Copyright (c) 2024 Mohammed Humayun Rashid Choudhury, Md Nizam Uddin, Partha Pratim Nath, Iqbal Ahmed Siddiquey, Mohammad Razaul Karim, Md. Azharul Arafath, Chintalapalle V. Ramana, Mohammed Muzibur Rahman
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copper and Nitrogen co-doped ZnO Nanomaterials with Enhanced Photocatalytic and Antibacterial Activities
Corresponding Author(s) : Md Nizam Uddin
Asian Journal of Chemistry,
Vol. 36 No. 8 (2024): Vol 36 Issue 8, 2024
Abstract
This work demonstrates the enhanced photocatalytic and antibacterial activities of copper and nitrogen-co-doped ZnO (Cu-N-ZnO) nanomaterials deposited onto soda-lime glass using a low-cost chemical approach. The effect of combined Cu-N doping is significant on the structure, properties, and performance of ZnO, as revealed from the characterization results. The synthesized materials crystallize in a hexagonal wurtzite structure of ZnO with a high degree of crystallinity, according to X-ray diffraction (XRD) experiments. The scanning electron microscopy (SEM) analysis indicated a uniformly distributed morphology with spherical-like ZnO nanoparticles. The optical studies revealed that the band gap decreases significantly in 5% Cu-5% N co-doped ZnO (2.89 eV) compared to intrinsic ZnO (3.36 eV). The photocatalytic and antibacterial activities of the samples were evaluated by the degradation of methylene blue dye in aqueous media and the inactivation of E. coli bacteria under visible light irradiation. The 5% Cu-5% N doped ZnO showed the highest dye degradation efficiency, which was 64.44% higher than that of the intrinsic ZnO and inactivated 62.53% more bacteria in the presence of light compared to that in a dark condition. Moreover, Cu-N co-doped ZnO inactivated 79.06% and 23.22% more bacteria than bare glass slides and ZnO under visible light irradiation, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Yan, T. Takahashi, H. Zeng, T. Hosomi, M. Kanai, K. Nagashima, G. Zhang and T. Yanagida, ACS Appl. Electron. Mater., 3, 2925 (2021); https://doi.org/10.1021/acsaelm.1c00428
- J.L. Yang, S.J. An, W.I. Park, G.C. Yi and W. Choi, Adv. Mater., 16, 1661 (2004); https://doi.org/10.1002/adma.200306673
- X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang and Y. Li, Nano Lett., 9, 2331 (2009); https://doi.org/10.1021/nl900772q
- N. Kouklin, Adv. Mater., 20, 2190 (2008); https://doi.org/10.1002/adma.200701071
- C.X. Kronawitter, Z. Ma, D. Liu, S.S. Mao and B.R. Antoun, Adv. Energy Mater., 2, 52 (2012); https://doi.org/10.1002/aenm.201100425
- Ü. Ozgur, D. Hofstetter and H. Morkoç, Proc. IEEE, 98, 1255 (2010); https://doi.org/10.1109/JPROC.2010.2044550
- J. Zhong, J. Li, X. He, J. Zeng, Y. Lu, W. Hu and K. Lin, Curr. Appl. Phys., 12, 998 (2012); https://doi.org/10.1016/j.cap.2012.01.003
- R.C. Ramola, S. Negi, M. Rawat, R.C. Singh and F. Singh, ACS Omega, 6, 11660 (2021); https://doi.org/10.1021/acsomega.1c00984
- M.M. Ba-abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff and K. Sopian, Chemosphere, 91, 1604 (2013); https://doi.org/10.1016/j.chemosphere.2012.12.055
- M. Elias, M.K. Amin, S.H. Firoz, M.A. Hossain, S. Akter, M.A. Hossain, M.N. Uddin and I.A. Siddiquey, Ceram. Int., 43, 84 (2017); https://doi.org/10.1016/j.ceramint.2016.09.114
- F. Tsin, A. Thomere, A. L. Bris, S. Collin, D. Lincot and J. Rousset, ACS Appl. Mater. Interf., 8, 12298 (2016); https://doi.org/10.1021/acsami.6b02998
- A. Jiamprasertboon, S.C. Dixon, S. Sathasivam, M.J. Powell, Y. Lu, T. Siritanon and C.J. Carmalt, ACS Appl. Electron. Mater., 1, 1408 (2019); https://doi.org/10.1021/acsaelm.9b00190
- A. Omidi, A. Habibi-yangjeh and M. Pirhashemi, Appl. Surf. Sci., 276, 468 (2013); https://doi.org/10.1016/j.apsusc.2013.03.118
- H. Sun, S. Liu, S. Liu and S. Wang, Appl. Catal. B, 146, 162 (2014); https://doi.org/10.1016/j.apcatb.2013.03.027
- T. Lv, L. Pan, X. Liu and Z. Sun, Catal. Sci. Technol., 2, 2297 (2012); https://doi.org/10.1039/c2cy20023f
- M. Ahmad, E. Ahmed, Y. Zhang, N.R. Khalid, J. Xu, M. Ullah and Z. Hong, Curr. Appl. Phys., 13, 697 (2013); https://doi.org/10.1016/j.cap.2012.11.008
- R. Gupta, N.K.R. Eswar, J.M. Modak and G. Madras, RSC Advances, 6, 85675 (2016); https://doi.org/10.1039/C6RA16739J
- B. Soltabayev, G. Yergaliuly, A. Ajjaq, A. Beldeubayev, Z. Bakenov, S. Acar and A. Mentbayeva, ACS Appl. Mater. Interfaces, 14, 41555 (2022); https://doi.org/10.1021/acsami.2c10055
- M. Salem, S. Akir, T. Ghrib, K. Daoudi and M. Gaidi, J. Alloys Compd., 685, 107 (2016); https://doi.org/10.1016/j.jallcom.2016.05.254
- R. Saleh and N.F. Djaja, Superlattices Microstruct., 74, 217 (2014); https://doi.org/10.1016/j.spmi.2014.06.013
- M.S. Abdel-wahab, A. Jilani, I.S. Yahia and A.A. Al-Ghamdi, Superlattices Microstruct., 94, 108 (2016); https://doi.org/10.1016/j.spmi.2016.03.043
- S. Rajeh, A. Barhoumi, A. Mhamdi, G. Leroy, B. Duponchel, M. Amlouk and S. Guermazi, Bull. Mater. Sci., 39, 177 (2016); https://doi.org/10.1007/s12034-015-1132-4
- M. Karunakaran, R. Chandramohan, S. Balamurali, S. Gomathi, K. Kabila and T. Mahalingam, Int. J. Thin Film Sci. Technol., 3, 61 (2014); https://doi.org/10.12785/ijtfst/030206
- V. Rajendar, T. Dayakar, K. Shobhan, I. Srikanth and K.V. Rao, Superlattices Microstruct., 75, 551 (2014); https://doi.org/10.1016/j.spmi.2014.07.049
- T. Saidani, M. Zaabat, M.S. Aida and B. Boudine, Superlattices Microstruct., 88, 315 (2015); https://doi.org/10.1016/j.spmi.2015.09.029
- S. Yang, Y. Zhang and D. Mo, Thin Solid Films, 571, 605 (2014); https://doi.org/10.1016/j.tsf.2014.02.097
- S.S. Zahirullah, J.J. Prince and P.F.H. Inbaraj, Mater. Technol., 32, 755 (2017); https://doi.org/10.1080/10667857.2017.1351656
- S. Thakur, N. Sharma, A. Varkia and J. Kumar, Adv. Appl. Sci. Res., 5, 18 (2014).
- K. Kim, J. Korean Phys. Soc., 57, 264 (2010); https://doi.org/10.3938/jkps.57.264
- W.H. Kim and J.Y. Son, Mater. Lett., 133, 101 (2014); https://doi.org/10.1016/j.matlet.2014.06.180
- H.F. Moafi, M.A. Zanjanchi and A.F. Shojaie, Mater. Chem. Phys., 139, 856 (2013); https://doi.org/10.1016/j.matchemphys.2013.02.044
- E. Isbilir, Z. Serbetci and M. Soylu, Superlattices Microstruct., 67, 144 (2014); https://doi.org/10.1016/j.spmi.2013.12.017
- J. Park, G. Park, H.J. Ko and J.S. Ha, Ceram. Int., 40, 16281 (2014); https://doi.org/10.1016/j.ceramint.2014.07.065
- P.V. Adhyapak, S.P. Meshram, A.A. Pawar, D.P. Amalnerkar, U.P. Mulik and I.S. Mulla, Ceram. Int., 40, 12105 (2014); https://doi.org/10.1016/j.ceramint.2014.04.050
- M. Hjiri, R. Dhahri, L. El Mir, A. Bonavita, N. Donato, S.G. Leonardi and G. Neri, J. Alloys Compd., 634, 187 (2015); https://doi.org/10.1016/j.jallcom.2015.02.083
- X. Wang, X. Huang, Z.M. Wong, A. Suwardi, Y. Zheng, F. Wei, S. Wang, T.L. Tan, G. Wu, Q. Zhu, H. Tanoto, K.S. Ong, S.-W. Yang, A.Q. Yan and J. Xu, ACS Appl. Nano Mater., 5, 8631 (2022); https://doi.org/10.1021/acsanm.2c02159
- A.C. Badgujar, B.S. Yadav, G.K. Jha and S.R. Dhage, ACS Omega, 7, 14203 (2022); https://doi.org/10.1021/acsomega.2c00830
- R. Kumar, A. Umar, G. Kumar, M.S. Akhtar, Y. Wang and S.H. Kim, Ceram. Int., 41, 7773 (2015); https://doi.org/10.1016/j.ceramint.2015.02.110
- M. Elias, M.N. Uddin, M.A. Hossain, J.K. Saha, I.A. Siddiquey, D.R. Sarkar, Z.R. Diba, J. Uddin, M.H.R. Choudhury and S.H. Firoz, Int. J. Hydrogen Energy, 44, 20068 (2019); https://doi.org/10.1016/j.ijhydene.2019.06.056
- G.N. Dar, A. Umar, S.A. Zaidi, A.A. Ibrahim, M. Abaker, S. Baskoutas and M.S. Al-assiri, Sens. Actuators B Chem., 173, 72 (2012); https://doi.org/10.1016/j.snb.2012.06.001
- M. Faisal, A.A. Ismail, A.A. Ibrahim, H. Bouzid and S.A. Al-Sayari, Chem. Eng. J., 229, 225 (2013); https://doi.org/10.1016/j.cej.2013.06.004
- L.G. Devi and R. Kavitha, Appl. Catal. B, 140-141, 559 (2013); https://doi.org/10.1016/j.apcatb.2013.04.035
- C.S. Chen, X.D. Xie, T.G. Liu, L.W. Lin, J.C. Kuang, X.L. Xie, L.J. Lu and S.Y. Cao, J. Nanopart. Res., 14, 817 (2012); https://doi.org/10.1007/s11051-012-0817-5
- Y. Yan, M. Al-Jassim and S.-H. Wei, Appl. Phys. Lett., 89, 181912 (2006); https://doi.org/10.1063/1.2378404
- M. Ahmad, E. Ahmed, Z.L. Hong, X.L. Jiao, T. Abbas and N.R. Khalid, Appl. Surf. Sci., 285, 702 (2013); https://doi.org/10.1016/j.apsusc.2013.08.114
- G. Liu, L. Wang, H.G. Yang, H.-M. Cheng and G.Q. (Max) Lu, J. Mater. Chem., 20, 831 (2010); https://doi.org/10.1039/B909930A
- C.W. Dunnill and I.P. Parkin, Dalton Trans., 40, 1635 (2011); https://doi.org/10.1039/C0DT00494D
- F. Peng, L. Cai, H. Yu, H. Wang and J. Yang, J. Solid State Chem., 181, 130 (2008); https://doi.org/10.1016/j.jssc.2007.11.012
- M.N. Uddin, M.S. Islam, M.M.R. Mazumder, M.A. Hossain, M. Elias, I.A. Siddiquey, M.A.B.H. Susan, D.K. Saha, M.M. Rahman, A.M. Asiri and S. Hayami, J. Incl. Phenom. Macrocycl. Chem., 82, 229 (2015); https://doi.org/10.1007/s10847-015-0510-2
- J. Lv, W. Gong, K. Huang, J. Zhu, F. Meng, X. Song and Z. Sun, Superlattices Microstruct., 50, 98 (2011); https://doi.org/10.1016/j.spmi.2011.05.003
- B. Subash, B. Krishnakumar, M. Swaminathan and M. Shanthi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 105, 314 (2013); https://doi.org/10.1016/j.saa.2012.12.035
- B.D. Cullity, Add. Wes., 1956, 51 (1978).
- R. Kumar, O. Al-Dossary, G. Kumar and A. Umar, Nano-Micro Lett., 7, 97 (2015); https://doi.org/10.1007/s40820-014-0023-3
- R. Kumar, G. Kumar and A. Umar, Nanosci. Nanotechnol. Lett., 6, 631 (2014); https://doi.org/10.1166/nnl.2014.1879
- O. Yayapao, S. Thongtem, A. Phuruangrat and T. Thongtem, Ceram. Int., 39, 563 (2013); https://doi.org/10.1016/j.ceramint.2012.10.136
- P.C. Maness, S. Smolinski, D.M. Blake, Z. Huang, E.J. Wolfrum and W.A. Jacoby, Appl. Environ. Microbiol., 65, 4094 (1999); https://doi.org/10.1128/AEM.65.9.4094-4098.1999
- M.A. Hossain, M. Elias, D.R. Sarker, Z.R. Diba, J.M. Mithun, M.A.K. Azad, I.A. Siddiquey, M.M. Rahman, J. Uddin and M.N. Uddin, Res. Chem. Intermed., 44, 2667 (2018); https://doi.org/10.1007/s11164-018-3253-z
References
R. Yan, T. Takahashi, H. Zeng, T. Hosomi, M. Kanai, K. Nagashima, G. Zhang and T. Yanagida, ACS Appl. Electron. Mater., 3, 2925 (2021); https://doi.org/10.1021/acsaelm.1c00428
J.L. Yang, S.J. An, W.I. Park, G.C. Yi and W. Choi, Adv. Mater., 16, 1661 (2004); https://doi.org/10.1002/adma.200306673
X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang and Y. Li, Nano Lett., 9, 2331 (2009); https://doi.org/10.1021/nl900772q
N. Kouklin, Adv. Mater., 20, 2190 (2008); https://doi.org/10.1002/adma.200701071
C.X. Kronawitter, Z. Ma, D. Liu, S.S. Mao and B.R. Antoun, Adv. Energy Mater., 2, 52 (2012); https://doi.org/10.1002/aenm.201100425
Ü. Ozgur, D. Hofstetter and H. Morkoç, Proc. IEEE, 98, 1255 (2010); https://doi.org/10.1109/JPROC.2010.2044550
J. Zhong, J. Li, X. He, J. Zeng, Y. Lu, W. Hu and K. Lin, Curr. Appl. Phys., 12, 998 (2012); https://doi.org/10.1016/j.cap.2012.01.003
R.C. Ramola, S. Negi, M. Rawat, R.C. Singh and F. Singh, ACS Omega, 6, 11660 (2021); https://doi.org/10.1021/acsomega.1c00984
M.M. Ba-abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff and K. Sopian, Chemosphere, 91, 1604 (2013); https://doi.org/10.1016/j.chemosphere.2012.12.055
M. Elias, M.K. Amin, S.H. Firoz, M.A. Hossain, S. Akter, M.A. Hossain, M.N. Uddin and I.A. Siddiquey, Ceram. Int., 43, 84 (2017); https://doi.org/10.1016/j.ceramint.2016.09.114
F. Tsin, A. Thomere, A. L. Bris, S. Collin, D. Lincot and J. Rousset, ACS Appl. Mater. Interf., 8, 12298 (2016); https://doi.org/10.1021/acsami.6b02998
A. Jiamprasertboon, S.C. Dixon, S. Sathasivam, M.J. Powell, Y. Lu, T. Siritanon and C.J. Carmalt, ACS Appl. Electron. Mater., 1, 1408 (2019); https://doi.org/10.1021/acsaelm.9b00190
A. Omidi, A. Habibi-yangjeh and M. Pirhashemi, Appl. Surf. Sci., 276, 468 (2013); https://doi.org/10.1016/j.apsusc.2013.03.118
H. Sun, S. Liu, S. Liu and S. Wang, Appl. Catal. B, 146, 162 (2014); https://doi.org/10.1016/j.apcatb.2013.03.027
T. Lv, L. Pan, X. Liu and Z. Sun, Catal. Sci. Technol., 2, 2297 (2012); https://doi.org/10.1039/c2cy20023f
M. Ahmad, E. Ahmed, Y. Zhang, N.R. Khalid, J. Xu, M. Ullah and Z. Hong, Curr. Appl. Phys., 13, 697 (2013); https://doi.org/10.1016/j.cap.2012.11.008
R. Gupta, N.K.R. Eswar, J.M. Modak and G. Madras, RSC Advances, 6, 85675 (2016); https://doi.org/10.1039/C6RA16739J
B. Soltabayev, G. Yergaliuly, A. Ajjaq, A. Beldeubayev, Z. Bakenov, S. Acar and A. Mentbayeva, ACS Appl. Mater. Interfaces, 14, 41555 (2022); https://doi.org/10.1021/acsami.2c10055
M. Salem, S. Akir, T. Ghrib, K. Daoudi and M. Gaidi, J. Alloys Compd., 685, 107 (2016); https://doi.org/10.1016/j.jallcom.2016.05.254
R. Saleh and N.F. Djaja, Superlattices Microstruct., 74, 217 (2014); https://doi.org/10.1016/j.spmi.2014.06.013
M.S. Abdel-wahab, A. Jilani, I.S. Yahia and A.A. Al-Ghamdi, Superlattices Microstruct., 94, 108 (2016); https://doi.org/10.1016/j.spmi.2016.03.043
S. Rajeh, A. Barhoumi, A. Mhamdi, G. Leroy, B. Duponchel, M. Amlouk and S. Guermazi, Bull. Mater. Sci., 39, 177 (2016); https://doi.org/10.1007/s12034-015-1132-4
M. Karunakaran, R. Chandramohan, S. Balamurali, S. Gomathi, K. Kabila and T. Mahalingam, Int. J. Thin Film Sci. Technol., 3, 61 (2014); https://doi.org/10.12785/ijtfst/030206
V. Rajendar, T. Dayakar, K. Shobhan, I. Srikanth and K.V. Rao, Superlattices Microstruct., 75, 551 (2014); https://doi.org/10.1016/j.spmi.2014.07.049
T. Saidani, M. Zaabat, M.S. Aida and B. Boudine, Superlattices Microstruct., 88, 315 (2015); https://doi.org/10.1016/j.spmi.2015.09.029
S. Yang, Y. Zhang and D. Mo, Thin Solid Films, 571, 605 (2014); https://doi.org/10.1016/j.tsf.2014.02.097
S.S. Zahirullah, J.J. Prince and P.F.H. Inbaraj, Mater. Technol., 32, 755 (2017); https://doi.org/10.1080/10667857.2017.1351656
S. Thakur, N. Sharma, A. Varkia and J. Kumar, Adv. Appl. Sci. Res., 5, 18 (2014).
K. Kim, J. Korean Phys. Soc., 57, 264 (2010); https://doi.org/10.3938/jkps.57.264
W.H. Kim and J.Y. Son, Mater. Lett., 133, 101 (2014); https://doi.org/10.1016/j.matlet.2014.06.180
H.F. Moafi, M.A. Zanjanchi and A.F. Shojaie, Mater. Chem. Phys., 139, 856 (2013); https://doi.org/10.1016/j.matchemphys.2013.02.044
E. Isbilir, Z. Serbetci and M. Soylu, Superlattices Microstruct., 67, 144 (2014); https://doi.org/10.1016/j.spmi.2013.12.017
J. Park, G. Park, H.J. Ko and J.S. Ha, Ceram. Int., 40, 16281 (2014); https://doi.org/10.1016/j.ceramint.2014.07.065
P.V. Adhyapak, S.P. Meshram, A.A. Pawar, D.P. Amalnerkar, U.P. Mulik and I.S. Mulla, Ceram. Int., 40, 12105 (2014); https://doi.org/10.1016/j.ceramint.2014.04.050
M. Hjiri, R. Dhahri, L. El Mir, A. Bonavita, N. Donato, S.G. Leonardi and G. Neri, J. Alloys Compd., 634, 187 (2015); https://doi.org/10.1016/j.jallcom.2015.02.083
X. Wang, X. Huang, Z.M. Wong, A. Suwardi, Y. Zheng, F. Wei, S. Wang, T.L. Tan, G. Wu, Q. Zhu, H. Tanoto, K.S. Ong, S.-W. Yang, A.Q. Yan and J. Xu, ACS Appl. Nano Mater., 5, 8631 (2022); https://doi.org/10.1021/acsanm.2c02159
A.C. Badgujar, B.S. Yadav, G.K. Jha and S.R. Dhage, ACS Omega, 7, 14203 (2022); https://doi.org/10.1021/acsomega.2c00830
R. Kumar, A. Umar, G. Kumar, M.S. Akhtar, Y. Wang and S.H. Kim, Ceram. Int., 41, 7773 (2015); https://doi.org/10.1016/j.ceramint.2015.02.110
M. Elias, M.N. Uddin, M.A. Hossain, J.K. Saha, I.A. Siddiquey, D.R. Sarkar, Z.R. Diba, J. Uddin, M.H.R. Choudhury and S.H. Firoz, Int. J. Hydrogen Energy, 44, 20068 (2019); https://doi.org/10.1016/j.ijhydene.2019.06.056
G.N. Dar, A. Umar, S.A. Zaidi, A.A. Ibrahim, M. Abaker, S. Baskoutas and M.S. Al-assiri, Sens. Actuators B Chem., 173, 72 (2012); https://doi.org/10.1016/j.snb.2012.06.001
M. Faisal, A.A. Ismail, A.A. Ibrahim, H. Bouzid and S.A. Al-Sayari, Chem. Eng. J., 229, 225 (2013); https://doi.org/10.1016/j.cej.2013.06.004
L.G. Devi and R. Kavitha, Appl. Catal. B, 140-141, 559 (2013); https://doi.org/10.1016/j.apcatb.2013.04.035
C.S. Chen, X.D. Xie, T.G. Liu, L.W. Lin, J.C. Kuang, X.L. Xie, L.J. Lu and S.Y. Cao, J. Nanopart. Res., 14, 817 (2012); https://doi.org/10.1007/s11051-012-0817-5
Y. Yan, M. Al-Jassim and S.-H. Wei, Appl. Phys. Lett., 89, 181912 (2006); https://doi.org/10.1063/1.2378404
M. Ahmad, E. Ahmed, Z.L. Hong, X.L. Jiao, T. Abbas and N.R. Khalid, Appl. Surf. Sci., 285, 702 (2013); https://doi.org/10.1016/j.apsusc.2013.08.114
G. Liu, L. Wang, H.G. Yang, H.-M. Cheng and G.Q. (Max) Lu, J. Mater. Chem., 20, 831 (2010); https://doi.org/10.1039/B909930A
C.W. Dunnill and I.P. Parkin, Dalton Trans., 40, 1635 (2011); https://doi.org/10.1039/C0DT00494D
F. Peng, L. Cai, H. Yu, H. Wang and J. Yang, J. Solid State Chem., 181, 130 (2008); https://doi.org/10.1016/j.jssc.2007.11.012
M.N. Uddin, M.S. Islam, M.M.R. Mazumder, M.A. Hossain, M. Elias, I.A. Siddiquey, M.A.B.H. Susan, D.K. Saha, M.M. Rahman, A.M. Asiri and S. Hayami, J. Incl. Phenom. Macrocycl. Chem., 82, 229 (2015); https://doi.org/10.1007/s10847-015-0510-2
J. Lv, W. Gong, K. Huang, J. Zhu, F. Meng, X. Song and Z. Sun, Superlattices Microstruct., 50, 98 (2011); https://doi.org/10.1016/j.spmi.2011.05.003
B. Subash, B. Krishnakumar, M. Swaminathan and M. Shanthi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 105, 314 (2013); https://doi.org/10.1016/j.saa.2012.12.035
B.D. Cullity, Add. Wes., 1956, 51 (1978).
R. Kumar, O. Al-Dossary, G. Kumar and A. Umar, Nano-Micro Lett., 7, 97 (2015); https://doi.org/10.1007/s40820-014-0023-3
R. Kumar, G. Kumar and A. Umar, Nanosci. Nanotechnol. Lett., 6, 631 (2014); https://doi.org/10.1166/nnl.2014.1879
O. Yayapao, S. Thongtem, A. Phuruangrat and T. Thongtem, Ceram. Int., 39, 563 (2013); https://doi.org/10.1016/j.ceramint.2012.10.136
P.C. Maness, S. Smolinski, D.M. Blake, Z. Huang, E.J. Wolfrum and W.A. Jacoby, Appl. Environ. Microbiol., 65, 4094 (1999); https://doi.org/10.1128/AEM.65.9.4094-4098.1999
M.A. Hossain, M. Elias, D.R. Sarker, Z.R. Diba, J.M. Mithun, M.A.K. Azad, I.A. Siddiquey, M.M. Rahman, J. Uddin and M.N. Uddin, Res. Chem. Intermed., 44, 2667 (2018); https://doi.org/10.1007/s11164-018-3253-z