Copyright (c) 2024 Tan Tai Nguyen
This work is licensed under a Creative Commons Attribution 4.0 International License.
Gold Nanoparticles for Targeting of Biomedical Applications: A Review
Corresponding Author(s) : Tan Tai Nguyen
Asian Journal of Chemistry,
Vol. 36 No. 8 (2024): Vol 36 Issue 8, 2024
Abstract
The advancement of techniques for synthesizing nanoparticles is an important step in the field of nanotechnology. Gold nanoparticles (AuNPs) are increasing popular for detection of a multitude of biomolecules, proteins and nucleic acids. Incorporating AuNPs onto the sensing surface of biosensors to identify molecules with improved signals has been the subject of extensive research in the past ten years. This brief review describes the methods of AuNPs synthesis and their applications. It also describes a recent method to enhance surface plasmon resonance (SPR) detection capabilities using AuNPs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Sardar, A.M. Funston, P. Mulvaney and R.W. Murray, Langmuir, 25, 13840 (2009); https://doi.org/10.1021/la9019475
- J. Foxley, M.A. Tofanelli, C.J. Ackerson and K.L. Knappenberger Jr. and T.D. Green, J. Phys. Chem. Lett., 14, 5210 (2023); https://doi.org/10.1021/acs.jpclett.3c01170
- M. van der Verren, V. Vykoukal, A. Styskalik, A.S. Malik, C. Aprile and D.P. Debecker, ACS Appl. Nano Mater., 5, 18977 (2022); https://doi.org/10.1021/acsanm.2c04786
- W.J. Stark, P.R. Stoessel, W. Wohlleben and A. Hafner, Chem. Soc. Rev., 44, 5793 (2015); https://doi.org/10.1039/C4CS00362D
- T.T. Nguyen, H.T. Ma, P. Avti, M.J. Bashir, C.A. Ng, L.Y. Wong, H.K. Jun, Q.M. Ngo and N.Q. Tran, J. Anal. Methods Chem., 2019, 1 (2019); https://doi.org/10.1155/2019/6210240
- V.-H. Nguyen, T.-T. Thi Vo, H. Huu Do, V. Thuan Le, T.D. Nguyen, T. Ky Vo, B.-S. Nguyen, T.T. Nguyen, T.K. Phung and V.A. Tran, Chem. Eng. Sci., 232, 116381 (2021); https://doi.org/10.1016/j.ces.2020.116381
- A.A. Maleki, S. Dolati, M. Ahmadi, A. Baghbanzhadeh, M. Asadi, A. Fotouhi, M. Yousefi and L. Aghebati-Maleki, J. Cell. Physiol., 235, 1962 (2020); https://doi.org/10.1002/jcp.29126
- D. Yohan and B.D. Chithrani, J. Biomed. Nanotechnol., 10, 2371 (2014); https://doi.org/10.1166/jbn.2014.2015
- C. Vauthier and K. Bouchemal, Pharm. Res., 26, 1025 (2009); https://doi.org/10.1007/s11095-008-9800-3
- C.I. Crucho and M.T. Barros, Mater. Sci. Eng. C, 80, 771 (2017); https://doi.org/10.1016/j.msec.2017.06.004
- Y. Panahi, M. Farshbaf, M. Mohammadhosseini, M. Mirahadi, R. Khalilov, S. Saghfi and A. Akbarzadeh, Artif. Cells Nanomed. Biotechnol., 45, 788 (2017); https://doi.org/10.1080/21691401.2017.1282496
- H. Pinto-Alphandary, A. Andremont and P. Couvreur, Int. J. Antimicrob. Agents, 13, 155 (2000); https://doi.org/10.1016/S0924-8579(99)00121-1
- B.B. Chen, M.L. Liu and C.Z. Huang, Green Chem., 22, 4034 (2020); https://doi.org/10.1039/D0GC01014F
- J. Wu, G. Chen, Y. Jia, C. Ji, Y. Wang, Y. Zhou, R.M. Leblanc and Z. Peng, J. Mater. Chem. B Mater. Biol. Med., 10, 843 (2022); https://doi.org/10.1039/D1TB02446A
- M. Rai, A. Yadav and A. Gade, Biotechnol. Adv., 27, 76 (2009); https://doi.org/10.1016/j.biotechadv.2008.09.002
- S.H. Wu, C.Y. Mou and H.P. Lin, Chem. Soc. Rev., 42, 3862 (2013); https://doi.org/10.1039/c3cs35405a
- R.A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella and W.J. Parak, Chem. Soc. Rev., 37, 1896 (2008); https://doi.org/10.1039/b712170a
- S.Y. Lim, W. Shen and Z. Gao, Chem. Soc. Rev., 44, 362 (2015); https://doi.org/10.1039/C4CS00269E
- B.T. Thanh, N. Van Sau, H. Ju, M.J. Bashir, H.K. Jun, T.B. Phan, Q.M. Ngo, N.Q. Tran, T.H. Hai, P.H. Van and T.T. Nguyen, J. Nanomater., 2019, 2182471 (2019); https://doi.org/10.1155/2019/2182471
- T.K. Indira and P.K. Lakshmi, Int. J. Pharm. Sci. Nanotechnol, 3, 1035 (2010); https://doi.org/10.37285/ijpsn.2010.3.3.1
- J. Cheng, Y.J. Gu, S.H. Cheng and W.T. Wong, J. Biomed. Nanotechnol., 9, 1362 (2013); https://doi.org/10.1166/jbn.2013.1536
- S.J. Amina and B. Guo, Int. J. Nanomedicine, 15, 9823 (2020); https://doi.org/10.2147/IJN.S279094
- S.M. Mousavi, M. Zarei, S.A. Hashemi, S. Ramakrishna, W.H. Chiang, C.W. Lai and A. Gholami, Drug Metab. Rev., 52, 299 (2020); https://doi.org/10.1080/03602532.2020.1734021
- H. Chen, L. Shao, Q. Li and J. Wang, Chem. Soc. Rev., 42, 2679 (2013); https://doi.org/10.1039/C2CS35367A
- S. Zhu, H. Li, M. Yang and S.W. Pang, Nanotechnology, 27, 295101 (2016); https://doi.org/10.1088/0957-4484/27/29/295101
- T.K. Sau, A. Pal, N.R. Jana, Z.L. Wang and T. Pal, J. Nanopart. Res., 3, 257 (2001); https://doi.org/10.1023/A:1017567225071
- N.R. Jana, L. Gearheart and C.J. Murphy, Chem. Mater., 13, 2313 (2001); https://doi.org/10.1021/cm000662n
- T. Kong, J. Zeng, X. Wang, X. Yang, J. Yang, S. McQuarrie, A. McEwan, W. Roa, J. Chen and J.Z. Xing, Small, 4, 1537 (2008); https://doi.org/10.1002/smll.200700794
- M. Mihaly, M.C. Fleancu, N.L. Olteanu, D. Bojin, A. Meghea and M. Enachescu, Compt. Rendus Chim., 15, 1012 (2012); https://doi.org/10.1016/j.crci.2012.09.013
- S. Singh, D.V. S. Jain and M.L. Singla, Anal. Methods, 5, 1024 (2013); https://doi.org/10.1039/C2AY26201K
- A. Plech, V. Kotaidis, M. Lorenc and J. Boneberg, Nat. Phys., 2, 44 (2006); https://doi.org/10.1038/nphys191
- A.M. Keene and K.M. Tyner, J. Nanopart. Res., 13, 3465 (2011); https://doi.org/10.1007/s11051-011-0268-4
- S.K. Seol, D. Kim, S. Jung and Y. Hwu, Mater. Chem. Phys., 131, 331 (2011); https://doi.org/10.1016/j.matchemphys.2011.09.050
- L. Su, Y. Xiong, Z. Chen, Z. Duan, Y. Luo, D. Zhu and X. Ma, Sens. Actuators B Chem., 279, 320 (2019); https://doi.org/10.1016/j.snb.2018.10.008
- S. Ahmed, Annu, S. Ikram and S. Yudha, J. Photochem. Photobiol. B, 161, 141 (2016); https://doi.org/10.1016/j.jphotobiol.2016.04.034
- A. Si, K. Pal, S. Kralj, G.S. El-Sayyad, F.G. de Souza and T. Narayanan, Mater. Today Chem., 17, 100327 (2020); https://doi.org/10.1016/j.mtchem.2020.100327
- C. Engelbrekt, K.H. Sørensen, J. Zhang, A.C. Welinder, P.S. Jensen and J. Ulstrup, J. Mater. Chem., 19, 7839 (2009); https://doi.org/10.1039/b911111e
- W. Jia, M.Sc. Thesis, Size Control and Ligand Exchange of Gold and Palladium Nanoparticles Prepared by Single Phase Method, University of Windsor, Windsor, Ontario, Canada (2004).
- W. Wei, Y. Sun, M. Zhu, X. Liu, P. Sun, F. Wang, Q. Gui, W. Meng, Y. Cao and J. Zhao, J. Am. Chem. Soc., 137, 15358 (2015); https://doi.org/10.1021/jacs.5b09895
- Y. Li, H. Tian, C. Xiao, J. Ding and X. Chen, Green Chem., 16, 4875 (2014); https://doi.org/10.1039/C4GC01375A
- A.K. Khan, R. Rashid, G. Murtaza and A. Zahra, Trop. J. Pharm. Res., 13, 1169 (2014); https://doi.org/10.4314/tjpr.v13i7.23
- Z. Kayani, R. Dehdari Vais, E. Soratijahromi, S. Mohammadi and N. Sattarahmady, Photodiagn. Photodyn. Ther., 33, 102139 (2021); https://doi.org/10.1016/j.pdpdt.2020.102139
- H. Naser, H.M. Shanshool and K.I. Imhan, Braz. J. Phys., 51, 878 (2021); https://doi.org/10.1007/s13538-021-00875-x
- P. Endla and V. Radhika, Mater. Today Proc., 47, 4993 (2021); https://doi.org/10.1016/j.matpr.2021.04.451
- J.K. Chen, J.Q. Qui, S.K. Fan, S.W. Kuo, F.H. Ko, C.W. Chu and F.C. Chang, J. Colloid Interface Sci., 367, 40 (2012); https://doi.org/10.1016/j.jcis.2011.10.044
- A. Izadi and R.J. Anthony, Plasma Process. Polym., 16, e1800212 (2019); https://doi.org/10.1002/ppap.201800212
- D. Kim, Y. Ko, G. Kwon, Y.M. Choo and J. You, Sens. Actuators B Chem., 274, 30 (2018); https://doi.org/10.1016/j.snb.2018.07.107
- C.M. Chou, L.T. Thanh Thi, N.T. Quynh Nhu, S.Y. Liao, Y.Z. Fu, L.V.T. Hung and V.K. Hsiao, Appl. Sci., 10, 5015 (2020); https://doi.org/10.3390/app10145015
- J.W. Lee, S.R. Choi and J.H. Heo, ACS Appl. Mater. Interfaces, 13, 42311 (2021); https://doi.org/10.1021/acsami.1c10436
- C.D. De Souza, B.R. Nogueira and M.E.C. Rostelato, J. Alloys Compd., 798, 714 (2019); https://doi.org/10.1016/j.jallcom.2019.05.153
- P. Chandra, J. Singh, A. Singh, A. Srivastava, R.N. Goyal and Y.B. Shim, J. Nanoparticles, 2013, 1 (2013); https://doi.org/10.1155/2013/535901
- S. Naveenraj, S. Anandan, A. Kathiravan, R. Renganathan and M. Ashokkumar, J. Pharm. Biomed. Anal., 53, 804 (2010); https://doi.org/10.1016/j.jpba.2010.03.039
- A. Manna, T. Imae, T. Yogo, K. Aoi and M. Okazaki, J. Colloid Interface Sci., 256, 297 (2002); https://doi.org/10.1006/jcis.2002.8691
- H.R. Tiyyagura, P. Majeriè, I. Anžel and R. Rudolf, Mater. Res. Express, 7, 055017 (2020); https://doi.org/10.1088/2053-1591/ab80ea
- M. Shakibaie, H. Forootanfar, K. Mollazadeh-Moghaddam, Z. Bagherzadeh, N. NafissiVarcheh, A.R. Shahverdi and M.A. Faramarzi, Biotechnol. Appl. Biochem., 57, 71 (2010); https://doi.org/10.1042/BA20100196
- M. Kitching, M. Ramani and E. Marsili, Microb. Biotechnol., 8, 904 (2015); https://doi.org/10.1111/1751-7915.12151
- D. Raghunandan, M.D. Bedre, S. Basavaraja, B. Sawle, S.Y. Manjunath and A. Venkataraman, Colloids Surf. B Biointerfaces, 79, 235 (2010); https://doi.org/10.1016/j.colsurfb.2010.04.003
- U. Shedbalkar, R. Singh, S. Wadhwani, S. Gaidhani and B.A. Chopade, Adv. Colloid Interface Sci., 209, 40 (2014); https://doi.org/10.1016/j.cis.2013.12.011
- H.H. Kyaw, S.H. Al-Harthi, A. Sellai and J. Dutta, Beilstein J. Nanotechnol., 6, 2345 (2015); https://doi.org/10.3762/bjnano.6.242
- W. Wang, X. Ding, Q. Xu, J. Wang, L. Wang and X. Lou, Colloids Surf. B Biointerfaces, 148, 541 (2016); https://doi.org/10.1016/j.colsurfb.2016.09.021
- Z.R. Goddard, A.M. Beekman, M.M. Cominetti, M.A. O’Connell, I. Chambrier, M.J. Cook, M.J. Marín, D.A. Russell and M. Searcey, RSC Med. Chem., 12, 288 (2021); https://doi.org/10.1039/D0MD00284D
- I. Cabezón, G. Manich, R. Martín-Venegas, A. Camins, C. Pelegrí and J. Vilaplana, Mol. Pharm., 12, 4137 (2015); https://doi.org/10.1021/acs.molpharmaceut.5b00597
- B. Masereel, M. Dinguizli, C. Bouzin, N. Moniotte, O. Feron, B. Gallez, T. Vander Borght, C. Michiels and S. Lucas, J. Nanopart. Res., 13, 1573 (2011); https://doi.org/10.1007/s11051-010-9908-3
- A. Minopoli, E. Scardapane, A. Acunzo, R. Campanile, B. Della Ventura and R. Velotta, AIP Adv., 11, 065319 (2021); https://doi.org/10.1063/5.0050570
- G. Ruiz, K. Tripathi, S. Okyem and J.D. Driskell, Bioconjug. Chem., 30, 1182 (2019); https://doi.org/10.1021/acs.bioconjchem.9b00123
- X.Y. Zhu, X. Zou, R. Mukherjee, Z. Yu, C. Ferguson, W. Zhou, C.H. McCollough and L.O. Lerman, Invest. Radiol., 53, 623 (2018); https://doi.org/10.1097/RLI.0000000000000476
- N. Tort, J.P. Salvador and M.P. Marco, Biosens. Bioelectron., 90, 13 (2017); https://doi.org/10.1016/j.bios.2016.11.022
- P. Cordiali-Fei, E. Trento, M. Giovanetti, A. Lo Presti, A. Latini, M. Giuliani, G. D’Agosto, V. Bordignon, E. Cella, F. Farchi, C. Ferraro, I. Lesnoni La Parola, C. Cota, I. Sperduti, A. Vento, A. Cristaudo, M. Ciccozzi and F. Ensoli, J. Exp. Clin. Cancer Res., 34, 1 (2015); https://doi.org/10.1186/s13046-014-0119-0
- S. Li, S. Bouchy, S. Penninckx, R. Marega, O. Fichera, B. Gallez, O. Feron, P. Martinive, A.-C. Heuskin, C. Michiels and S. Lucas, Nanomedicine, 14, 317 (2019); https://doi.org/10.2217/nnm-2018-0161
- L. Song, N. Falzone and K.A. Vallis, Int. J. Radiat. Biol., 92, 716 (2016); https://doi.org/10.3109/09553002.2016.1145360
- J.G. Nirmala, S. Akila, M.M. Nadar, R.T. Narendhirakannan and S. Chatterjee, RSC Adv., 6, 82205 (2016); https://doi.org/10.1039/C6RA16310F
- S. Daei, N. Ziamajidi, R. Abbasalipourkabir, K. Khanaki and F. Bahreini, Biol. Trace Elem. Res., 200, 2673 (2022); https://doi.org/10.1007/s12011-021-02895-9
- N. dos Santos Tramontin, S. da Silva, R. Arruda, K.S. Ugioni, P.B. Canteiro, G. de Bem Silveira, C. Mendes, P.C.L. Silveira and A.P. Muller, Mol. Neurobiol., 57, 926 (2020); https://doi.org/10.1007/s12035-019-01780-w
- S. Teraoka, Y. Kakei, M. Akashi, E. Iwata, T. Hasegawa, D. Miyawaki, R. Sasaki and T. Komori, Biomed. Rep., 9, 415 (2018); https://doi.org/10.3892/br.2018.1142
- R. Ramesh, N. Amreddy, R. Muralidharan, A. Babu, M. Mehta, E. Johnson, A. Munshi and Y. Zhao, Int. J. Nanomedicine, 2015, 6773 (2015); https://doi.org/10.2147/IJN.S93237
- X. Han, X. Jiang, L. Guo, Y. Wang, V.P. Veeraraghavan, S. Krishna Mohan, Z. Wang and D. Cao, Artif. Cells Nanomed. Biotechnol., 47, 3577 (2019); https://doi.org/10.1080/21691401.2019.1626412
- C.S. Kumar, M.D. Raja, D.S. Sundar, M. Gover Antoniraj and K. Ruckmani, Carbohydr. Polym., 128, 63 (2015); https://doi.org/10.1016/j.carbpol.2015.04.010
- A. de la Escosura-Muñiz, M. Maltez-da Costa, C. Sánchez-Espinel, B. Díaz-Freitas, J. Fernández-Suarez, Á. González-Fernández and A. Merkoçi, Biosens. Bioelectron., 26, 1710 (2010); https://doi.org/10.1016/j.bios.2010.07.069
- S. Ko, T.J. Park, H.S. Kim, J.H. Kim and Y.J. Cho, Biosens. Bioelectron., 24, 2592 (2009); https://doi.org/10.1016/j.bios.2009.01.030
- T. Špringer and J. Homola, Anal. Bioanal. Chem., 404, 2869 (2012); https://doi.org/10.1007/s00216-012-6308-9
- Q. Wang, R. Liu, X. Yang, K. Wang, J. Zhu, L. He and Q. Li, Sens. Actuators B Chem., 223, 613 (2016); https://doi.org/10.1016/j.snb.2015.09.152
- S.A.R. Kazmi, M.Z. Qureshi and J.F. Masson, Biosensors, 10, 184 (2020); https://doi.org/10.3390/bios10110184
- Q. Li, Q. Wang, X. Yang, K. Wang, H. Zhang and W. Nie, Talanta, 174, 521 (2017); https://doi.org/10.1016/j.talanta.2017.06.048
- W. Nie, Q. Wang, X. Yang, H. Zhang, Z. Li, L. Gao, Y. Zheng, X. Liu and K. Wang, Anal. Chim. Acta, 993, 55 (2017); https://doi.org/10.1016/j.aca.2017.09.015
- M. Hu, J. Chen, Z.Y. Li, L. Au, G.V. Hartland, X. Li, M. Marquez and Y. Xia, Chem. Soc. Rev., 35, 1084 (2006); https://doi.org/10.1039/b517615h
- Y. Ben-Amram, M. Riskin and I. Willner, Analyst, 135, 2952 (2010); https://doi.org/10.1039/c0an00268b
- X. Liu, Y. Sun, D. Song, Q. Zhang, Y. Tian, S. Bi and H. Zhang, Anal. Biochem., 333, 99 (2004); https://doi.org/10.1016/j.ab.2004.05.048
- H.R. Sim, A.W. Wark and H.J. Lee, Analyst, 135, 2528 (2010); https://doi.org/10.1039/c0an00457j
- J.S. Mitchell, Y. Wu, C.J. Cook and L. Main, Anal. Biochem., 343, 125 (2005); https://doi.org/10.1016/j.ab.2005.05.001
- J. Jung, K. Na, J. Lee, K.W. Kim and J. Hyun, Anal. Chim. Acta, 651, 91 (2009); https://doi.org/10.1016/j.aca.2009.07.057
- T. Kawaguchi, D.R. Shankaran, S.J. Kim, K. Matsumoto, K. Toko and N. Miura, Sens. Actuators B Chem., 133, 467 (2008); https://doi.org/10.1016/j.snb.2008.03.005
- L.A. Lyon, M.D. Musick, P.C. Smith, B.D. Reiss, D.J. Peña and M.J. Natan, Sens. Actuators B Chem., 54, 118 (1999); https://doi.org/10.1016/S0925-4005(98)00329-3
References
R. Sardar, A.M. Funston, P. Mulvaney and R.W. Murray, Langmuir, 25, 13840 (2009); https://doi.org/10.1021/la9019475
J. Foxley, M.A. Tofanelli, C.J. Ackerson and K.L. Knappenberger Jr. and T.D. Green, J. Phys. Chem. Lett., 14, 5210 (2023); https://doi.org/10.1021/acs.jpclett.3c01170
M. van der Verren, V. Vykoukal, A. Styskalik, A.S. Malik, C. Aprile and D.P. Debecker, ACS Appl. Nano Mater., 5, 18977 (2022); https://doi.org/10.1021/acsanm.2c04786
W.J. Stark, P.R. Stoessel, W. Wohlleben and A. Hafner, Chem. Soc. Rev., 44, 5793 (2015); https://doi.org/10.1039/C4CS00362D
T.T. Nguyen, H.T. Ma, P. Avti, M.J. Bashir, C.A. Ng, L.Y. Wong, H.K. Jun, Q.M. Ngo and N.Q. Tran, J. Anal. Methods Chem., 2019, 1 (2019); https://doi.org/10.1155/2019/6210240
V.-H. Nguyen, T.-T. Thi Vo, H. Huu Do, V. Thuan Le, T.D. Nguyen, T. Ky Vo, B.-S. Nguyen, T.T. Nguyen, T.K. Phung and V.A. Tran, Chem. Eng. Sci., 232, 116381 (2021); https://doi.org/10.1016/j.ces.2020.116381
A.A. Maleki, S. Dolati, M. Ahmadi, A. Baghbanzhadeh, M. Asadi, A. Fotouhi, M. Yousefi and L. Aghebati-Maleki, J. Cell. Physiol., 235, 1962 (2020); https://doi.org/10.1002/jcp.29126
D. Yohan and B.D. Chithrani, J. Biomed. Nanotechnol., 10, 2371 (2014); https://doi.org/10.1166/jbn.2014.2015
C. Vauthier and K. Bouchemal, Pharm. Res., 26, 1025 (2009); https://doi.org/10.1007/s11095-008-9800-3
C.I. Crucho and M.T. Barros, Mater. Sci. Eng. C, 80, 771 (2017); https://doi.org/10.1016/j.msec.2017.06.004
Y. Panahi, M. Farshbaf, M. Mohammadhosseini, M. Mirahadi, R. Khalilov, S. Saghfi and A. Akbarzadeh, Artif. Cells Nanomed. Biotechnol., 45, 788 (2017); https://doi.org/10.1080/21691401.2017.1282496
H. Pinto-Alphandary, A. Andremont and P. Couvreur, Int. J. Antimicrob. Agents, 13, 155 (2000); https://doi.org/10.1016/S0924-8579(99)00121-1
B.B. Chen, M.L. Liu and C.Z. Huang, Green Chem., 22, 4034 (2020); https://doi.org/10.1039/D0GC01014F
J. Wu, G. Chen, Y. Jia, C. Ji, Y. Wang, Y. Zhou, R.M. Leblanc and Z. Peng, J. Mater. Chem. B Mater. Biol. Med., 10, 843 (2022); https://doi.org/10.1039/D1TB02446A
M. Rai, A. Yadav and A. Gade, Biotechnol. Adv., 27, 76 (2009); https://doi.org/10.1016/j.biotechadv.2008.09.002
S.H. Wu, C.Y. Mou and H.P. Lin, Chem. Soc. Rev., 42, 3862 (2013); https://doi.org/10.1039/c3cs35405a
R.A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella and W.J. Parak, Chem. Soc. Rev., 37, 1896 (2008); https://doi.org/10.1039/b712170a
S.Y. Lim, W. Shen and Z. Gao, Chem. Soc. Rev., 44, 362 (2015); https://doi.org/10.1039/C4CS00269E
B.T. Thanh, N. Van Sau, H. Ju, M.J. Bashir, H.K. Jun, T.B. Phan, Q.M. Ngo, N.Q. Tran, T.H. Hai, P.H. Van and T.T. Nguyen, J. Nanomater., 2019, 2182471 (2019); https://doi.org/10.1155/2019/2182471
T.K. Indira and P.K. Lakshmi, Int. J. Pharm. Sci. Nanotechnol, 3, 1035 (2010); https://doi.org/10.37285/ijpsn.2010.3.3.1
J. Cheng, Y.J. Gu, S.H. Cheng and W.T. Wong, J. Biomed. Nanotechnol., 9, 1362 (2013); https://doi.org/10.1166/jbn.2013.1536
S.J. Amina and B. Guo, Int. J. Nanomedicine, 15, 9823 (2020); https://doi.org/10.2147/IJN.S279094
S.M. Mousavi, M. Zarei, S.A. Hashemi, S. Ramakrishna, W.H. Chiang, C.W. Lai and A. Gholami, Drug Metab. Rev., 52, 299 (2020); https://doi.org/10.1080/03602532.2020.1734021
H. Chen, L. Shao, Q. Li and J. Wang, Chem. Soc. Rev., 42, 2679 (2013); https://doi.org/10.1039/C2CS35367A
S. Zhu, H. Li, M. Yang and S.W. Pang, Nanotechnology, 27, 295101 (2016); https://doi.org/10.1088/0957-4484/27/29/295101
T.K. Sau, A. Pal, N.R. Jana, Z.L. Wang and T. Pal, J. Nanopart. Res., 3, 257 (2001); https://doi.org/10.1023/A:1017567225071
N.R. Jana, L. Gearheart and C.J. Murphy, Chem. Mater., 13, 2313 (2001); https://doi.org/10.1021/cm000662n
T. Kong, J. Zeng, X. Wang, X. Yang, J. Yang, S. McQuarrie, A. McEwan, W. Roa, J. Chen and J.Z. Xing, Small, 4, 1537 (2008); https://doi.org/10.1002/smll.200700794
M. Mihaly, M.C. Fleancu, N.L. Olteanu, D. Bojin, A. Meghea and M. Enachescu, Compt. Rendus Chim., 15, 1012 (2012); https://doi.org/10.1016/j.crci.2012.09.013
S. Singh, D.V. S. Jain and M.L. Singla, Anal. Methods, 5, 1024 (2013); https://doi.org/10.1039/C2AY26201K
A. Plech, V. Kotaidis, M. Lorenc and J. Boneberg, Nat. Phys., 2, 44 (2006); https://doi.org/10.1038/nphys191
A.M. Keene and K.M. Tyner, J. Nanopart. Res., 13, 3465 (2011); https://doi.org/10.1007/s11051-011-0268-4
S.K. Seol, D. Kim, S. Jung and Y. Hwu, Mater. Chem. Phys., 131, 331 (2011); https://doi.org/10.1016/j.matchemphys.2011.09.050
L. Su, Y. Xiong, Z. Chen, Z. Duan, Y. Luo, D. Zhu and X. Ma, Sens. Actuators B Chem., 279, 320 (2019); https://doi.org/10.1016/j.snb.2018.10.008
S. Ahmed, Annu, S. Ikram and S. Yudha, J. Photochem. Photobiol. B, 161, 141 (2016); https://doi.org/10.1016/j.jphotobiol.2016.04.034
A. Si, K. Pal, S. Kralj, G.S. El-Sayyad, F.G. de Souza and T. Narayanan, Mater. Today Chem., 17, 100327 (2020); https://doi.org/10.1016/j.mtchem.2020.100327
C. Engelbrekt, K.H. Sørensen, J. Zhang, A.C. Welinder, P.S. Jensen and J. Ulstrup, J. Mater. Chem., 19, 7839 (2009); https://doi.org/10.1039/b911111e
W. Jia, M.Sc. Thesis, Size Control and Ligand Exchange of Gold and Palladium Nanoparticles Prepared by Single Phase Method, University of Windsor, Windsor, Ontario, Canada (2004).
W. Wei, Y. Sun, M. Zhu, X. Liu, P. Sun, F. Wang, Q. Gui, W. Meng, Y. Cao and J. Zhao, J. Am. Chem. Soc., 137, 15358 (2015); https://doi.org/10.1021/jacs.5b09895
Y. Li, H. Tian, C. Xiao, J. Ding and X. Chen, Green Chem., 16, 4875 (2014); https://doi.org/10.1039/C4GC01375A
A.K. Khan, R. Rashid, G. Murtaza and A. Zahra, Trop. J. Pharm. Res., 13, 1169 (2014); https://doi.org/10.4314/tjpr.v13i7.23
Z. Kayani, R. Dehdari Vais, E. Soratijahromi, S. Mohammadi and N. Sattarahmady, Photodiagn. Photodyn. Ther., 33, 102139 (2021); https://doi.org/10.1016/j.pdpdt.2020.102139
H. Naser, H.M. Shanshool and K.I. Imhan, Braz. J. Phys., 51, 878 (2021); https://doi.org/10.1007/s13538-021-00875-x
P. Endla and V. Radhika, Mater. Today Proc., 47, 4993 (2021); https://doi.org/10.1016/j.matpr.2021.04.451
J.K. Chen, J.Q. Qui, S.K. Fan, S.W. Kuo, F.H. Ko, C.W. Chu and F.C. Chang, J. Colloid Interface Sci., 367, 40 (2012); https://doi.org/10.1016/j.jcis.2011.10.044
A. Izadi and R.J. Anthony, Plasma Process. Polym., 16, e1800212 (2019); https://doi.org/10.1002/ppap.201800212
D. Kim, Y. Ko, G. Kwon, Y.M. Choo and J. You, Sens. Actuators B Chem., 274, 30 (2018); https://doi.org/10.1016/j.snb.2018.07.107
C.M. Chou, L.T. Thanh Thi, N.T. Quynh Nhu, S.Y. Liao, Y.Z. Fu, L.V.T. Hung and V.K. Hsiao, Appl. Sci., 10, 5015 (2020); https://doi.org/10.3390/app10145015
J.W. Lee, S.R. Choi and J.H. Heo, ACS Appl. Mater. Interfaces, 13, 42311 (2021); https://doi.org/10.1021/acsami.1c10436
C.D. De Souza, B.R. Nogueira and M.E.C. Rostelato, J. Alloys Compd., 798, 714 (2019); https://doi.org/10.1016/j.jallcom.2019.05.153
P. Chandra, J. Singh, A. Singh, A. Srivastava, R.N. Goyal and Y.B. Shim, J. Nanoparticles, 2013, 1 (2013); https://doi.org/10.1155/2013/535901
S. Naveenraj, S. Anandan, A. Kathiravan, R. Renganathan and M. Ashokkumar, J. Pharm. Biomed. Anal., 53, 804 (2010); https://doi.org/10.1016/j.jpba.2010.03.039
A. Manna, T. Imae, T. Yogo, K. Aoi and M. Okazaki, J. Colloid Interface Sci., 256, 297 (2002); https://doi.org/10.1006/jcis.2002.8691
H.R. Tiyyagura, P. Majeriè, I. Anžel and R. Rudolf, Mater. Res. Express, 7, 055017 (2020); https://doi.org/10.1088/2053-1591/ab80ea
M. Shakibaie, H. Forootanfar, K. Mollazadeh-Moghaddam, Z. Bagherzadeh, N. NafissiVarcheh, A.R. Shahverdi and M.A. Faramarzi, Biotechnol. Appl. Biochem., 57, 71 (2010); https://doi.org/10.1042/BA20100196
M. Kitching, M. Ramani and E. Marsili, Microb. Biotechnol., 8, 904 (2015); https://doi.org/10.1111/1751-7915.12151
D. Raghunandan, M.D. Bedre, S. Basavaraja, B. Sawle, S.Y. Manjunath and A. Venkataraman, Colloids Surf. B Biointerfaces, 79, 235 (2010); https://doi.org/10.1016/j.colsurfb.2010.04.003
U. Shedbalkar, R. Singh, S. Wadhwani, S. Gaidhani and B.A. Chopade, Adv. Colloid Interface Sci., 209, 40 (2014); https://doi.org/10.1016/j.cis.2013.12.011
H.H. Kyaw, S.H. Al-Harthi, A. Sellai and J. Dutta, Beilstein J. Nanotechnol., 6, 2345 (2015); https://doi.org/10.3762/bjnano.6.242
W. Wang, X. Ding, Q. Xu, J. Wang, L. Wang and X. Lou, Colloids Surf. B Biointerfaces, 148, 541 (2016); https://doi.org/10.1016/j.colsurfb.2016.09.021
Z.R. Goddard, A.M. Beekman, M.M. Cominetti, M.A. O’Connell, I. Chambrier, M.J. Cook, M.J. Marín, D.A. Russell and M. Searcey, RSC Med. Chem., 12, 288 (2021); https://doi.org/10.1039/D0MD00284D
I. Cabezón, G. Manich, R. Martín-Venegas, A. Camins, C. Pelegrí and J. Vilaplana, Mol. Pharm., 12, 4137 (2015); https://doi.org/10.1021/acs.molpharmaceut.5b00597
B. Masereel, M. Dinguizli, C. Bouzin, N. Moniotte, O. Feron, B. Gallez, T. Vander Borght, C. Michiels and S. Lucas, J. Nanopart. Res., 13, 1573 (2011); https://doi.org/10.1007/s11051-010-9908-3
A. Minopoli, E. Scardapane, A. Acunzo, R. Campanile, B. Della Ventura and R. Velotta, AIP Adv., 11, 065319 (2021); https://doi.org/10.1063/5.0050570
G. Ruiz, K. Tripathi, S. Okyem and J.D. Driskell, Bioconjug. Chem., 30, 1182 (2019); https://doi.org/10.1021/acs.bioconjchem.9b00123
X.Y. Zhu, X. Zou, R. Mukherjee, Z. Yu, C. Ferguson, W. Zhou, C.H. McCollough and L.O. Lerman, Invest. Radiol., 53, 623 (2018); https://doi.org/10.1097/RLI.0000000000000476
N. Tort, J.P. Salvador and M.P. Marco, Biosens. Bioelectron., 90, 13 (2017); https://doi.org/10.1016/j.bios.2016.11.022
P. Cordiali-Fei, E. Trento, M. Giovanetti, A. Lo Presti, A. Latini, M. Giuliani, G. D’Agosto, V. Bordignon, E. Cella, F. Farchi, C. Ferraro, I. Lesnoni La Parola, C. Cota, I. Sperduti, A. Vento, A. Cristaudo, M. Ciccozzi and F. Ensoli, J. Exp. Clin. Cancer Res., 34, 1 (2015); https://doi.org/10.1186/s13046-014-0119-0
S. Li, S. Bouchy, S. Penninckx, R. Marega, O. Fichera, B. Gallez, O. Feron, P. Martinive, A.-C. Heuskin, C. Michiels and S. Lucas, Nanomedicine, 14, 317 (2019); https://doi.org/10.2217/nnm-2018-0161
L. Song, N. Falzone and K.A. Vallis, Int. J. Radiat. Biol., 92, 716 (2016); https://doi.org/10.3109/09553002.2016.1145360
J.G. Nirmala, S. Akila, M.M. Nadar, R.T. Narendhirakannan and S. Chatterjee, RSC Adv., 6, 82205 (2016); https://doi.org/10.1039/C6RA16310F
S. Daei, N. Ziamajidi, R. Abbasalipourkabir, K. Khanaki and F. Bahreini, Biol. Trace Elem. Res., 200, 2673 (2022); https://doi.org/10.1007/s12011-021-02895-9
N. dos Santos Tramontin, S. da Silva, R. Arruda, K.S. Ugioni, P.B. Canteiro, G. de Bem Silveira, C. Mendes, P.C.L. Silveira and A.P. Muller, Mol. Neurobiol., 57, 926 (2020); https://doi.org/10.1007/s12035-019-01780-w
S. Teraoka, Y. Kakei, M. Akashi, E. Iwata, T. Hasegawa, D. Miyawaki, R. Sasaki and T. Komori, Biomed. Rep., 9, 415 (2018); https://doi.org/10.3892/br.2018.1142
R. Ramesh, N. Amreddy, R. Muralidharan, A. Babu, M. Mehta, E. Johnson, A. Munshi and Y. Zhao, Int. J. Nanomedicine, 2015, 6773 (2015); https://doi.org/10.2147/IJN.S93237
X. Han, X. Jiang, L. Guo, Y. Wang, V.P. Veeraraghavan, S. Krishna Mohan, Z. Wang and D. Cao, Artif. Cells Nanomed. Biotechnol., 47, 3577 (2019); https://doi.org/10.1080/21691401.2019.1626412
C.S. Kumar, M.D. Raja, D.S. Sundar, M. Gover Antoniraj and K. Ruckmani, Carbohydr. Polym., 128, 63 (2015); https://doi.org/10.1016/j.carbpol.2015.04.010
A. de la Escosura-Muñiz, M. Maltez-da Costa, C. Sánchez-Espinel, B. Díaz-Freitas, J. Fernández-Suarez, Á. González-Fernández and A. Merkoçi, Biosens. Bioelectron., 26, 1710 (2010); https://doi.org/10.1016/j.bios.2010.07.069
S. Ko, T.J. Park, H.S. Kim, J.H. Kim and Y.J. Cho, Biosens. Bioelectron., 24, 2592 (2009); https://doi.org/10.1016/j.bios.2009.01.030
T. Špringer and J. Homola, Anal. Bioanal. Chem., 404, 2869 (2012); https://doi.org/10.1007/s00216-012-6308-9
Q. Wang, R. Liu, X. Yang, K. Wang, J. Zhu, L. He and Q. Li, Sens. Actuators B Chem., 223, 613 (2016); https://doi.org/10.1016/j.snb.2015.09.152
S.A.R. Kazmi, M.Z. Qureshi and J.F. Masson, Biosensors, 10, 184 (2020); https://doi.org/10.3390/bios10110184
Q. Li, Q. Wang, X. Yang, K. Wang, H. Zhang and W. Nie, Talanta, 174, 521 (2017); https://doi.org/10.1016/j.talanta.2017.06.048
W. Nie, Q. Wang, X. Yang, H. Zhang, Z. Li, L. Gao, Y. Zheng, X. Liu and K. Wang, Anal. Chim. Acta, 993, 55 (2017); https://doi.org/10.1016/j.aca.2017.09.015
M. Hu, J. Chen, Z.Y. Li, L. Au, G.V. Hartland, X. Li, M. Marquez and Y. Xia, Chem. Soc. Rev., 35, 1084 (2006); https://doi.org/10.1039/b517615h
Y. Ben-Amram, M. Riskin and I. Willner, Analyst, 135, 2952 (2010); https://doi.org/10.1039/c0an00268b
X. Liu, Y. Sun, D. Song, Q. Zhang, Y. Tian, S. Bi and H. Zhang, Anal. Biochem., 333, 99 (2004); https://doi.org/10.1016/j.ab.2004.05.048
H.R. Sim, A.W. Wark and H.J. Lee, Analyst, 135, 2528 (2010); https://doi.org/10.1039/c0an00457j
J.S. Mitchell, Y. Wu, C.J. Cook and L. Main, Anal. Biochem., 343, 125 (2005); https://doi.org/10.1016/j.ab.2005.05.001
J. Jung, K. Na, J. Lee, K.W. Kim and J. Hyun, Anal. Chim. Acta, 651, 91 (2009); https://doi.org/10.1016/j.aca.2009.07.057
T. Kawaguchi, D.R. Shankaran, S.J. Kim, K. Matsumoto, K. Toko and N. Miura, Sens. Actuators B Chem., 133, 467 (2008); https://doi.org/10.1016/j.snb.2008.03.005
L.A. Lyon, M.D. Musick, P.C. Smith, B.D. Reiss, D.J. Peña and M.J. Natan, Sens. Actuators B Chem., 54, 118 (1999); https://doi.org/10.1016/S0925-4005(98)00329-3