Copyright (c) 2024 Asha Siddikha, VITHAL MUGA, Sathyanarayana Boodida
This work is licensed under a Creative Commons Attribution 4.0 International License.
Photocatalytic and Conductivity Studies of Proton Exchanged Defect Pyrochlore, KMn0.33Te1.67O6 and its Application in Pb2+ Removal
Corresponding Author(s) : Muga Vithal
Asian Journal of Chemistry,
Vol. 36 No. 7 (2024): Vol 36 Issue 7, 2024
Abstract
Ion-conducting oxide materials have incredible technological importance, particularly in devices such as sensors, fuel cells and steam electrolysis cells. In this work, a new proton exchanged defect pyrochlore, HMn0.33Te1.67O6 (HMnTeO), was synthesized by ion-exchange method at room temperature by dissolving KMn0.33Te1.67O6 (KMnTeO) in 5 M HCl solution for 48 h. It was thoroughly characterized by powder-XRD, FESEM-EDX, TEM-HRTEM, FT-IR, Raman, TGA, UV-Vis DRS, PL and XPS techniques. The photocatalytic and DC conductivity of HMnTeO were compared with parent KMnTeO material. The protonated form (HMnTeO) exhibits higher photocatalytic activity against methylene blue degradation and superior DC conductivity compared to parent KMnTeO. The participation of radical species in dye degradation was investigated through scavenger and terephthalic experiments. Based on the results obtained, a probable mechanism was also proposed. Removal of Pb2+ ions from aqueous Pb(NO3)2 was also accomplished using parent KMnTeO.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Atchudan, T.N.J.I. Edison, S. Perumal, D. Karthikeyan and Y.R. Lee, J. Photochem. Photobiol. Chem., 333, 92 (2017); https://doi.org/10.1016/j.jphotochem.2016.10.021
- V. Innocenzi, M. Prisciandaro, M. Centofanti and F. Veglio, J. Environ. Chem. Eng., 7, 103171 (2019); https://doi.org/10.1016/j.jece.2019.103171
- Y. Li, H. Zhao and M. Yang, J. Colloid Interface Sci., 508, 500 (2017); https://doi.org/10.1016/j.jcis.2017.08.076
- Y. Liu, S. Shen, J. Zhang, W. Zhong and X. Huang, Appl. Surf. Sci., 478, 762 (2019); https://doi.org/10.1016/j.apsusc.2019.02.010
- R.J.E. Martins, R. Pardo and R.A.R. Boaventura, Water Res., 38, 693 (2004); https://doi.org/10.1016/j.watres.2003.10.013
- A. Sarý and M. Tuzen, J. Hazard. Mater., 164, 1004 (2009); https://doi.org/10.1016/j.jhazmat.2008.09.002
- M.A. Subramanian, G. Aravamudan and G.V. Subba Rao, Prog. Solid State Chem., 15, 55 (1983); https://doi.org/10.1016/0079-6786(83)90001-8
- J.B. Goodenough, H.Y.-P. Hong and J.A. Kafalas, Mater. Res. Bull., 11, 203 (1976); https://doi.org/10.1016/0025-5408(76)90077-5
- D.R. Modeshia and R.I. Walton, Chem. Soc. Rev., 39, 4303 (2010); https://doi.org/10.1039/b904702f
- R.R. Jitta, R. Gundeboina, N.K. Veldurthi, R. Guje and V. Muga, J. Chem. Technol. Biotechnol., 90, 1937 (2015); https://doi.org/10.1002/jctb.4745
- M. Weiss, B. Wirth and R. Marschall, Inorg. Chem., 59, 8387 (2020); https://doi.org/10.1021/acs.inorgchem.0c00811
- P. Venkataswamy, C. Sudhakar Reddy, R. Gundeboina, G. Sadanandam, N.K. Veldurthi and M. Vithal, Electron. Mater. Lett., 14, 446 (2018); https://doi.org/10.1007/s13391-018-0055-9
- G. Ravinder, P. Shrujana, V.N. Kumar, G. Ravi, K.N. Rao and M. Vithal, Chem. Pap., 69, 269 (2015); https://doi.org/10.1515/chempap-2015-0013
- R. Guje, G. Ravi, S. Palla, K.N. Rao and M. Vithal, Mater. Sci. Eng. B, 198, 1 (2015); https://doi.org/10.1016/j.mseb.2015.03.010
- R. Guje, R. Gundeboina, J.R. Reddy, N.K. Veldurthi, S. Kurra and M. Vithal, Photochem. Photobiol., 92, 223 (2016); https://doi.org/10.1111/php.12559
- A. Siddikha, B. Sathyanarayana, V. Muga and M. Abdul Mujeeb, Chem. Inorg. Mater., 3, 100053 (2024); https://doi.org/10.1016/j.cinorg.2024.100053
- H.A. Kiwaan, T.M. Atwee, E.A. Azab and A.A. El-Bindary, J. Chin. Chem. Soc., 66, 89 (2019); https://doi.org/10.1002/jccs.201800092
- G. Ravi, N.K. Veldurthi, S. Palla, R. Velchuri, S. Pola, J.R. Reddy and M. Vithal, Photochem. Photobiol., 89, 824 (2013); https://doi.org/10.1111/php.12079
- G. Ravinder, J.R. Reddy, C.S. Reddy, K. Sreenu, G. Ravi and M. Vithal, Adv. Mater. Lett., 7, 536 (2016); https://doi.org/10.5185/amlett.2016.6073
- B. Darriet, M. Rat, J. Galy and P. Hagenmuller, Mater. Res. Bull., 6, 1305 (1971); https://doi.org/10.1016/0025-5408(71)90129-2
- F.E. López-Suárez, A. Bueno-López, M.J. Illán-Gómez and J. Trawczynski, Appl. Catal. A Gen., 485, 214 (2014); https://doi.org/10.1016/j.apcata.2014.07.037
- M.H. Esfahani, H. Naji, C.A. Marjerrison, J. Greedan and M. Behzad, Ceram. Int., 48, 13651 (2022); https://doi.org/10.1016/j.ceramint.2022.01.244
- M. Maczka, A.V. Knyazev, N.Y. Kuznetsova, M. Ptak and L. Macalik, J. Raman Spectrosc., 42, 529 (2011); https://doi.org/10.1002/jrs.2735
- A.V. Knyazev, M. Maczka and N.Y. Kuznetsova, Thermochim. Acta, 506, 20 (2010); https://doi.org/10.1016/j.tca.2010.04.009
- M. Maczka, A.V. Knyazev, A. Majchrowski, J. Hanuza and S. Kojima, J. Phys. Condens. Matter, 24, 195902 (2012); https://doi.org/10.1088/0953-8984/24/19/195902
- K. Ozawa, J. Wang, J. Ye, Y. Sakka and M. Amano, Chem. Mater., 15, 928 (2003); https://doi.org/10.1021/cm020990i
- M. Humayun, Z. Zheng, Q. Fu and W. Luo, Environ. Sci. Pollut. Res. Int., 26, 17696 (2019); https://doi.org/10.1007/s11356-019-05079-0
- R. Angineni, P. Venkataswamy, K. Ramaswamy, S. Raj, N.K. Veldurthi and M. Vithal, Polyhedron, 214, 115620 (2022); https://doi.org/10.1016/j.poly.2021.115620
- S. Baek, Y. Ghaffari and J. Bae, Catalysts, 12, 1045 (2022); https://doi.org/10.3390/catal12091045
- M. Sathiya, K. Ramesha, G. Rousse, D. Foix, D. Gonbeau, K. Guruprakash, A.S. Prakash, M.L. Doublet and J.-M. Tarascon, Chem. Commun., 49, 11376 (2013); https://doi.org/10.1039/c3cc46842a
- S. Balu, S. Velmurugan, S. Palanisamy, S.-W. Chen, V. Velusamy, T.C.K. Yang and E.-S.I. El-Shafey, J. Taiwan Inst. Chem. Eng., 99, 258 (2019); https://doi.org/10.1016/j.jtice.2019.03.011
- A.M. Soliman, M. Khalil and I.M. Ali, J. Water Process Eng., 41, 102086 (2021); https://doi.org/10.1016/j.jwpe.2021.102086
- V. Jayaraman, C. Ayappan, B. Palanivel and A. Mani, RSC Adv., 10, 8880 (2020); https://doi.org/10.1039/D0RA00644K
- U. Farooq, J. Ahmed, S.M. Alshehri and T. Ahmad, ACS Omega, 4, 19408 (2019); https://doi.org/10.1021/acsomega.9b02830
- M. Abe and T. Itoh, J. Inorg. Nucl. Chem., 42, 1641 (1980); https://doi.org/10.1016/0022-1902(80)80330-7
- T. Moller, A. Clearfield and R. Harjula, Micropor. Mesopor. Mater., 54, 187 (2002); https://doi.org/10.1016/S1387-1811(02)00320-7
- U.O. Bhagwat, J.J. Wu, A.M. Asiri and S. Anandan, ChemistrySelect, 3, 11851 (2018); https://doi.org/10.1002/slct.201802303
- J. Grins, M. Nygren and T. Wallin, Mater. Res. Bull., 15, 53 (1980); https://doi.org/10.1016/0025-5408(80)90159-2
- G. Mangamma and K. Shahi, Solid State Ion., 76, 337 (1995); https://doi.org/10.1016/0167-2738(94)00302-9
- M. Riviere, J.L. Fourquet, J. Grins and M. Nygren, Mater. Res. Bull., 23, 965 (1988); https://doi.org/10.1016/0025-5408(88)90051-7
- N. Binesh, V. Bhat and S.V. Bhat, Solid State Ion., 86-88, 665 (1996); https://doi.org/10.1016/0167-2738(96)00232-9
- M. Srinivas, G. Ravi, P.V. Kumar, C.S. Reddy, K. Sreenu, G. Ravinder and M. Vithal, Indian J. Chem., 56A, 270 (2017).
- A.W. Sleight, J.E. Gulley and T. Berzins, Adv. Chem. Ser., 163, 195 (1977); https://doi.org/10.1021/ba-1977-0163.ch011
References
R. Atchudan, T.N.J.I. Edison, S. Perumal, D. Karthikeyan and Y.R. Lee, J. Photochem. Photobiol. Chem., 333, 92 (2017); https://doi.org/10.1016/j.jphotochem.2016.10.021
V. Innocenzi, M. Prisciandaro, M. Centofanti and F. Veglio, J. Environ. Chem. Eng., 7, 103171 (2019); https://doi.org/10.1016/j.jece.2019.103171
Y. Li, H. Zhao and M. Yang, J. Colloid Interface Sci., 508, 500 (2017); https://doi.org/10.1016/j.jcis.2017.08.076
Y. Liu, S. Shen, J. Zhang, W. Zhong and X. Huang, Appl. Surf. Sci., 478, 762 (2019); https://doi.org/10.1016/j.apsusc.2019.02.010
R.J.E. Martins, R. Pardo and R.A.R. Boaventura, Water Res., 38, 693 (2004); https://doi.org/10.1016/j.watres.2003.10.013
A. Sarý and M. Tuzen, J. Hazard. Mater., 164, 1004 (2009); https://doi.org/10.1016/j.jhazmat.2008.09.002
M.A. Subramanian, G. Aravamudan and G.V. Subba Rao, Prog. Solid State Chem., 15, 55 (1983); https://doi.org/10.1016/0079-6786(83)90001-8
J.B. Goodenough, H.Y.-P. Hong and J.A. Kafalas, Mater. Res. Bull., 11, 203 (1976); https://doi.org/10.1016/0025-5408(76)90077-5
D.R. Modeshia and R.I. Walton, Chem. Soc. Rev., 39, 4303 (2010); https://doi.org/10.1039/b904702f
R.R. Jitta, R. Gundeboina, N.K. Veldurthi, R. Guje and V. Muga, J. Chem. Technol. Biotechnol., 90, 1937 (2015); https://doi.org/10.1002/jctb.4745
M. Weiss, B. Wirth and R. Marschall, Inorg. Chem., 59, 8387 (2020); https://doi.org/10.1021/acs.inorgchem.0c00811
P. Venkataswamy, C. Sudhakar Reddy, R. Gundeboina, G. Sadanandam, N.K. Veldurthi and M. Vithal, Electron. Mater. Lett., 14, 446 (2018); https://doi.org/10.1007/s13391-018-0055-9
G. Ravinder, P. Shrujana, V.N. Kumar, G. Ravi, K.N. Rao and M. Vithal, Chem. Pap., 69, 269 (2015); https://doi.org/10.1515/chempap-2015-0013
R. Guje, G. Ravi, S. Palla, K.N. Rao and M. Vithal, Mater. Sci. Eng. B, 198, 1 (2015); https://doi.org/10.1016/j.mseb.2015.03.010
R. Guje, R. Gundeboina, J.R. Reddy, N.K. Veldurthi, S. Kurra and M. Vithal, Photochem. Photobiol., 92, 223 (2016); https://doi.org/10.1111/php.12559
A. Siddikha, B. Sathyanarayana, V. Muga and M. Abdul Mujeeb, Chem. Inorg. Mater., 3, 100053 (2024); https://doi.org/10.1016/j.cinorg.2024.100053
H.A. Kiwaan, T.M. Atwee, E.A. Azab and A.A. El-Bindary, J. Chin. Chem. Soc., 66, 89 (2019); https://doi.org/10.1002/jccs.201800092
G. Ravi, N.K. Veldurthi, S. Palla, R. Velchuri, S. Pola, J.R. Reddy and M. Vithal, Photochem. Photobiol., 89, 824 (2013); https://doi.org/10.1111/php.12079
G. Ravinder, J.R. Reddy, C.S. Reddy, K. Sreenu, G. Ravi and M. Vithal, Adv. Mater. Lett., 7, 536 (2016); https://doi.org/10.5185/amlett.2016.6073
B. Darriet, M. Rat, J. Galy and P. Hagenmuller, Mater. Res. Bull., 6, 1305 (1971); https://doi.org/10.1016/0025-5408(71)90129-2
F.E. López-Suárez, A. Bueno-López, M.J. Illán-Gómez and J. Trawczynski, Appl. Catal. A Gen., 485, 214 (2014); https://doi.org/10.1016/j.apcata.2014.07.037
M.H. Esfahani, H. Naji, C.A. Marjerrison, J. Greedan and M. Behzad, Ceram. Int., 48, 13651 (2022); https://doi.org/10.1016/j.ceramint.2022.01.244
M. Maczka, A.V. Knyazev, N.Y. Kuznetsova, M. Ptak and L. Macalik, J. Raman Spectrosc., 42, 529 (2011); https://doi.org/10.1002/jrs.2735
A.V. Knyazev, M. Maczka and N.Y. Kuznetsova, Thermochim. Acta, 506, 20 (2010); https://doi.org/10.1016/j.tca.2010.04.009
M. Maczka, A.V. Knyazev, A. Majchrowski, J. Hanuza and S. Kojima, J. Phys. Condens. Matter, 24, 195902 (2012); https://doi.org/10.1088/0953-8984/24/19/195902
K. Ozawa, J. Wang, J. Ye, Y. Sakka and M. Amano, Chem. Mater., 15, 928 (2003); https://doi.org/10.1021/cm020990i
M. Humayun, Z. Zheng, Q. Fu and W. Luo, Environ. Sci. Pollut. Res. Int., 26, 17696 (2019); https://doi.org/10.1007/s11356-019-05079-0
R. Angineni, P. Venkataswamy, K. Ramaswamy, S. Raj, N.K. Veldurthi and M. Vithal, Polyhedron, 214, 115620 (2022); https://doi.org/10.1016/j.poly.2021.115620
S. Baek, Y. Ghaffari and J. Bae, Catalysts, 12, 1045 (2022); https://doi.org/10.3390/catal12091045
M. Sathiya, K. Ramesha, G. Rousse, D. Foix, D. Gonbeau, K. Guruprakash, A.S. Prakash, M.L. Doublet and J.-M. Tarascon, Chem. Commun., 49, 11376 (2013); https://doi.org/10.1039/c3cc46842a
S. Balu, S. Velmurugan, S. Palanisamy, S.-W. Chen, V. Velusamy, T.C.K. Yang and E.-S.I. El-Shafey, J. Taiwan Inst. Chem. Eng., 99, 258 (2019); https://doi.org/10.1016/j.jtice.2019.03.011
A.M. Soliman, M. Khalil and I.M. Ali, J. Water Process Eng., 41, 102086 (2021); https://doi.org/10.1016/j.jwpe.2021.102086
V. Jayaraman, C. Ayappan, B. Palanivel and A. Mani, RSC Adv., 10, 8880 (2020); https://doi.org/10.1039/D0RA00644K
U. Farooq, J. Ahmed, S.M. Alshehri and T. Ahmad, ACS Omega, 4, 19408 (2019); https://doi.org/10.1021/acsomega.9b02830
M. Abe and T. Itoh, J. Inorg. Nucl. Chem., 42, 1641 (1980); https://doi.org/10.1016/0022-1902(80)80330-7
T. Moller, A. Clearfield and R. Harjula, Micropor. Mesopor. Mater., 54, 187 (2002); https://doi.org/10.1016/S1387-1811(02)00320-7
U.O. Bhagwat, J.J. Wu, A.M. Asiri and S. Anandan, ChemistrySelect, 3, 11851 (2018); https://doi.org/10.1002/slct.201802303
J. Grins, M. Nygren and T. Wallin, Mater. Res. Bull., 15, 53 (1980); https://doi.org/10.1016/0025-5408(80)90159-2
G. Mangamma and K. Shahi, Solid State Ion., 76, 337 (1995); https://doi.org/10.1016/0167-2738(94)00302-9
M. Riviere, J.L. Fourquet, J. Grins and M. Nygren, Mater. Res. Bull., 23, 965 (1988); https://doi.org/10.1016/0025-5408(88)90051-7
N. Binesh, V. Bhat and S.V. Bhat, Solid State Ion., 86-88, 665 (1996); https://doi.org/10.1016/0167-2738(96)00232-9
M. Srinivas, G. Ravi, P.V. Kumar, C.S. Reddy, K. Sreenu, G. Ravinder and M. Vithal, Indian J. Chem., 56A, 270 (2017).
A.W. Sleight, J.E. Gulley and T. Berzins, Adv. Chem. Ser., 163, 195 (1977); https://doi.org/10.1021/ba-1977-0163.ch011