Copyright (c) 2024 Saikat Sarkar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, X-Ray Crystal Structure, Solid State Electrical and Optical Properties of New Copper(II) Complex with 1,10-Phenanthroline Ligand
Corresponding Author(s) : Saikat Sarkar
Asian Journal of Chemistry,
Vol. 36 No. 8 (2024): Vol 36 Issue 8, 2024
Abstract
A new ionic copper(II) complex of 1,10-phenanthroline was synthesized and structurally characterized by elemental and spectroscopic analyses, molar conductance and magnetic moment measurements. The crystal structure of complex was also investigated through single crystal X-ray diffraction analysis and suggestted a distorted octahedral geometry around copper(II), where one N atom from 1,10-phenanthroline and three O atoms from three H2O molecules occupying the basal plane while another Nphen and one Cl atom remain at the apical positions. Thus, the presence of three coordinated waters and chloride group along with the counter chloride ion and water of crystallization is responsible for extensive hydrogen bonding present in the molecule. Thus, the complex forms a 3D gigantic H-bonded network. The two types of intermolecular O–H···Cl and O–H···O hydrogen bonding play the pivotal role in crystal packing and plausible conductivity mechanism through the π-π interacting supports. The electrical conductivity and optical properties were also measured and the results focus on the semiconducting nature of the complex with optical band gap (Egd) value 1.23 eV.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Rajalakshmi, A. Fathima, J.R. Rao and B.U. Nair, RSC Adv., 4, 32004 (2014); https://doi.org/10.1039/C4RA03241A
- V.C. da Silveira, J.S. Luz, C.C. Oliveira, I. Graziani, M.R. Ciriolo and A.M.C. Ferreira, J. Inorg. Biochem., 102, 1090 (2008); https://doi.org/10.1016/j.jinorgbio.2007.12.033
- D.C. Ilies, E. Pahontu, S. Shova, R. Georgescu, N. Stanica, R. Olar, A. Gulea and T. Rosu, Polyhedron, 81, 123 (2014); https://doi.org/10.1016/j.poly.2014.05.074
- X.Y. Qin, Y.N. Wang, X.P. Yang, J.J. Liang, J.L. Liu and Z.H. Luo, Dalton Trans., 46, 16446 (2017); https://doi.org/10.1039/C7DT03242K
- A. Bhattacharjee, S. Halder, K. Ghosh, C. Rizzoli and P. Roy, New J. Chem., 41, 5696 (2017); https://doi.org/10.1039/C7NJ00846E
- J. Losada, I. Del Peso and L. Beyer, Inorg. Chim. Acta, 321, 107 (2001); https://doi.org/10.1016/S0020-1693(01)00511-4
- S.M. Leite, L.M. Lima, S. Gama, F. Mendes, M. Orio, I. Bento, A. Paulo, R. Delgado and O. Iranzo, Inorg. Chem., 55, 11801 (2016); https://doi.org/10.1021/acs.inorgchem.6b01884
- F. Ouyang, X. Jiang, X. Liu, Y. Chen, Y. Chen, S. Chen and L. Jia, Transition Met. Chem., 46, 315 (2021); https://doi.org/10.1007/s11243-021-00448-6
- X.H. Bu, M. Du, Z.L. Shang, R.H. Zhang, D.Z. Liao, M. Shionoya and T. Clifford, Inorg. Chem., 39, 4190 (2000); https://doi.org/10.1021/ic000094d
- L. Rigamonti, F. Demartin, A. Forni, S. Righetto and A. Pasini, Inorg. Chem., 45, 10976 (2006); https://doi.org/10.1021/ic0613513
- S. Masuri, E. Cadoni, M.G. Cabiddu, F. Isaia, M.G. Demuru, L. Morán, D. Bucek, P. Vanhara, J. Havel and T.P. Lukáš, Metallomics, 12, 891 (2020); https://doi.org/10.1039/d0mt00006j
- L. Polloni, A.C. Seni Silva, S.C. Teixeira, F.V.P.V. Azevedo, M.A.P. Zóia, M.S. da Silva, P.M.A.P. Lima, L.I.V. Correia, J. do Couto Almeida, C.V. da Silva, V.M. Rodrigues Ávila, L.R.F. Goulart, S. Morelli, W. Guerra and R.J. Oliveira Júnior, Biomed. Pharmacother., 112, 108586 (2019); https://doi.org/10.1016/j.biopha.2019.01.047
- Y.Y. Wang, X. Wang, Q.Z. Shi and Y.C. Gao, Transition Met. Chem., 27, 481 (2002); https://doi.org/10.1023/A:1015617327024
- O.O. Onawumi, F.A. Adekunle, A.O. Ibrahim, M.V. Rajasekharan and O.A. Odunola, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 40, 78 (2010); https://doi.org/10.3109/10799890903555673
- S. Sarkar, S. Biswas, M.S. Liao, T. Kar, Y. Aydogdu, F. Dagdelen, G. Mostafa, A.P. Chattopadhyay, G.P. Yap, R.H. Xie, A.T. Khan and K. Dey, Polyhedron, 27, 3359 (2008); https://doi.org/10.1016/j.poly.2008.07.034
- S. Sarkar, Y. Aydogdu, F. Dagdelen, B.B. Bhaumik and K. Dey, Mater. Chem. Phys., 88, 357 (2004); https://doi.org/10.1016/j.matchemphys.2004.08.001
- Y. Aydogdu, F. Yakuphanoglu, A. Aydogdu, M. Sekerci, Y. Balci and I. Aksoy, Synth. Met., 107, 191 (1999); https://doi.org/10.1016/S0379-6779(99)00167-8
- A. Dutta, A. Mahanta, S.J. Panda, S. Biswas, V.B. Kamble, C.S. Purohit, S.K. Jasimuddin and R. Ghosh, J. Chem. Sci., 135, 62 (2023); https://doi.org/10.1007/s12039-023-02179-w
- Y. Aydogdu, F. Yakuphanoglu, F. Dagdelen, M. Sekerci and I. Aksoy, Mater. Lett., 57, 237 (2002); https://doi.org/10.1016/S0167-577X(02)00772-3
- S. Biswas, F. Dagdelen, Y. Aydogdu and K. Dey, Mater. Chem. Phys., 129, 1121 (2011); https://doi.org/10.1016/j.matchemphys.2011.05.071
- K. Kalyanasundaram and M. Grätzel, Coord. Chem. Rev., 177, 347 (1998); https://doi.org/10.1016/S0010-8545(98)00189-1
- W.C. Choy, W.K. Chan and Y. Yuan, Adv. Mater., 26, 5368 (2014); https://doi.org/10.1002/adma.201306133
- K. Akkiliç, Y.S. Ocak, T. Kiliçoglu, S. Ilhan and H. Temel, Curr. Appl. Phys., 10, 337 (2010); https://doi.org/10.1016/j.cap.2009.06.019
- W.W. Lee, K.Y. Wong and X.M. Li, Anal. Chem., 65, 255 (1993); https://doi.org/10.1021/ac00051a012
- G.M. Sheldrick, SHELXS-97 and SHELXL-97, Program for Crystal Structure Solution and Refinement, University of Gottingen, Gottingen (1997).
- G.M. Sheldrick, Acta Crystallogr. A, 64, 112 (2008); https://doi.org/10.1107/S0108767307043930
- L.J. Farrugia, J. Appl. Cryst., 32, 837 (1999); https://doi.org/10.1107/S0021889899006020
- C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P.A. Wood, J. Appl. Cryst., 41, 466 (2008); https://doi.org/10.1107/S0021889807067908
- K. Chattopadhyay, B.K. Shaw, S.K. Saha and D. Ray, Dalton Trans., 45, 6928 (2016); https://doi.org/10.1039/C6DT00103C
- X. Chen, F. Gao and W. Yang, Sci. Rep., 6, 29314 (2016); https://doi.org/10.1038/srep29314
- X. Chen, B. Ma, X. Wang, S. Yao, L. Ni, Z. Zhou, Y. Li, W. Huang, J. Ma, J. Zuo and X. Wang, Chem. Eur. J., 18, 11828 (2012); https://doi.org/10.1002/chem.201103972
- R. Banik, S. Roy, A. Bauza, A. Frontera and S. Das, RSC Adv., 5, 10826 (2015); https://doi.org/10.1039/C4RA10251G
- X. Wang, G. Jia, Y. Yu, Y. Gao, W. Zhang, H. Wang, Z. Cao and J. Liu, Quim. Nova, 38, 298 (2015).
- O.A. Dar, S.A. Lone, M.A. Malik, M.Y. Wani, A. Ahmad and A. Hashmi, RSC Adv., 9, 15151 (2019); https://doi.org/10.1039/C9RA02600B
- A. Abebe and T. Hailemariam, Bioinorg. Chem. Appl., 2016, 3607924 (2016); https://doi.org/10.1155/2016/3607924
- H.-Y. Mao, X.-Q. Shen, G. Li, H.-Y. Zhang, C. Xu, H.-L. Liu, E.-B. Wang, Q.-A. Wu, H.-W. Hou and Y. Zhu, Polyhedron, 23, 1961 (2004); https://doi.org/10.1016/j.poly.2004.04.034
- M. Goldstein, E.F. Mooney, A. Anderson and H.A. Gebbie, Spectrochim. Acta, 21, 105 (1965); https://doi.org/10.1016/0371-1951(65)80109-6
- S. Chandra and S.D. Sharma, Transition Met. Chem., 27, 732 (2002); https://doi.org/10.1023/A:1020309322470
- P.M. Reddy, R. Rohini, E.R. Krishna, A. Hu and V. Ravinder, Int. J. Mol. Sci., 13, 4982 (2012); https://doi.org/10.3390/ijms13044982
- S. Chandra and L.K. Gupta, Spectrochim. Acta A Mol. Biomol. Spectrosc., 60, 1563 (2004); https://doi.org/10.1016/j.saa.2003.08.023
- Y. Li, N. Dandu, R. Liu, Z. Li, S. Kilina and W. Sun, J. Phys. Chem. C, 118, 6372 (2014); https://doi.org/10.1021/jp411259f
- J. Lewis and R.A. Walton, J. Chem. Soc. A, 1559 (1966); https://doi.org/10.1039/j19660001559
- B.N. Figgis and J. Lewis, in eds.: J. Lewis and R. G. Wilkins, The Magnetochemistry of Chelates, In: Modern Coordination Chemistry. Interscience, New York, USA (1960).
- I. Ali, W.A. Wani and K. Saleem, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 43, 1162 (2013); https://doi.org/10.1080/15533174.2012.756898
- F. Gutmann and L.E. Lyons, Organic Semiconductors, Wiley Interscience, New York (1967).
- M.S. Masoud, E.A. Khalil and M.E. Kassem, React. Solids, 2, 269 (1986); https://doi.org/10.1016/0168-7336(86)80090-0
- M.S. Masoud, S.A. El-Enein and E. El-Shereafy, J. Therm. Anal., 37, 365 (1991); https://doi.org/10.1007/BF02055938
- Y. Aydogdu, F. Yakuphanoglu, A. Aydogdu, S. Saydam, M. Sekerci and F.S. Boydag, Synth. Met., 122, 329 (2001); https://doi.org/10.1016/S0379-6779(00)00360-X
- N.F. Mott and E.A. Davis, Electronic Processes in Non-crystalline Materials. Clarendon Press, Oxford, New York (1971).
- J.I. Pankove, Optical Processes in Semiconductors. Prentice-Hall Inc., New Jersey (1971).
References
S. Rajalakshmi, A. Fathima, J.R. Rao and B.U. Nair, RSC Adv., 4, 32004 (2014); https://doi.org/10.1039/C4RA03241A
V.C. da Silveira, J.S. Luz, C.C. Oliveira, I. Graziani, M.R. Ciriolo and A.M.C. Ferreira, J. Inorg. Biochem., 102, 1090 (2008); https://doi.org/10.1016/j.jinorgbio.2007.12.033
D.C. Ilies, E. Pahontu, S. Shova, R. Georgescu, N. Stanica, R. Olar, A. Gulea and T. Rosu, Polyhedron, 81, 123 (2014); https://doi.org/10.1016/j.poly.2014.05.074
X.Y. Qin, Y.N. Wang, X.P. Yang, J.J. Liang, J.L. Liu and Z.H. Luo, Dalton Trans., 46, 16446 (2017); https://doi.org/10.1039/C7DT03242K
A. Bhattacharjee, S. Halder, K. Ghosh, C. Rizzoli and P. Roy, New J. Chem., 41, 5696 (2017); https://doi.org/10.1039/C7NJ00846E
J. Losada, I. Del Peso and L. Beyer, Inorg. Chim. Acta, 321, 107 (2001); https://doi.org/10.1016/S0020-1693(01)00511-4
S.M. Leite, L.M. Lima, S. Gama, F. Mendes, M. Orio, I. Bento, A. Paulo, R. Delgado and O. Iranzo, Inorg. Chem., 55, 11801 (2016); https://doi.org/10.1021/acs.inorgchem.6b01884
F. Ouyang, X. Jiang, X. Liu, Y. Chen, Y. Chen, S. Chen and L. Jia, Transition Met. Chem., 46, 315 (2021); https://doi.org/10.1007/s11243-021-00448-6
X.H. Bu, M. Du, Z.L. Shang, R.H. Zhang, D.Z. Liao, M. Shionoya and T. Clifford, Inorg. Chem., 39, 4190 (2000); https://doi.org/10.1021/ic000094d
L. Rigamonti, F. Demartin, A. Forni, S. Righetto and A. Pasini, Inorg. Chem., 45, 10976 (2006); https://doi.org/10.1021/ic0613513
S. Masuri, E. Cadoni, M.G. Cabiddu, F. Isaia, M.G. Demuru, L. Morán, D. Bucek, P. Vanhara, J. Havel and T.P. Lukáš, Metallomics, 12, 891 (2020); https://doi.org/10.1039/d0mt00006j
L. Polloni, A.C. Seni Silva, S.C. Teixeira, F.V.P.V. Azevedo, M.A.P. Zóia, M.S. da Silva, P.M.A.P. Lima, L.I.V. Correia, J. do Couto Almeida, C.V. da Silva, V.M. Rodrigues Ávila, L.R.F. Goulart, S. Morelli, W. Guerra and R.J. Oliveira Júnior, Biomed. Pharmacother., 112, 108586 (2019); https://doi.org/10.1016/j.biopha.2019.01.047
Y.Y. Wang, X. Wang, Q.Z. Shi and Y.C. Gao, Transition Met. Chem., 27, 481 (2002); https://doi.org/10.1023/A:1015617327024
O.O. Onawumi, F.A. Adekunle, A.O. Ibrahim, M.V. Rajasekharan and O.A. Odunola, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 40, 78 (2010); https://doi.org/10.3109/10799890903555673
S. Sarkar, S. Biswas, M.S. Liao, T. Kar, Y. Aydogdu, F. Dagdelen, G. Mostafa, A.P. Chattopadhyay, G.P. Yap, R.H. Xie, A.T. Khan and K. Dey, Polyhedron, 27, 3359 (2008); https://doi.org/10.1016/j.poly.2008.07.034
S. Sarkar, Y. Aydogdu, F. Dagdelen, B.B. Bhaumik and K. Dey, Mater. Chem. Phys., 88, 357 (2004); https://doi.org/10.1016/j.matchemphys.2004.08.001
Y. Aydogdu, F. Yakuphanoglu, A. Aydogdu, M. Sekerci, Y. Balci and I. Aksoy, Synth. Met., 107, 191 (1999); https://doi.org/10.1016/S0379-6779(99)00167-8
A. Dutta, A. Mahanta, S.J. Panda, S. Biswas, V.B. Kamble, C.S. Purohit, S.K. Jasimuddin and R. Ghosh, J. Chem. Sci., 135, 62 (2023); https://doi.org/10.1007/s12039-023-02179-w
Y. Aydogdu, F. Yakuphanoglu, F. Dagdelen, M. Sekerci and I. Aksoy, Mater. Lett., 57, 237 (2002); https://doi.org/10.1016/S0167-577X(02)00772-3
S. Biswas, F. Dagdelen, Y. Aydogdu and K. Dey, Mater. Chem. Phys., 129, 1121 (2011); https://doi.org/10.1016/j.matchemphys.2011.05.071
K. Kalyanasundaram and M. Grätzel, Coord. Chem. Rev., 177, 347 (1998); https://doi.org/10.1016/S0010-8545(98)00189-1
W.C. Choy, W.K. Chan and Y. Yuan, Adv. Mater., 26, 5368 (2014); https://doi.org/10.1002/adma.201306133
K. Akkiliç, Y.S. Ocak, T. Kiliçoglu, S. Ilhan and H. Temel, Curr. Appl. Phys., 10, 337 (2010); https://doi.org/10.1016/j.cap.2009.06.019
W.W. Lee, K.Y. Wong and X.M. Li, Anal. Chem., 65, 255 (1993); https://doi.org/10.1021/ac00051a012
G.M. Sheldrick, SHELXS-97 and SHELXL-97, Program for Crystal Structure Solution and Refinement, University of Gottingen, Gottingen (1997).
G.M. Sheldrick, Acta Crystallogr. A, 64, 112 (2008); https://doi.org/10.1107/S0108767307043930
L.J. Farrugia, J. Appl. Cryst., 32, 837 (1999); https://doi.org/10.1107/S0021889899006020
C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P.A. Wood, J. Appl. Cryst., 41, 466 (2008); https://doi.org/10.1107/S0021889807067908
K. Chattopadhyay, B.K. Shaw, S.K. Saha and D. Ray, Dalton Trans., 45, 6928 (2016); https://doi.org/10.1039/C6DT00103C
X. Chen, F. Gao and W. Yang, Sci. Rep., 6, 29314 (2016); https://doi.org/10.1038/srep29314
X. Chen, B. Ma, X. Wang, S. Yao, L. Ni, Z. Zhou, Y. Li, W. Huang, J. Ma, J. Zuo and X. Wang, Chem. Eur. J., 18, 11828 (2012); https://doi.org/10.1002/chem.201103972
R. Banik, S. Roy, A. Bauza, A. Frontera and S. Das, RSC Adv., 5, 10826 (2015); https://doi.org/10.1039/C4RA10251G
X. Wang, G. Jia, Y. Yu, Y. Gao, W. Zhang, H. Wang, Z. Cao and J. Liu, Quim. Nova, 38, 298 (2015).
O.A. Dar, S.A. Lone, M.A. Malik, M.Y. Wani, A. Ahmad and A. Hashmi, RSC Adv., 9, 15151 (2019); https://doi.org/10.1039/C9RA02600B
A. Abebe and T. Hailemariam, Bioinorg. Chem. Appl., 2016, 3607924 (2016); https://doi.org/10.1155/2016/3607924
H.-Y. Mao, X.-Q. Shen, G. Li, H.-Y. Zhang, C. Xu, H.-L. Liu, E.-B. Wang, Q.-A. Wu, H.-W. Hou and Y. Zhu, Polyhedron, 23, 1961 (2004); https://doi.org/10.1016/j.poly.2004.04.034
M. Goldstein, E.F. Mooney, A. Anderson and H.A. Gebbie, Spectrochim. Acta, 21, 105 (1965); https://doi.org/10.1016/0371-1951(65)80109-6
S. Chandra and S.D. Sharma, Transition Met. Chem., 27, 732 (2002); https://doi.org/10.1023/A:1020309322470
P.M. Reddy, R. Rohini, E.R. Krishna, A. Hu and V. Ravinder, Int. J. Mol. Sci., 13, 4982 (2012); https://doi.org/10.3390/ijms13044982
S. Chandra and L.K. Gupta, Spectrochim. Acta A Mol. Biomol. Spectrosc., 60, 1563 (2004); https://doi.org/10.1016/j.saa.2003.08.023
Y. Li, N. Dandu, R. Liu, Z. Li, S. Kilina and W. Sun, J. Phys. Chem. C, 118, 6372 (2014); https://doi.org/10.1021/jp411259f
J. Lewis and R.A. Walton, J. Chem. Soc. A, 1559 (1966); https://doi.org/10.1039/j19660001559
B.N. Figgis and J. Lewis, in eds.: J. Lewis and R. G. Wilkins, The Magnetochemistry of Chelates, In: Modern Coordination Chemistry. Interscience, New York, USA (1960).
I. Ali, W.A. Wani and K. Saleem, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 43, 1162 (2013); https://doi.org/10.1080/15533174.2012.756898
F. Gutmann and L.E. Lyons, Organic Semiconductors, Wiley Interscience, New York (1967).
M.S. Masoud, E.A. Khalil and M.E. Kassem, React. Solids, 2, 269 (1986); https://doi.org/10.1016/0168-7336(86)80090-0
M.S. Masoud, S.A. El-Enein and E. El-Shereafy, J. Therm. Anal., 37, 365 (1991); https://doi.org/10.1007/BF02055938
Y. Aydogdu, F. Yakuphanoglu, A. Aydogdu, S. Saydam, M. Sekerci and F.S. Boydag, Synth. Met., 122, 329 (2001); https://doi.org/10.1016/S0379-6779(00)00360-X
N.F. Mott and E.A. Davis, Electronic Processes in Non-crystalline Materials. Clarendon Press, Oxford, New York (1971).
J.I. Pankove, Optical Processes in Semiconductors. Prentice-Hall Inc., New Jersey (1971).