. Nischal, G. Pratik and M. Rajesh, Indian J. Biochem. Biophys., 59, 848 (2022); https://doi.org/10.56042/ijbb.v59i8.62908