Copyright (c) 2024 Dr. ANJU LINDA VARGHESE
This work is licensed under a Creative Commons Attribution 4.0 International License.
Exploring the Third-Order Non-linear Optical Responses and Optical Limiting Properties of p-Nitroaniline Picrate: A Theoretical and Experimental Study
Corresponding Author(s) : Anju Linda Varghese
Asian Journal of Chemistry,
Vol. 36 No. 9 (2024): Vol 36 Issue 9, 2024
Abstract
The current study investigates the nonlinear optical behaviour of p-nitroaniline picrate, which has been synthesized and characterized. Its third-order non-linear optical properties were investigated via Z-scan studies. p-Nitroaniline picrate demonstrates a reverse saturable absorption, as indicated by a positive absorption coefficient (b), which is of the order 10–12 m/W. Closed aperture data indicate a positive refractive non-linearity due to self-focusing, with non-linear refractive index (n2), third-order susceptibility (χ(3)) and second-order hyperpolarizability (g) in order of 10–19 m2/W, 10–13 esu and 10–34 esu, respectively. Theoretical calculations corroborated the experimental findings, emphasizing the significant third-order non-linearities of p-nitroaniline picrate. An optical limiting property is demonstrated with a threshold of 16.32 J/cm2. Low HOMO-LUMO energy gaps, intermolecular hydrogen bonding and intramolecular charge transfer interactions are the properties that are related to these qualities according to DFT research. Therefore, p-nitroaniline picrate is highly recommended for the optical limiting applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Ahmed, X. Jiang, C. Wang, U.E. Kalsoom, B. Wang, Y. Muhammad, J. Khan, Y. Duan, H. Zhu, X. Ren and H. Zhang, Adv. Opt. Mater., 9, 2001671 (2021); https://doi.org/10.1002/adom.202001671
- N.C. Panoiu, W.E.I. Sha, D.Y. Lei and G.-C. Li, J. Opt., 20, 083001 (2018); https://doi.org/10.1088/2040-8986/aac8ed
- S. Khorasani, Commum. Theor. Phys., 70, 344 (2018); https://doi.org/10.1088/0253-6102/70/3/344
- L. Sirleto and G.C. Righini, Micromachines, 14, 604 (2023); https://doi.org/10.3390/mi14030604
- G. Lin and Q. Song, Laser Photonics Rev., 16, 2100184 (2022); https://doi.org/10.1002/lpor.202100184
- M. Li, C.-L. Zou, C.-H. Dong and D.-X. Dai, Opt. Express, 26, 27294 (2018); https://doi.org/10.1364/OE.26.027294
- B. Gu, C. Zhao, A. Baev, K.-T. Yong, S. Wen and P.N. Prasad, Adv. Opt. Photonics, 8, 328 (2016); https://doi.org/10.1364/AOP.8.000328
- S.K. Turitsyn, J.E. Prilepsky, S.T. Le, S. Wahls, L.L. Frumin, M. Kamalian and S.A. Derevyanko, Optica, 4, 307 (2017); https://doi.org/10.1364/OPTICA.4.000307
- Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji and H. Zhang, Adv. Opt. Mater., 6, 1701287 (2018); https://doi.org/10.1002/adom.201701287
- E. Mathew, V.V. Salian, B. Narayana and I.H. Joe, J. Mol. Struct., 1250, 131704 (2022); https://doi.org/10.1016/j.molstruc.2021.131704
- D. Dini, M.J.F. Calvete and M. Hanack, Chem. Rev., 116, 13043 (2016); https://doi.org/10.1021/acs.chemrev.6b00033
- S. Nandhini and P. Murugakoothan, Opt. Mater., 113, 110714 (2021); https://doi.org/10.1016/j.optmat.2020.110714
- D. Arthi, E. Ilango, M. Mercina, D. Jayaraman and V. Joseph, J. Mol. Struct., 1127, 156 (2017); https://doi.org/10.1016/j.molstruc.2016.07.030
- R.O.M.U. Jauhar, V. Viswanathan, P. Vivek, G. Vinitha, D. Velmurugan and P. Murugakoothan, RSC Adv., 6, 57977 (2016); https://doi.org/10.1039/C6RA10477K
- P. Karthiga Devi and K. Venkatachalam, J. Mater. Sci. Mater. Electron., 27, 8590 (2016); https://doi.org/10.1007/s10854-016-4877-7
- E. Shobhana, B. Balraj, M. Bharathi and V. Sathyanarayanamoorthi, Asian J. Chem., 35, 2603 (2023); https://doi.org/10.14233/ajchem.2023.28258
- P.K. Sivakumar, M.K. Kumar, R.M. Kumar and R. Kanagadurai, Mod. Phys. Lett. B, 27, 1350235 (2013); https://doi.org/10.1142/S0217984913502357
- S.S. Thakare, M.C. Sreenath, S. Chitrambalam, I.H. Joe and N. Sekar, Opt. Mater., 64, 453 (2017); https://doi.org/10.1016/j.optmat.2017.01.020
- M.C. Sreenath, I. Hubert Joe and V.K. Rastogi, Opt. Laser Technol., 108, 218 (2018); https://doi.org/10.1016/j.optlastec.2018.06.056
- J.S.-D. Tovar, S. Valbuena-Duarte and F. Racedo-Niebles, Rev. Fac. Ingenieria, 86, 27 (2018); https://doi.org/10.17533/udea.redin.n86a04
- Y.S. Mary, H.T. Varghese, C.Y. Panicker, M. Girisha, B.K. Sagar, H.S. Yathirajan, A.A. Al-Saadi and C. Van Alsenoy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 150, 543 (2015); https://doi.org/10.1016/j.saa.2015.05.090
- A. Linda Varghese, I. Abraham and M. George, Mater. Today Proc., 9, 92 (2019); https://doi.org/10.1016/j.matpr.2019.02.041
- N. Andijani and N.A. Wazzan, Results Phys., 11, 605 (2018); https://doi.org/10.1016/j.rinp.2018.10.002
- B.K. Paul and N. Guchhait, Comput. Theor. Chem., 972, 1 (2011); https://doi.org/10.1016/j.comptc.2011.06.004
References
S. Ahmed, X. Jiang, C. Wang, U.E. Kalsoom, B. Wang, Y. Muhammad, J. Khan, Y. Duan, H. Zhu, X. Ren and H. Zhang, Adv. Opt. Mater., 9, 2001671 (2021); https://doi.org/10.1002/adom.202001671
N.C. Panoiu, W.E.I. Sha, D.Y. Lei and G.-C. Li, J. Opt., 20, 083001 (2018); https://doi.org/10.1088/2040-8986/aac8ed
S. Khorasani, Commum. Theor. Phys., 70, 344 (2018); https://doi.org/10.1088/0253-6102/70/3/344
L. Sirleto and G.C. Righini, Micromachines, 14, 604 (2023); https://doi.org/10.3390/mi14030604
G. Lin and Q. Song, Laser Photonics Rev., 16, 2100184 (2022); https://doi.org/10.1002/lpor.202100184
M. Li, C.-L. Zou, C.-H. Dong and D.-X. Dai, Opt. Express, 26, 27294 (2018); https://doi.org/10.1364/OE.26.027294
B. Gu, C. Zhao, A. Baev, K.-T. Yong, S. Wen and P.N. Prasad, Adv. Opt. Photonics, 8, 328 (2016); https://doi.org/10.1364/AOP.8.000328
S.K. Turitsyn, J.E. Prilepsky, S.T. Le, S. Wahls, L.L. Frumin, M. Kamalian and S.A. Derevyanko, Optica, 4, 307 (2017); https://doi.org/10.1364/OPTICA.4.000307
Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji and H. Zhang, Adv. Opt. Mater., 6, 1701287 (2018); https://doi.org/10.1002/adom.201701287
E. Mathew, V.V. Salian, B. Narayana and I.H. Joe, J. Mol. Struct., 1250, 131704 (2022); https://doi.org/10.1016/j.molstruc.2021.131704
D. Dini, M.J.F. Calvete and M. Hanack, Chem. Rev., 116, 13043 (2016); https://doi.org/10.1021/acs.chemrev.6b00033
S. Nandhini and P. Murugakoothan, Opt. Mater., 113, 110714 (2021); https://doi.org/10.1016/j.optmat.2020.110714
D. Arthi, E. Ilango, M. Mercina, D. Jayaraman and V. Joseph, J. Mol. Struct., 1127, 156 (2017); https://doi.org/10.1016/j.molstruc.2016.07.030
R.O.M.U. Jauhar, V. Viswanathan, P. Vivek, G. Vinitha, D. Velmurugan and P. Murugakoothan, RSC Adv., 6, 57977 (2016); https://doi.org/10.1039/C6RA10477K
P. Karthiga Devi and K. Venkatachalam, J. Mater. Sci. Mater. Electron., 27, 8590 (2016); https://doi.org/10.1007/s10854-016-4877-7
E. Shobhana, B. Balraj, M. Bharathi and V. Sathyanarayanamoorthi, Asian J. Chem., 35, 2603 (2023); https://doi.org/10.14233/ajchem.2023.28258
P.K. Sivakumar, M.K. Kumar, R.M. Kumar and R. Kanagadurai, Mod. Phys. Lett. B, 27, 1350235 (2013); https://doi.org/10.1142/S0217984913502357
S.S. Thakare, M.C. Sreenath, S. Chitrambalam, I.H. Joe and N. Sekar, Opt. Mater., 64, 453 (2017); https://doi.org/10.1016/j.optmat.2017.01.020
M.C. Sreenath, I. Hubert Joe and V.K. Rastogi, Opt. Laser Technol., 108, 218 (2018); https://doi.org/10.1016/j.optlastec.2018.06.056
J.S.-D. Tovar, S. Valbuena-Duarte and F. Racedo-Niebles, Rev. Fac. Ingenieria, 86, 27 (2018); https://doi.org/10.17533/udea.redin.n86a04
Y.S. Mary, H.T. Varghese, C.Y. Panicker, M. Girisha, B.K. Sagar, H.S. Yathirajan, A.A. Al-Saadi and C. Van Alsenoy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 150, 543 (2015); https://doi.org/10.1016/j.saa.2015.05.090
A. Linda Varghese, I. Abraham and M. George, Mater. Today Proc., 9, 92 (2019); https://doi.org/10.1016/j.matpr.2019.02.041
N. Andijani and N.A. Wazzan, Results Phys., 11, 605 (2018); https://doi.org/10.1016/j.rinp.2018.10.002
B.K. Paul and N. Guchhait, Comput. Theor. Chem., 972, 1 (2011); https://doi.org/10.1016/j.comptc.2011.06.004