Copyright (c) 2024 Lawrance. A, . Leema rose mary.D a, Edwina Sherley Felicita.A a, Dr.P.Marie Arockianathan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Physico-chemical Characteristics of Keratin Extracted from Three Commercial Bird Feathers and their Antibacterial Activity
Corresponding Author(s) : P. Marie Arockianathan
Asian Journal of Chemistry,
Vol. 36 No. 8 (2024): Vol 36 Issue 8, 2024
Abstract
Commercial bird feathers waste is a major environmental concern that must be modified in an eco-friendly way into value added products. In this study, keratin samples extracted from three commercial bird feathers (broiler, Turkey and country chicken) were compared and characterized. The chemically extracted keratin samples were analyzed using Kjeldahl method, SDS-PAGE, HPLC, SEM, FTIR, XRD techniques and also evaluated its antibacterial activity. The extracted samples showed low molecular weight and confirmed its secondary structure by FTIR spectra. The amino acids composition was similar in all keratin samples whereas the amino acids content was found to be higher in broiler keratin. All the samples retain their chemical structure and crystallinity. The antibacterial activity of keratin samples was identified by a well diffusion method and the zone of inhibition was found to be greater for broiler keratin compared to other samples. Thus, broiler feathers keratin can be utilized in future for more protein derived products due to its higher protein content and antibacterial activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Ma, X. Qiao, X. Hou and Y. Yang, Int. J. Biol. Macromol., 89, 614 (2016); https://doi.org/10.1016/j.ijbiomac.2016.04.039
- S. Feroz, N. Muhammad, J. Ratnayake and G. Dias, Bioact. Mater., 5, 496 (2020); https://doi.org/10.1016/j.bioactmat.2020.04.007
- G. Rouse and E. VanDyke, Materials, 3, 999 (2010); https://doi.org/10.3390/ma3020999
- A. Vasconcelos and A. Cavaco-Paulo, Curr. Drug Targets, 14, 612 (2013); https://doi.org/10.2174/1389450111314050010
- B. Li, Y. Sun, J. Yao, H. Wu, Y. Shen, C. Zhi and J. Li, Mater. Des., 217, 110611 (2022); https://doi.org/10.1016/j.matdes.2022.110611
- W. Ye, M. Qin, R. Qiu and J. Li, Int. J. Biol. Macromol., 211, 183 (2022); https://doi.org/10.1016/j.ijbiomac.2022.04.216
- N. Ramakrishnan, S. Sharma, A. Gupta and B.Y. Alashwal, Int. J. Biol. Macromol., 111, 352 (2018); https://doi.org/10.1016/j.ijbiomac.2018.01.037
- P. Hill, H. Brantley and M. VanDyke, Biomaterials, 31, 585 (2010); https://doi.org/10.1016/j.biomaterials.2009.09.076
- J.P. Ye, J.S. Gong, C. Su, Y. Liu, M. Jiang, H. Pan, R. Li, Y. Geng, Z. Xu and J. Shi, Colloids Surf. B Biointerfaces, 194, 111158 (2020); https://doi.org/10.1016/j.colsurfb.2020.111158
- B.S. Harrap and E.F. Woods, Biochem. J., 92, 8 (1964); https://doi.org/10.1042/bj0920008
- T. Posati, D. Giuri, M. Nocchetti, A. Sagnella, M. Gariboldi, C. Ferroni, G. Sotgiu, G. Varchi, R. Zamboni and A. Aluigi, Eur. Polym. J., 105, 177 (2018); https://doi.org/10.1016/j.eurpolymj.2018.05.030
- R. Wang and H. Tong, Polymers, 14, 4723 (2022); https://doi.org/10.3390/polym14214723
- M.D. Farhad Ali, M.D. SahadatHossain, T.S. Moin, S. Ahmed and A.M.S. Chowdhury, Clean. Eng. Technol., 4, 100190 (2021); https://doi.org/10.1016/j.clet.2021.100190
- U. Aebi, W.E. Fowler, P. Rew and T.T. Sun, J. Cell Biol., 97, 1131 (1983); https://doi.org/10.1083/jcb.97.4.1131
- K. Kowata, M. Nakaoka, K. Nishio, A. Fukao, A. Satoh, M. Ogoshi, S. Takahashi, M. Tsudzuki and S. Takeuchi, Gene, 542, 23 (2014); https://doi.org/10.1016/j.gene.2014.03.027
- B. Wang, W. Yang, J. McKittrick and M.A. Meyers, Prog. Mater. Sci., 76, 229 (2016); https://doi.org/10.1016/j.pmatsci.2015.06.001
- J. McKittrick, P.Y. Chen, S.G. Bodde, W. Yang, E.E. Novitskaya and M.A. Meyers, J. Miner. Met. Mater. Soc., 64, 449 (2012); https://doi.org/10.1007/s11837-012-0302-8
- J. Wang, S. Hao, T. Luo, Q. Yang and B. Wang, Mater. Sci. Eng. C, 68, 768 (2016); https://doi.org/10.1016/j.msec.2016.07.035
- P. Cataldi, O. Condurache, D. Spirito, R. Krahne, A. Athanassiou, I.S. Bayer and G. Perotto, ACS Sustain. Chem. Eng., 7, 12544 (2019); https://doi.org/10.1021/acssuschemeng.9b02415
- T. Tesfaye, B. Sithole and D. Ramjugernath, Int. J. Chem. Sci., 16, 281 (2018); https://doi.org/10.21767/0972-768X.1000281
- P. Kshetri, P.L. Singh, S.B. Chanu, T.S. Singh, C. Rajiv, K. Tamreihao, H.N. Singh, T. Chongtham, A.K. Devi, S.K. Sharma, S. Chongtham, M.N. Singh, Y.P. Devi, H.S. Devi and S.S. Roy, Electron. J. Biotechnol., 60, 11 (2022); https://doi.org/10.1016/j.ejbt.2022.08.001
- O.M. Oluba, O.B. Akpor, O.O. Alabi, A.J. Shoyombo, A.G. Adeyonu and F.D. Adebiyi, Food Res., 4, 1053 (2020); https://doi.org/10.26656/fr.2017.4(4).402
- K.R. Ramya, R. Thangam and B. Madhan, Process Biochem., 90, 223 (2020); https://doi.org/10.1016/j.procbio.2019.11.015
- S. Sharma, A. Gupta, S.M.S.T. Chik, C.G. Kee, B.M. Mistry, D.H. Kim and G. Sharma, Int. J. Biol. Macromol., 104, 189 (2017); https://doi.org/10.1016/j.ijbiomac.2017.06.015
- A.K. Mohanty, M. Misra and L.T.Drzal, Natural Fibers, Biopolymers, and Biocomposites, edn 1, pp 896 CRC Press: Boca Raton (2005).
- A. Kuncaka, M.R. Rambe, H.P. Islam and A.S. Muslem, Asian J. Chem., 33, 2483 (2021); https://doi.org/10.14233/ajchem.2021.22969
- S. Alahyaribeik and A. Ullah, ChemistrySelect, 5, 13788 (2020); https://doi.org/10.1002/slct.202002887
- D.J. Trojanowska, G. Suarato, C. Braccia, A. Armirotti, F. Fiorentini, A. Athanassiou and G. Perotto, ACS Appl. Nano Mater., 5, 15272 (2022); https://doi.org/10.1021/acsanm.2c03116
- Y. Esparza, N. Bandara, A. Ullah and J. Wu, Mater. Sci. Eng. C, 90, 446 (2018); https://doi.org/10.1016/j.msec.2018.04.067
- P. Sherovski, M. Stefova and N. Ristovska, Maced. J. Chem. Chem. Eng., 37, 135 (2018); https://doi.org/10.20450/mjcce.2018.1594
- A.L.M. Hernandez, C.V. Santos, M.D. Icaza and V.M. Castano, Int. J. Environ. Res. Public Health, 23, 162 (2005); https://doi.org/10.1504/IJEP.2005.006858
- M.L. Fisher, S. Leeson, W. Morrison and J.D. Summers, Can. J. Anim. Sci., 61, 769 (1981); https://doi.org/10.4141/cjas81-093
- X.C. Yin, F.Y. Li, Y.F. He, Y. Wang and R.M. Wang, Biomater. Sci., 1, 528 (2013); https://doi.org/10.1039/c3bm00158j
- R.W. Jones, Infrared Technology, In: Kirk-Othmer Encyclopedia of Chemical Technology, Wiley (2000); https://doi.org/10.1002/0471238961.0914061810151405.a01
- B. Fernández-d’Arlas, Sci. Rep., 9, 14810 (2019); https://doi.org/10.1038/s41598-019-51393-5
- H. Xu, Z. Shi, N. Reddy and Y. Yang, J. Agric. Food Chem., 62, 9145 (2014); https://doi.org/10.1021/jf502242h
- C. Narita, Y. Okahisa, I. Wataoka and K. Yamada, ACS Omega, 5, 22786 (2020); https://doi.org/10.1021/acsomega.0c01750
- F. Pourjavaheri, S. Ostovar Pour, O.A.H. Jones, P.M. Smooker, R. Brkljaèa, F. Sherkat, E.W. Blanch, A. Gupta and R.A. Shanks, Process Biochem., 82, 205 (2019); https://doi.org/10.1016/j.procbio.2019.04.010
- S. Singamneni, R. Velu, M.P. Behera, S. Scott, P. Brorens, D. Harland and J. Gerrard, Mater. Des., 183, 108087 (2019); https://doi.org/10.1016/j.matdes.2019.108087
- O.L. Shanmugasundaram, K. Syed Zameer Ahmed, K. Sujatha, P. Ponnmurugan, A. Srivastava, R. Ramesh, R. Sukumar and K. Elanithi, Mater. Sci. Eng. C, 92, 26 (2018); https://doi.org/10.1016/j.msec.2018.06.020
- R. Khajavi, M.K. Rahimi, M. Abbasipour and A.H. Brendjchi, J. Bioact. Compat. Polym., 31, 60 (2016); https://doi.org/10.1177/0883911515598793
References
B. Ma, X. Qiao, X. Hou and Y. Yang, Int. J. Biol. Macromol., 89, 614 (2016); https://doi.org/10.1016/j.ijbiomac.2016.04.039
S. Feroz, N. Muhammad, J. Ratnayake and G. Dias, Bioact. Mater., 5, 496 (2020); https://doi.org/10.1016/j.bioactmat.2020.04.007
G. Rouse and E. VanDyke, Materials, 3, 999 (2010); https://doi.org/10.3390/ma3020999
A. Vasconcelos and A. Cavaco-Paulo, Curr. Drug Targets, 14, 612 (2013); https://doi.org/10.2174/1389450111314050010
B. Li, Y. Sun, J. Yao, H. Wu, Y. Shen, C. Zhi and J. Li, Mater. Des., 217, 110611 (2022); https://doi.org/10.1016/j.matdes.2022.110611
W. Ye, M. Qin, R. Qiu and J. Li, Int. J. Biol. Macromol., 211, 183 (2022); https://doi.org/10.1016/j.ijbiomac.2022.04.216
N. Ramakrishnan, S. Sharma, A. Gupta and B.Y. Alashwal, Int. J. Biol. Macromol., 111, 352 (2018); https://doi.org/10.1016/j.ijbiomac.2018.01.037
P. Hill, H. Brantley and M. VanDyke, Biomaterials, 31, 585 (2010); https://doi.org/10.1016/j.biomaterials.2009.09.076
J.P. Ye, J.S. Gong, C. Su, Y. Liu, M. Jiang, H. Pan, R. Li, Y. Geng, Z. Xu and J. Shi, Colloids Surf. B Biointerfaces, 194, 111158 (2020); https://doi.org/10.1016/j.colsurfb.2020.111158
B.S. Harrap and E.F. Woods, Biochem. J., 92, 8 (1964); https://doi.org/10.1042/bj0920008
T. Posati, D. Giuri, M. Nocchetti, A. Sagnella, M. Gariboldi, C. Ferroni, G. Sotgiu, G. Varchi, R. Zamboni and A. Aluigi, Eur. Polym. J., 105, 177 (2018); https://doi.org/10.1016/j.eurpolymj.2018.05.030
R. Wang and H. Tong, Polymers, 14, 4723 (2022); https://doi.org/10.3390/polym14214723
M.D. Farhad Ali, M.D. SahadatHossain, T.S. Moin, S. Ahmed and A.M.S. Chowdhury, Clean. Eng. Technol., 4, 100190 (2021); https://doi.org/10.1016/j.clet.2021.100190
U. Aebi, W.E. Fowler, P. Rew and T.T. Sun, J. Cell Biol., 97, 1131 (1983); https://doi.org/10.1083/jcb.97.4.1131
K. Kowata, M. Nakaoka, K. Nishio, A. Fukao, A. Satoh, M. Ogoshi, S. Takahashi, M. Tsudzuki and S. Takeuchi, Gene, 542, 23 (2014); https://doi.org/10.1016/j.gene.2014.03.027
B. Wang, W. Yang, J. McKittrick and M.A. Meyers, Prog. Mater. Sci., 76, 229 (2016); https://doi.org/10.1016/j.pmatsci.2015.06.001
J. McKittrick, P.Y. Chen, S.G. Bodde, W. Yang, E.E. Novitskaya and M.A. Meyers, J. Miner. Met. Mater. Soc., 64, 449 (2012); https://doi.org/10.1007/s11837-012-0302-8
J. Wang, S. Hao, T. Luo, Q. Yang and B. Wang, Mater. Sci. Eng. C, 68, 768 (2016); https://doi.org/10.1016/j.msec.2016.07.035
P. Cataldi, O. Condurache, D. Spirito, R. Krahne, A. Athanassiou, I.S. Bayer and G. Perotto, ACS Sustain. Chem. Eng., 7, 12544 (2019); https://doi.org/10.1021/acssuschemeng.9b02415
T. Tesfaye, B. Sithole and D. Ramjugernath, Int. J. Chem. Sci., 16, 281 (2018); https://doi.org/10.21767/0972-768X.1000281
P. Kshetri, P.L. Singh, S.B. Chanu, T.S. Singh, C. Rajiv, K. Tamreihao, H.N. Singh, T. Chongtham, A.K. Devi, S.K. Sharma, S. Chongtham, M.N. Singh, Y.P. Devi, H.S. Devi and S.S. Roy, Electron. J. Biotechnol., 60, 11 (2022); https://doi.org/10.1016/j.ejbt.2022.08.001
O.M. Oluba, O.B. Akpor, O.O. Alabi, A.J. Shoyombo, A.G. Adeyonu and F.D. Adebiyi, Food Res., 4, 1053 (2020); https://doi.org/10.26656/fr.2017.4(4).402
K.R. Ramya, R. Thangam and B. Madhan, Process Biochem., 90, 223 (2020); https://doi.org/10.1016/j.procbio.2019.11.015
S. Sharma, A. Gupta, S.M.S.T. Chik, C.G. Kee, B.M. Mistry, D.H. Kim and G. Sharma, Int. J. Biol. Macromol., 104, 189 (2017); https://doi.org/10.1016/j.ijbiomac.2017.06.015
A.K. Mohanty, M. Misra and L.T.Drzal, Natural Fibers, Biopolymers, and Biocomposites, edn 1, pp 896 CRC Press: Boca Raton (2005).
A. Kuncaka, M.R. Rambe, H.P. Islam and A.S. Muslem, Asian J. Chem., 33, 2483 (2021); https://doi.org/10.14233/ajchem.2021.22969
S. Alahyaribeik and A. Ullah, ChemistrySelect, 5, 13788 (2020); https://doi.org/10.1002/slct.202002887
D.J. Trojanowska, G. Suarato, C. Braccia, A. Armirotti, F. Fiorentini, A. Athanassiou and G. Perotto, ACS Appl. Nano Mater., 5, 15272 (2022); https://doi.org/10.1021/acsanm.2c03116
Y. Esparza, N. Bandara, A. Ullah and J. Wu, Mater. Sci. Eng. C, 90, 446 (2018); https://doi.org/10.1016/j.msec.2018.04.067
P. Sherovski, M. Stefova and N. Ristovska, Maced. J. Chem. Chem. Eng., 37, 135 (2018); https://doi.org/10.20450/mjcce.2018.1594
A.L.M. Hernandez, C.V. Santos, M.D. Icaza and V.M. Castano, Int. J. Environ. Res. Public Health, 23, 162 (2005); https://doi.org/10.1504/IJEP.2005.006858
M.L. Fisher, S. Leeson, W. Morrison and J.D. Summers, Can. J. Anim. Sci., 61, 769 (1981); https://doi.org/10.4141/cjas81-093
X.C. Yin, F.Y. Li, Y.F. He, Y. Wang and R.M. Wang, Biomater. Sci., 1, 528 (2013); https://doi.org/10.1039/c3bm00158j
R.W. Jones, Infrared Technology, In: Kirk-Othmer Encyclopedia of Chemical Technology, Wiley (2000); https://doi.org/10.1002/0471238961.0914061810151405.a01
B. Fernández-d’Arlas, Sci. Rep., 9, 14810 (2019); https://doi.org/10.1038/s41598-019-51393-5
H. Xu, Z. Shi, N. Reddy and Y. Yang, J. Agric. Food Chem., 62, 9145 (2014); https://doi.org/10.1021/jf502242h
C. Narita, Y. Okahisa, I. Wataoka and K. Yamada, ACS Omega, 5, 22786 (2020); https://doi.org/10.1021/acsomega.0c01750
F. Pourjavaheri, S. Ostovar Pour, O.A.H. Jones, P.M. Smooker, R. Brkljaèa, F. Sherkat, E.W. Blanch, A. Gupta and R.A. Shanks, Process Biochem., 82, 205 (2019); https://doi.org/10.1016/j.procbio.2019.04.010
S. Singamneni, R. Velu, M.P. Behera, S. Scott, P. Brorens, D. Harland and J. Gerrard, Mater. Des., 183, 108087 (2019); https://doi.org/10.1016/j.matdes.2019.108087
O.L. Shanmugasundaram, K. Syed Zameer Ahmed, K. Sujatha, P. Ponnmurugan, A. Srivastava, R. Ramesh, R. Sukumar and K. Elanithi, Mater. Sci. Eng. C, 92, 26 (2018); https://doi.org/10.1016/j.msec.2018.06.020
R. Khajavi, M.K. Rahimi, M. Abbasipour and A.H. Brendjchi, J. Bioact. Compat. Polym., 31, 60 (2016); https://doi.org/10.1177/0883911515598793