Copyright (c) 2024 MR. MAYURESH SHINDE, Dr. SHITALKUMAR PATIL, DR.NEELA BHATIA, DR. MANISH BHATIA
This work is licensed under a Creative Commons Attribution 4.0 International License.
Dual Tumor Targeting Ability of Fatty Acyl (Amide) Amino Acid Alkyl Ester Conjugates : In vitro Cytotoxicity and DNA Cleavage based Bioactivity
Corresponding Author(s) : Mayuresh Shinde
Asian Journal of Chemistry,
Vol. 36 No. 9 (2024): Vol 36 Issue 9, 2024
Abstract
In this work, the bioactivity of fatty acyl (amide) amino acid alkyl esters through cytotoxicity and DNA cleavage properties were assessed. The synthetic method utilized HBTU-catalyzed amide formation between the carboxyl group of stearic acid and linoleic acid and the amine group in L-glutamic acid dimethyl ester and L-methionine methyl ester. The conjugates were elucidated using FTIR, NMR and mass and evaluated for cytotoxicity (COLO-205, A549 cell lines). Conjugates 10a-c exhibited selective growth inhibitory effects on cancer cell lines, while no impact was detected on normal cells. Overall, there was a significant reduction in the proliferation of human colorectal (COLO-205) and lung cancer (A549) cancer cells. Conjugates 10a-c also exhibited favourable cytocompatibility on normal murine fibroblast (L929) cells. Conjugate 10c showed promiscuous in vitro cytotoxicity against colorectal (COLO-205) and lung (A549) cancer cells compared to conjugates 10a and 10b.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.-H. Xie, Y.-X. Chen and J.-Y. Fang, Signal Transduct. Target. Ther., 5, 22 (2020); https://doi.org/10.1038/s41392-020-0116-z
- Y. Xi and P. Xu, Transl. Oncol., 14, 101174 (2021); https://doi.org/10.1016/j.tranon.2021.101174
- F. Bishehsari, World J. Gastroenterol., 20, 6055 (2014); https://doi.org/10.3748/wjg.v20.i20.6055
- N. Akimoto, T. Ugai, R. Zhong, T. Hamada, K. Fujiyoshi, M. Giannakis, K. Wu, Y. Cao, K. Ng and S. Ogino, Nat. Rev. Clin. Oncol., 18, 230 (2021); https://doi.org/10.1038/s41571-020-00445-1
- R. Song, M. Murphy, C. Li, K. Ting, C. Soo and Z. Zheng, Drug Des. Devel. Ther., 12, 3117 (2018); https://doi.org/10.2147/DDDT.S165440
- L. D. Liu, F. Yang, F. Xiong and N. Gu, Theranostics, 6, 1306 (2016); https://doi.org/10.7150/thno.14858
- A.H. Mariamenatu and E.M. Abdu, J. Lipids, 2021, 1 (2021); https://doi.org/10.1155/2021/8848161
- D. Irby, C. Du and F. Li, Mol. Pharm., 14, 1325 (2017); https://doi.org/10.1021/acs.molpharmaceut.6b01027
- S.-N. Wang, Y.-H. Deng, H. Xu, H.-B. Wu, Y.-K. Qiu and D.-W. Chen, Eur. J. Pharm. Biopharm., 62, 32 (2006); https://doi.org/10.1016/j.ejpb.2005.07.004
- M. Jozwiak, A. Filipowska, F. Fiorino and M. Struga, Eur. J. Pharmacol., 871, 172937 (2020); https://doi.org/10.1016/j.ejphar.2020.172937
- M. Bhat, R. Jatyan, A. Mittal, R.I. Mahato and D. Chitkara, Chem. Phys. Lipids, 236, 105053 (2021); https://doi.org/10.1016/j.chemphyslip.2021.105053
- M.O. Bradley, C.S. Swindell, F.H. Anthony, P.A. Witman, P. Devanesan, N.L. Webb, S.D. Baker, A.C. Wolff and R.C. Donehower, J. Control. Release, 74, 233 (2001); https://doi.org/10.1016/S0168-3659(01)00321-2
- D.E. Blask, L.A. Sauer and R.T. Dauchy, Curr. Top. Med. Chem., 2, 113 (2002); https://doi.org/10.2174/1568026023394407
- J.L. Zaro, AAPS J., 17, 83 (2015); https://doi.org/10.1208/s12248-014-9670-z
- 15.P.V. Escriba, Biochim Biophys Acta, 1859, 1493 (2017); https://doi.org/10.1016/j.bbamem.2017.05.017
- H. Alkhzem, T.J. Woodman and I.S. Blagbrough, RSC Adv., 12, 19470 (2022); https://doi.org/10.1039/D2RA03281C
- R. Khaddaj-Mallat, C. Morin and E. Rousseau, Eur. J. Pharmacol., 792, 70 (2016); https://doi.org/10.1016/j.ejphar.2016.10.038
- S.N. Warnakulasuriya and H.P. Ziaul, Biomolecules, 4, 980 (2014); https://doi.org/10.3390/biom4040980
- W.G. Jiang, R.P. Bryce and D.F. Horrobin, Crit. Rev. Oncol. Hematol., 27, 179 (1998); https://doi.org/10.1016/S1040-8428(98)00003-1
- B.S. Chhikara, N. St. Jean, D. Mandal, A. Kumar and K. Parang, Eur. J. Med. Chem., 46, 2037 (2011); https://doi.org/10.1016/j.ejmech.2011.02.056
- M.N. Patel, M.R. Chhasatia, S.H. Patel, H.S. Bariya and V.R. Thakkar, Med. Chem., 24, 715 (2009); https://doi.org/10.1080/14756360802361423
- C. Park, N. Baek, R. Loebenberg and B.-J. Lee, J. Control. Rel., 324, 55 (2020); https://doi.org/10.1016/j.jconrel.2020.05.001
- T. Plotz, A.S. von Hanstein, B. Krummel, A. Laporte, I. Mehmeti and S. Lenzen, Biochim. Biophys. Acta Mol. Basis Dis., 1865, 165525 (2019); https://doi.org/10.1016/j.bbadis.2019.08.001
References
Y.-H. Xie, Y.-X. Chen and J.-Y. Fang, Signal Transduct. Target. Ther., 5, 22 (2020); https://doi.org/10.1038/s41392-020-0116-z
Y. Xi and P. Xu, Transl. Oncol., 14, 101174 (2021); https://doi.org/10.1016/j.tranon.2021.101174
F. Bishehsari, World J. Gastroenterol., 20, 6055 (2014); https://doi.org/10.3748/wjg.v20.i20.6055
N. Akimoto, T. Ugai, R. Zhong, T. Hamada, K. Fujiyoshi, M. Giannakis, K. Wu, Y. Cao, K. Ng and S. Ogino, Nat. Rev. Clin. Oncol., 18, 230 (2021); https://doi.org/10.1038/s41571-020-00445-1
R. Song, M. Murphy, C. Li, K. Ting, C. Soo and Z. Zheng, Drug Des. Devel. Ther., 12, 3117 (2018); https://doi.org/10.2147/DDDT.S165440
L. D. Liu, F. Yang, F. Xiong and N. Gu, Theranostics, 6, 1306 (2016); https://doi.org/10.7150/thno.14858
A.H. Mariamenatu and E.M. Abdu, J. Lipids, 2021, 1 (2021); https://doi.org/10.1155/2021/8848161
D. Irby, C. Du and F. Li, Mol. Pharm., 14, 1325 (2017); https://doi.org/10.1021/acs.molpharmaceut.6b01027
S.-N. Wang, Y.-H. Deng, H. Xu, H.-B. Wu, Y.-K. Qiu and D.-W. Chen, Eur. J. Pharm. Biopharm., 62, 32 (2006); https://doi.org/10.1016/j.ejpb.2005.07.004
M. Jozwiak, A. Filipowska, F. Fiorino and M. Struga, Eur. J. Pharmacol., 871, 172937 (2020); https://doi.org/10.1016/j.ejphar.2020.172937
M. Bhat, R. Jatyan, A. Mittal, R.I. Mahato and D. Chitkara, Chem. Phys. Lipids, 236, 105053 (2021); https://doi.org/10.1016/j.chemphyslip.2021.105053
M.O. Bradley, C.S. Swindell, F.H. Anthony, P.A. Witman, P. Devanesan, N.L. Webb, S.D. Baker, A.C. Wolff and R.C. Donehower, J. Control. Release, 74, 233 (2001); https://doi.org/10.1016/S0168-3659(01)00321-2
D.E. Blask, L.A. Sauer and R.T. Dauchy, Curr. Top. Med. Chem., 2, 113 (2002); https://doi.org/10.2174/1568026023394407
J.L. Zaro, AAPS J., 17, 83 (2015); https://doi.org/10.1208/s12248-014-9670-z
15.P.V. Escriba, Biochim Biophys Acta, 1859, 1493 (2017); https://doi.org/10.1016/j.bbamem.2017.05.017
H. Alkhzem, T.J. Woodman and I.S. Blagbrough, RSC Adv., 12, 19470 (2022); https://doi.org/10.1039/D2RA03281C
R. Khaddaj-Mallat, C. Morin and E. Rousseau, Eur. J. Pharmacol., 792, 70 (2016); https://doi.org/10.1016/j.ejphar.2016.10.038
S.N. Warnakulasuriya and H.P. Ziaul, Biomolecules, 4, 980 (2014); https://doi.org/10.3390/biom4040980
W.G. Jiang, R.P. Bryce and D.F. Horrobin, Crit. Rev. Oncol. Hematol., 27, 179 (1998); https://doi.org/10.1016/S1040-8428(98)00003-1
B.S. Chhikara, N. St. Jean, D. Mandal, A. Kumar and K. Parang, Eur. J. Med. Chem., 46, 2037 (2011); https://doi.org/10.1016/j.ejmech.2011.02.056
M.N. Patel, M.R. Chhasatia, S.H. Patel, H.S. Bariya and V.R. Thakkar, Med. Chem., 24, 715 (2009); https://doi.org/10.1080/14756360802361423
C. Park, N. Baek, R. Loebenberg and B.-J. Lee, J. Control. Rel., 324, 55 (2020); https://doi.org/10.1016/j.jconrel.2020.05.001
T. Plotz, A.S. von Hanstein, B. Krummel, A. Laporte, I. Mehmeti and S. Lenzen, Biochim. Biophys. Acta Mol. Basis Dis., 1865, 165525 (2019); https://doi.org/10.1016/j.bbadis.2019.08.001