Copyright (c) 2024 Yogasaraswathi .R, Dheepa .J
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Zinc Doping and Porosity on Structural, Morphological and Gas Sensing Properties of Porous Zn:SnO2 Bilayer Thin Film
Corresponding Author(s) : R. Yogasaraswathi
Asian Journal of Chemistry,
Vol. 36 No. 7 (2024): Vol 36 Issue 7, 2024
Abstract
The automated nebulizer spray pyrolysis technique was used to synthesize porous SnO2 bilayer thin films as well as doped porous SnO2 bilayer thin films with varying zinc doping percentages. The synthesized thin films were characterized using X-ray diffraction, field emission scanning electron microscopy, energy dispersive analysis of X-rays, UV-Vis spectroscopy, photoluminescence spectroscopy, current-voltage characteristics and gas sensing performance. The effect of doping on sensor response was investigated using various gases and operating temperatures. The optimized Zn-doped porous SnO2/SnO2 gas sensor sample was taken to further gas sensing analysis. The results revealed that the doping of zinc with a porous tin oxide bilayer increases the gas sensor response at low operating temperatures compared to undoped porous tin oxide bilayers and it also reduces the response recovery time of the sensor. The response of the sensor in a CO gas concentration of 400 ppm has been improved with good repeatability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Dhall, B.R. Mehta, A.K. Tyagi and K. Sood, Sensors Int., 2, 100116 (2021); https://doi.org/10.1016/j.sintl.2021.100116
- Z. Yuan, R. Li, F. Meng, J. Zhang, K. Zuo and E. Han, Sensors, 19, 1495 (2019); https://doi.org/10.3390/s19071495
- R. Xavier, L. Thirumalaisamy, S. Madhanagurusamy and K. Sivaperuman, Ceram. Int., 50, 969 (2024); https://doi.org/10.1016/j.ceramint.2023.10.187
- R. Godiwal, A.K. Gangwar and P. Singh, Mater. Lett., 357, 135787 (2024); https://doi.org/10.1016/j.matlet.2023.135787
- M.H. Mahmood and M.A. Maleque, Arab. J. Sci. Eng., 46, 6557 (2021); https://doi.org/10.1007/s13369-020-05233-8
- M. Koèí, T. Izsák, G. Vanko, M. Sojková, J. Hrdá, O. Szabó, M. Husák, K. Végsö, M. Varga and A. Kromka, ACS Appl. Mater. Interfaces, 15, 34206 (2023); https://doi.org/10.1021/acsami.3c04438
- L. Liu, Y. Wang, Y. Liu, S. Wang, T. Li, S. Feng, S. Qin and T. Zhang, Microsyst. Nanoeng., 8, 85 (2022); https://doi.org/10.1038/s41378-022-00410-1
- X. Lu, S. Zhang, J. Xing, Y. Wang, W. Chen, D. Ding, Y. Wu, S. Wang, L. Duan and J. Hao, Engineering, 6, 1423 (2020); https://doi.org/10.1016/j.eng.2020.03.014
- C. Yan, H. Li and Z. Li, Front. Public Health, 10, 930780 (2022); https://doi.org/10.3389/fpubh.2022.930780
- I. Manisalidis, E. Stavropoulou, A. Stavropoulos and E. Bezirtzoglou, Front. Public Health, 8, 14 (2020); https://doi.org/10.3389/fpubh.2020.00014
- P. Zhou, Y. Shen, S. Zhao, G. Li, Y. Yin, R. Lu, S. Gao, C. Han and D. Wei, J. Alloys Compd., 789, 129 (2019); https://doi.org/10.1016/j.jallcom.2019.03.038
- D. Xu, Q. Yu, T. Chen, S. Zhong, J. Ma, L. Bao, L. Zhang, F. Zhao and S. Du, Materials, 11, 1840 (2018); https://doi.org/10.3390/ma11101840
- J.M. Calderon-Moreno, S. Preda, L. Predoana, M. Zaharescu, M. Anastasescu, M. Nicolescu, M. Stoica, H. Stroescu, M. Gartner, O. Buiu, M. Mihaila and B. Serban, Ceram. Int., 40, 2209 (2014); https://doi.org/10.1016/j.ceramint.2013.07.139
- W. Huang, M. Lei, H. Huang, J. Chen and H. Chen, Surf. Coat. Technol., 204, 3954 (2010); https://doi.org/10.1016/j.surfcoat.2010.03.030
- R.D. Prabu, S. Valanarasu, V. Ganesh, M. Shkir, A. Kathalingam, S. AlFaify, S.R. Srikumar and R. Chandramohan, Mater. Sci. Semicond. Process., 74, 129 (2018); https://doi.org/10.1016/j.mssp.2017.10.023
- V.G. Krishnan and P. Elango, Surf. Rev. Lett., 28, 2050029 (2021); https://doi.org/10.1142/S0218625X20500298
- V.G. Krishnan, P. Elango, M. Ragavendar, P. Sathish and G. Gowrisankar, Mater. Res. Express, 4, 036401 (2017); https://doi.org/10.1088/2053-1591/aa6077
- L. Soussi, T. Garmim, O. Karzazi, A. Rmili, A. El Bachiri, A. Louardi and H. Erguig, Surf. Interfaces, 19, 100467 (2020); https://doi.org/10.1016/j.surfin.2020.100467
- L. Zhang, W. Xu, W. Liu, P. Cao, S. Han, D. Zhu and Y. Lu, J. Phys. D Appl. Phys., 53, 175106 (2020); https://doi.org/10.1088/1361-6463/ab6ea0
- M. Ayadi, O. Benhaoua, M. Sebais, O. Halimi, B. Boudine and M.S. Aida, Mater. Res. Express, 6, 076407 (2019); https://doi.org/10.1088/2053-1591/ab10c5
- S. Senthilkumaar, K. Rajendran, S. Banerjee, T.K. Chini and V. Sengodan, Mater. Sci. Semicond. Process., 11, 6 (2008); https://doi.org/10.1016/j.mssp.2008.04.005
- S.S. Shinde, A.P. Korade, C.H. Bhosale and K.Y. Rajpure, J. Alloys Compd., 551, 688 (2013); https://doi.org/10.1016/j.jallcom.2012.11.057
- F. Ricciardella, S. Vollebregt, R. Tilmann, O. Hartwig, C. Bartlam, P.M. Sarro, H. Sachdev and G.S. Duesberg, Carbon Trends, 3, 100024 (2021); https://doi.org/10.1016/j.cartre.2021.100024
- P.G. Choi, T. Fuchigami, K. Kakimoto and Y. Masuda, ACS Sens., 5, 1665 (2020); https://doi.org/10.1021/acssensors.0c00290
- F. Ghorban and A. Eshaghi, Opt. Quantum Electron., 49, 67 (2017); https://doi.org/10.1007/s11082-017-0904-z
- S. Wang, K. Zou, Y. Qian, Y. Deng, L. Zhang and G. Chen, Carbon, 144, 745 (2019); https://doi.org/10.1016/j.carbon.2018.12.113
- V.S. Vinila and J. Isac, in eds.: S. Thomas, N. Kalarikkal and A.R. Abraham, Synthesis and Structural Studies of Superconducting Perovskite GdBa2Ca3Cu4O10.5+ä Nanosystems, In: Micro and Nano Technologies, Design, Fabrication and Characterization of Multifunctional Nano-materials, Elsevier, Chap. 14, pp. 319-341 (2022).
- P.A. Hind, P.S. Patil, N.B. Gummagol, U.K. Goutam and B.V. Rajendra, J. Mater. Res., 38, 4828 (2023); https://doi.org/10.1557/s43578-023-01020-x
- J.-S. Park, D. Kim, W.-B. Kim and I.-K. Park, Ceram. Int., 46, 430 (2020); https://doi.org/10.1016/j.ceramint.2019.08.279
- X. Wang, P. Ren, T. Hailin, H. Fan, C. Cai and W. Liu, J. Alloys Compds, 669, 29 (2016); https://doi.org/10.1016/j.jallcom.2016.01.225
- G.G. Pethuraja, R.E. Welser, A.K. Sood, C. Lee, N.J. Alexander, P. Haldar, H. Efstathiadis, and J.L. Harvey, Adv. Mater. Phys. Chem., 2, 59 (2013); https://doi.org/10.4236/ampc.2012.22010
- I. Bibi, S. Iqbal, F. Majid, S. Kamal, Q. Raza, M. Amami, K.M. Katubi, N. Alwadai, M. Asad Kareem and M. Iqbal, Results Phys., 40, 105868 (2022); https://doi.org/10.1016/j.rinp.2022.105868
- B. Carter, Review of Op Amp Basics, In: Op Amps for Everyone, Newnes, eds. 4, Chap. 2, pp. 7-17 (2013).
- G.F. Fine, L.M. Cavanagh, A. Afonja and R. Binions, Sensors, 10, 5469 (2010); https://doi.org/10.3390/s100605469
- A. Afzal, J. Materiom., 5, 542 (2019); https://doi.org/10.1016/j.jmat.2019.08.003
- K. Sivaperuman, A. Thomas, R. Thangavel, L. Thirumalaisamy, S. Palanivel, S. Pitchaimuthu, N. Ahsan and Y. Okada, Prog. Mater. Sci., 142, 101222 (2024); https://doi.org/10.1016/j.pmatsci.2023.101222
- S.L. Bhise, L.H. Kathwate, G. Umadevi, K.G. Krishna, V.D. Mote and B.N. Dole, J. Mater. Sci. Mater. Electron., 35, 66 (2024); https://doi.org/10.1007/s10854-023-11780-1
- S.S. Badadhe and I.S. Mulla, Sens. Actuators B Chem., 156, 943 (2011); https://doi.org/10.1016/j.snb.2011.03.010
- A. Sanger, S.B. Kang, M.H. Jeong, C.U. Kim, J.M. Baik and K.J. Choi, ACS Appl. Electron. Mater., 1, 1261 (2019); https://doi.org/10.1021/acsaelm.9b00210
References
S. Dhall, B.R. Mehta, A.K. Tyagi and K. Sood, Sensors Int., 2, 100116 (2021); https://doi.org/10.1016/j.sintl.2021.100116
Z. Yuan, R. Li, F. Meng, J. Zhang, K. Zuo and E. Han, Sensors, 19, 1495 (2019); https://doi.org/10.3390/s19071495
R. Xavier, L. Thirumalaisamy, S. Madhanagurusamy and K. Sivaperuman, Ceram. Int., 50, 969 (2024); https://doi.org/10.1016/j.ceramint.2023.10.187
R. Godiwal, A.K. Gangwar and P. Singh, Mater. Lett., 357, 135787 (2024); https://doi.org/10.1016/j.matlet.2023.135787
M.H. Mahmood and M.A. Maleque, Arab. J. Sci. Eng., 46, 6557 (2021); https://doi.org/10.1007/s13369-020-05233-8
M. Koèí, T. Izsák, G. Vanko, M. Sojková, J. Hrdá, O. Szabó, M. Husák, K. Végsö, M. Varga and A. Kromka, ACS Appl. Mater. Interfaces, 15, 34206 (2023); https://doi.org/10.1021/acsami.3c04438
L. Liu, Y. Wang, Y. Liu, S. Wang, T. Li, S. Feng, S. Qin and T. Zhang, Microsyst. Nanoeng., 8, 85 (2022); https://doi.org/10.1038/s41378-022-00410-1
X. Lu, S. Zhang, J. Xing, Y. Wang, W. Chen, D. Ding, Y. Wu, S. Wang, L. Duan and J. Hao, Engineering, 6, 1423 (2020); https://doi.org/10.1016/j.eng.2020.03.014
C. Yan, H. Li and Z. Li, Front. Public Health, 10, 930780 (2022); https://doi.org/10.3389/fpubh.2022.930780
I. Manisalidis, E. Stavropoulou, A. Stavropoulos and E. Bezirtzoglou, Front. Public Health, 8, 14 (2020); https://doi.org/10.3389/fpubh.2020.00014
P. Zhou, Y. Shen, S. Zhao, G. Li, Y. Yin, R. Lu, S. Gao, C. Han and D. Wei, J. Alloys Compd., 789, 129 (2019); https://doi.org/10.1016/j.jallcom.2019.03.038
D. Xu, Q. Yu, T. Chen, S. Zhong, J. Ma, L. Bao, L. Zhang, F. Zhao and S. Du, Materials, 11, 1840 (2018); https://doi.org/10.3390/ma11101840
J.M. Calderon-Moreno, S. Preda, L. Predoana, M. Zaharescu, M. Anastasescu, M. Nicolescu, M. Stoica, H. Stroescu, M. Gartner, O. Buiu, M. Mihaila and B. Serban, Ceram. Int., 40, 2209 (2014); https://doi.org/10.1016/j.ceramint.2013.07.139
W. Huang, M. Lei, H. Huang, J. Chen and H. Chen, Surf. Coat. Technol., 204, 3954 (2010); https://doi.org/10.1016/j.surfcoat.2010.03.030
R.D. Prabu, S. Valanarasu, V. Ganesh, M. Shkir, A. Kathalingam, S. AlFaify, S.R. Srikumar and R. Chandramohan, Mater. Sci. Semicond. Process., 74, 129 (2018); https://doi.org/10.1016/j.mssp.2017.10.023
V.G. Krishnan and P. Elango, Surf. Rev. Lett., 28, 2050029 (2021); https://doi.org/10.1142/S0218625X20500298
V.G. Krishnan, P. Elango, M. Ragavendar, P. Sathish and G. Gowrisankar, Mater. Res. Express, 4, 036401 (2017); https://doi.org/10.1088/2053-1591/aa6077
L. Soussi, T. Garmim, O. Karzazi, A. Rmili, A. El Bachiri, A. Louardi and H. Erguig, Surf. Interfaces, 19, 100467 (2020); https://doi.org/10.1016/j.surfin.2020.100467
L. Zhang, W. Xu, W. Liu, P. Cao, S. Han, D. Zhu and Y. Lu, J. Phys. D Appl. Phys., 53, 175106 (2020); https://doi.org/10.1088/1361-6463/ab6ea0
M. Ayadi, O. Benhaoua, M. Sebais, O. Halimi, B. Boudine and M.S. Aida, Mater. Res. Express, 6, 076407 (2019); https://doi.org/10.1088/2053-1591/ab10c5
S. Senthilkumaar, K. Rajendran, S. Banerjee, T.K. Chini and V. Sengodan, Mater. Sci. Semicond. Process., 11, 6 (2008); https://doi.org/10.1016/j.mssp.2008.04.005
S.S. Shinde, A.P. Korade, C.H. Bhosale and K.Y. Rajpure, J. Alloys Compd., 551, 688 (2013); https://doi.org/10.1016/j.jallcom.2012.11.057
F. Ricciardella, S. Vollebregt, R. Tilmann, O. Hartwig, C. Bartlam, P.M. Sarro, H. Sachdev and G.S. Duesberg, Carbon Trends, 3, 100024 (2021); https://doi.org/10.1016/j.cartre.2021.100024
P.G. Choi, T. Fuchigami, K. Kakimoto and Y. Masuda, ACS Sens., 5, 1665 (2020); https://doi.org/10.1021/acssensors.0c00290
F. Ghorban and A. Eshaghi, Opt. Quantum Electron., 49, 67 (2017); https://doi.org/10.1007/s11082-017-0904-z
S. Wang, K. Zou, Y. Qian, Y. Deng, L. Zhang and G. Chen, Carbon, 144, 745 (2019); https://doi.org/10.1016/j.carbon.2018.12.113
V.S. Vinila and J. Isac, in eds.: S. Thomas, N. Kalarikkal and A.R. Abraham, Synthesis and Structural Studies of Superconducting Perovskite GdBa2Ca3Cu4O10.5+ä Nanosystems, In: Micro and Nano Technologies, Design, Fabrication and Characterization of Multifunctional Nano-materials, Elsevier, Chap. 14, pp. 319-341 (2022).
P.A. Hind, P.S. Patil, N.B. Gummagol, U.K. Goutam and B.V. Rajendra, J. Mater. Res., 38, 4828 (2023); https://doi.org/10.1557/s43578-023-01020-x
J.-S. Park, D. Kim, W.-B. Kim and I.-K. Park, Ceram. Int., 46, 430 (2020); https://doi.org/10.1016/j.ceramint.2019.08.279
X. Wang, P. Ren, T. Hailin, H. Fan, C. Cai and W. Liu, J. Alloys Compds, 669, 29 (2016); https://doi.org/10.1016/j.jallcom.2016.01.225
G.G. Pethuraja, R.E. Welser, A.K. Sood, C. Lee, N.J. Alexander, P. Haldar, H. Efstathiadis, and J.L. Harvey, Adv. Mater. Phys. Chem., 2, 59 (2013); https://doi.org/10.4236/ampc.2012.22010
I. Bibi, S. Iqbal, F. Majid, S. Kamal, Q. Raza, M. Amami, K.M. Katubi, N. Alwadai, M. Asad Kareem and M. Iqbal, Results Phys., 40, 105868 (2022); https://doi.org/10.1016/j.rinp.2022.105868
B. Carter, Review of Op Amp Basics, In: Op Amps for Everyone, Newnes, eds. 4, Chap. 2, pp. 7-17 (2013).
G.F. Fine, L.M. Cavanagh, A. Afonja and R. Binions, Sensors, 10, 5469 (2010); https://doi.org/10.3390/s100605469
A. Afzal, J. Materiom., 5, 542 (2019); https://doi.org/10.1016/j.jmat.2019.08.003
K. Sivaperuman, A. Thomas, R. Thangavel, L. Thirumalaisamy, S. Palanivel, S. Pitchaimuthu, N. Ahsan and Y. Okada, Prog. Mater. Sci., 142, 101222 (2024); https://doi.org/10.1016/j.pmatsci.2023.101222
S.L. Bhise, L.H. Kathwate, G. Umadevi, K.G. Krishna, V.D. Mote and B.N. Dole, J. Mater. Sci. Mater. Electron., 35, 66 (2024); https://doi.org/10.1007/s10854-023-11780-1
S.S. Badadhe and I.S. Mulla, Sens. Actuators B Chem., 156, 943 (2011); https://doi.org/10.1016/j.snb.2011.03.010
A. Sanger, S.B. Kang, M.H. Jeong, C.U. Kim, J.M. Baik and K.J. Choi, ACS Appl. Electron. Mater., 1, 1261 (2019); https://doi.org/10.1021/acsaelm.9b00210