Copyright (c) 2024 Soumini chandralayam, Sugunan Sankaran
This work is licensed under a Creative Commons Attribution 4.0 International License.
Nanogold Supported Titania Loaded SBA-15: An Efficient Catalyst for Reduction of 4-Nitrophenol
Corresponding Author(s) : Soumini Chandralayam
Asian Journal of Chemistry,
Vol. 36 No. 8 (2024): Vol 36 Issue 8, 2024
Abstract
Gold nanoparticles with an average particle size below 5 nm were effectively dispersed over titania loaded SBA-15. The nanogold supported systems were found to be highly effective in the liquid phase reduction of 4-nitrophenol to 4-aminophenol at room temperature (304 K) obeying pseudo-first-order kinetics. The highly effective catalyst with 3 wt.% Au incorporation to 20 wt.% Ti loaded SBA-15 (3Au/20Ti/SBA) showed a TON of 5.8 × 1021 molecules/g and a TOF of 6.5 × 1018 molecules/g/s in the reaction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.C. Chang and D.H. Chen, J. Hazard. Mater., 165, 664 (2009); https://doi.org/10.1016/j.jhazmat.2008.10.034
- A.A. Ismail, A. Hakki and D.W. Bahnemann, J. Mol. Catal. Chem., 358, 145 (2012); https://doi.org/10.1016/j.molcata.2012.03.009
- A.S. Hashimi, M.A.N.M. Nohan, S.X. Chin, S. Zakaria and C.H. Chia, Nanomaterials, 9, 936 (2019); https://doi.org/10.3390/nano9070936
- C. Kästner and A.F. Thünemann, Langmuir, 32, 7383 ( 2016); https://doi.org/10.1021/acs.langmuir.6b01477
- A.I. Ayad, D. Luart, A.O. Dris and E. Guénin, Nanomaterials, 10, 1169 (2020); https://doi.org/10.3390/nano10061169
- S. Varshney, D. Meyerstein, R. Bar-Ziv and T. Zidki, Molecules, 28, 6530 (2023); https://doi.org/10.3390/molecules28186530
- F. Rizzi, R. Castaldo, T. Latronico, P. Lasala, G. Gentile, M. Lavorgna, M. Striccoli, A. Agostiano, R. Comparelli, N. Depalo, M.L. Curri and E. Fanizza, Molecules, 26, 4247 (2021); https://doi.org/10.3390/molecules26144247
- S. Singh, A. Kumar, L. Nebhani and C.K. Hazra, JACS Au, 3, 3400 (2023); https://doi.org/10.1021/jacsau.3c00563
- H. Zhu, B. Lee, S. Dai and S.H. Overbury, Langmuir, 19, 3974 (2003); https://doi.org/10.1021/la027029w
- R. Zanella, A. Sandoval, P. Santiago, V.A. Basiuk and J.M. Saniger, J. Phys. Chem. B, 110, 8559 (2006); https://doi.org/10.1021/jp060601y
- A. Ghosh, C. Ranjan Patra, P. Mukherjee, M. Sastry and R. Kumar, Micropor. Mesopor. Mater., 58, 201 (2003); https://doi.org/10.1016/S1387-1811(02)00626-1
- N. Petkov, N. Stock and T. Bein, J. Phys. Chem. B, 109, 10737 (2005); https://doi.org/10.1021/jp050429i
- L.-F. Gutierrez, S. Hamoudi and K. Belkacemi, Appl. Catal. A Gen., 425–426, 213 (2012); https://doi.org/10.1016/j.apcata.2012.03.025
- S. Parambadath and A.P. Singh, Catal. Today, 141, 161 (2009); https://doi.org/10.1016/j.cattod.2008.04.003
- Z. Wang, Y. Xie and C.J. Liu, J. Phys. Chem. C, 112, 19818 (2008); https://doi.org/10.1021/jp805538j
- D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka and G.D. Stucky, Science, 279, 548 (1998); https://doi.org/10.1126/science.279.5350.548
- S. Mondal, M.E. De Anda Reyes and U. Pal, RSC Adv., 7, 8633 (2017); https://doi.org/10.1039/C6RA28640B
- X. Li, S. Huang, Q. Xu and Y. Yang, Transition Met. Chem., 34, 943 (2009); https://doi.org/10.1007/s11243-009-9285-x
- P. Babelon, A.S. Dequiedt, H. Mostefa-Sba, S. Bourgeois, P. Sibillot and M. Sacilotti, Thin Solid Films, 322, 63 (1998); https://doi.org/10.1016/S0040-6090(97)00958-9
- S. Bourgeois, P. le Seigneur and M. Perdereau, Surf. Sci., 328, 105 (1995); https://doi.org/10.1016/0039-6028(95)00022-4
- B.M. Mogudi, P. Ncube, N. Bingwa, N. Mawila, S. Mathebula and R. Meijboom, Appl. Catal. B, 218, 240 (2017); https://doi.org/10.1016/j.apcatb.2017.06.045
- K. Kuroda, T. Ishida and M. Haruta, J. Mol. Catal. Chem., 298, 7 (2009); https://doi.org/10.1016/j.molcata.2008.09.009
- Y. Khalavka, J. Becker and C. Sonnichsen, J. Am. Chem. Soc., 131, 1871 (2009); https://doi.org/10.1021/ja806766w
- Y. Peng, W. Leng, B. Dong, R. Ge, H. Duan and Y. Gao, Chin. J. Catal., 36, 1117 (2015); https://doi.org/10.1016/S1872-2067(14)60310-7
- X. Le, Z. Dong, W. Zhang, X. Li and J. Ma, J. Mol. Catal. Chem., 395, 58 (2014); https://doi.org/10.1016/j.molcata.2014.08.002
- H. Yang, S. Li, X. Zhang, X. Wang and J. Ma, J. Mater. Chem. A Mater. Energy Sustain., 2, 12060 (2014); https://doi.org/10.1039/C4TA01513D
- J. Chen, Z. Xue, S. Feng, B. Tu and D. Zhao, J. Colloid Interface Sci., 429, 62 (2014); https://doi.org/10.1016/j.jcis.2014.05.005
- W. Wang, Z. Meng, Q. Zhang, X. Jia and K. Xi, J. Colloid Interface Sci., 418, 1 (2014); https://doi.org/10.1016/j.jcis.2013.11.043
- H. Liu, C. Lin, Z. Ma, H. Yu and S. Zhou, Molecules, 18, 14258 (2013); https://doi.org/10.3390/molecules181114258
- S.P. Viswanathan, B.N. Narayanan, Z. Yaakob, S. Padikkaparambil and M. Mohammad, React. Kinet. Mech. Catal., 111, 335 (2014); https://doi.org/10.1007/s11144-013-0645-3
- Z. Zhang, C. Shao, P. Zou, P. Zhang, M. Zhang, J. Mu, Z. Guo, X. Li, C. Wang and Y. Liu, Chem. Commun., 47, 3906 (2011); https://doi.org/10.1039/c0cc05693f
- Z. Dong, G. Yu and X. Le, New J. Chem., 39, 8623 (2013); https://doi.org/10.1039/C5NJ00713E
- S. Noel, H. Bricout, A. Addad, C. Sonnendecker, W. Zimmermann, E. Monflier and B. Leger, New J. Chem., 44, 21007 (2020); https://doi.org/10.1039/D0NJ03687K
- T. Gia-Thien Ho, B.L. Do, B.V. Pham, T.T.V. Nguyen, H.P. Phan, H.B. Nguyen, P.P.T. Vo and N. Tri, RSC Adv., 12, 25753 (2022); https://doi.org/10.1039/D2RA04557E
References
Y.C. Chang and D.H. Chen, J. Hazard. Mater., 165, 664 (2009); https://doi.org/10.1016/j.jhazmat.2008.10.034
A.A. Ismail, A. Hakki and D.W. Bahnemann, J. Mol. Catal. Chem., 358, 145 (2012); https://doi.org/10.1016/j.molcata.2012.03.009
A.S. Hashimi, M.A.N.M. Nohan, S.X. Chin, S. Zakaria and C.H. Chia, Nanomaterials, 9, 936 (2019); https://doi.org/10.3390/nano9070936
C. Kästner and A.F. Thünemann, Langmuir, 32, 7383 ( 2016); https://doi.org/10.1021/acs.langmuir.6b01477
A.I. Ayad, D. Luart, A.O. Dris and E. Guénin, Nanomaterials, 10, 1169 (2020); https://doi.org/10.3390/nano10061169
S. Varshney, D. Meyerstein, R. Bar-Ziv and T. Zidki, Molecules, 28, 6530 (2023); https://doi.org/10.3390/molecules28186530
F. Rizzi, R. Castaldo, T. Latronico, P. Lasala, G. Gentile, M. Lavorgna, M. Striccoli, A. Agostiano, R. Comparelli, N. Depalo, M.L. Curri and E. Fanizza, Molecules, 26, 4247 (2021); https://doi.org/10.3390/molecules26144247
S. Singh, A. Kumar, L. Nebhani and C.K. Hazra, JACS Au, 3, 3400 (2023); https://doi.org/10.1021/jacsau.3c00563
H. Zhu, B. Lee, S. Dai and S.H. Overbury, Langmuir, 19, 3974 (2003); https://doi.org/10.1021/la027029w
R. Zanella, A. Sandoval, P. Santiago, V.A. Basiuk and J.M. Saniger, J. Phys. Chem. B, 110, 8559 (2006); https://doi.org/10.1021/jp060601y
A. Ghosh, C. Ranjan Patra, P. Mukherjee, M. Sastry and R. Kumar, Micropor. Mesopor. Mater., 58, 201 (2003); https://doi.org/10.1016/S1387-1811(02)00626-1
N. Petkov, N. Stock and T. Bein, J. Phys. Chem. B, 109, 10737 (2005); https://doi.org/10.1021/jp050429i
L.-F. Gutierrez, S. Hamoudi and K. Belkacemi, Appl. Catal. A Gen., 425–426, 213 (2012); https://doi.org/10.1016/j.apcata.2012.03.025
S. Parambadath and A.P. Singh, Catal. Today, 141, 161 (2009); https://doi.org/10.1016/j.cattod.2008.04.003
Z. Wang, Y. Xie and C.J. Liu, J. Phys. Chem. C, 112, 19818 (2008); https://doi.org/10.1021/jp805538j
D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka and G.D. Stucky, Science, 279, 548 (1998); https://doi.org/10.1126/science.279.5350.548
S. Mondal, M.E. De Anda Reyes and U. Pal, RSC Adv., 7, 8633 (2017); https://doi.org/10.1039/C6RA28640B
X. Li, S. Huang, Q. Xu and Y. Yang, Transition Met. Chem., 34, 943 (2009); https://doi.org/10.1007/s11243-009-9285-x
P. Babelon, A.S. Dequiedt, H. Mostefa-Sba, S. Bourgeois, P. Sibillot and M. Sacilotti, Thin Solid Films, 322, 63 (1998); https://doi.org/10.1016/S0040-6090(97)00958-9
S. Bourgeois, P. le Seigneur and M. Perdereau, Surf. Sci., 328, 105 (1995); https://doi.org/10.1016/0039-6028(95)00022-4
B.M. Mogudi, P. Ncube, N. Bingwa, N. Mawila, S. Mathebula and R. Meijboom, Appl. Catal. B, 218, 240 (2017); https://doi.org/10.1016/j.apcatb.2017.06.045
K. Kuroda, T. Ishida and M. Haruta, J. Mol. Catal. Chem., 298, 7 (2009); https://doi.org/10.1016/j.molcata.2008.09.009
Y. Khalavka, J. Becker and C. Sonnichsen, J. Am. Chem. Soc., 131, 1871 (2009); https://doi.org/10.1021/ja806766w
Y. Peng, W. Leng, B. Dong, R. Ge, H. Duan and Y. Gao, Chin. J. Catal., 36, 1117 (2015); https://doi.org/10.1016/S1872-2067(14)60310-7
X. Le, Z. Dong, W. Zhang, X. Li and J. Ma, J. Mol. Catal. Chem., 395, 58 (2014); https://doi.org/10.1016/j.molcata.2014.08.002
H. Yang, S. Li, X. Zhang, X. Wang and J. Ma, J. Mater. Chem. A Mater. Energy Sustain., 2, 12060 (2014); https://doi.org/10.1039/C4TA01513D
J. Chen, Z. Xue, S. Feng, B. Tu and D. Zhao, J. Colloid Interface Sci., 429, 62 (2014); https://doi.org/10.1016/j.jcis.2014.05.005
W. Wang, Z. Meng, Q. Zhang, X. Jia and K. Xi, J. Colloid Interface Sci., 418, 1 (2014); https://doi.org/10.1016/j.jcis.2013.11.043
H. Liu, C. Lin, Z. Ma, H. Yu and S. Zhou, Molecules, 18, 14258 (2013); https://doi.org/10.3390/molecules181114258
S.P. Viswanathan, B.N. Narayanan, Z. Yaakob, S. Padikkaparambil and M. Mohammad, React. Kinet. Mech. Catal., 111, 335 (2014); https://doi.org/10.1007/s11144-013-0645-3
Z. Zhang, C. Shao, P. Zou, P. Zhang, M. Zhang, J. Mu, Z. Guo, X. Li, C. Wang and Y. Liu, Chem. Commun., 47, 3906 (2011); https://doi.org/10.1039/c0cc05693f
Z. Dong, G. Yu and X. Le, New J. Chem., 39, 8623 (2013); https://doi.org/10.1039/C5NJ00713E
S. Noel, H. Bricout, A. Addad, C. Sonnendecker, W. Zimmermann, E. Monflier and B. Leger, New J. Chem., 44, 21007 (2020); https://doi.org/10.1039/D0NJ03687K
T. Gia-Thien Ho, B.L. Do, B.V. Pham, T.T.V. Nguyen, H.P. Phan, H.B. Nguyen, P.P.T. Vo and N. Tri, RSC Adv., 12, 25753 (2022); https://doi.org/10.1039/D2RA04557E