Copyright (c) 2024 Dr Brahamdutt Arya
This work is licensed under a Creative Commons Attribution 4.0 International License.
Thermodynamic and Global Reactivity Parameter Indices for Catechol Based Dipodal Complex with Trivalent Heavy Metal Ions
Corresponding Author(s) : Brahamdutt Arya
Asian Journal of Chemistry,
Vol. 36 No. 7 (2024): Vol 36 Issue 7, 2024
Abstract
Heavy metal ions are of major concern due to their potential toxicity to humans and environment. Schiff base biomimetic ligands have shown immense potential to mitigate the heavy metal ions toxicity. In present study, the thermodynamic and stability parameters for catechol based Schiff base ligand MEC–trivalent metal ions (Al3+, Cr3+ and Fe3+) complexes (where MEC = N1,N3-bis(2-(((Z)-2,3-dihydroxybenzylidene)amino)ethyl)malonamide) were investigated using DFT and TD-DFT approaches. Further, in order to propose the involvement of these metal-ligand complexes in various applications, the conceptual density functional theory analysis were also conducted.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.K. Abd Elnabi, N.E. Elkaliny, M.M. Elyazied, S.H. Azab, S.A. Elkhalifa, S. Elmasry, M.S. Mouhamed, E.M. Shalamesh, N.A. Alhorieny, A.E. Abd Elaty, I.M. Elgendy, A.E. Etman, K.E. Saad, K. Tsigkou, S.S. Ali, M. Kornaros and Y.A.-G. Mahmoud, Toxics, 11, 580 (2023); https://doi.org/10.3390/toxics11070580
- M. Balali-Mood, K. Naseri, Z. Tahergorabi, M.R. Khazdair and M. Sadeghi, Front. Pharmacol., 12, 643972 (2021); https://doi.org/10.3389/fphar.2021.643972
- T. Arao, S. Ishikawa, M. Murakami, K. Abe, Y. Maejima and T. Makino, Paddy Water Environ., 8, 247 (2010); https://doi.org/10.1007/s10333-010-0205-7
- J.W. Eaton and M. Qian, Free Radic. Biol. Med., 32, 833 (2002); https://doi.org/10.1016/S0891-5849(02)00772-4
- G. Papanikolaou and K. Pantopoulos, Toxicol. Appl. Pharmacol., 202, 199 (2005); https://doi.org/10.1016/j.taap.2004.06.021
- R.M. Saaltink, S.C. Dekker, M.B. Eppinga, J. Griffioen and M.J. Wassen, Plant Soil, 416, 83 (2017); https://doi.org/10.1007/s11104-017-3190-4
- C. Exley, Morphologie, 100, 51 (2016); https://doi.org/10.1016/j.morpho.2015.12.003
- M. Closset, K. Cailliau, S. Slaby and M. Marin, Int. J. Mol. Sci., 23, 31 (2021); https://doi.org/10.3390/ijms23010031
- R.W. Gensemer and R.C. Playle, Crit. Rev. Environ. Sci. Technol., 29, 315 (1999); https://doi.org/10.1080/10643389991259245
- M. Costa and C.B. Klein, Crit. Rev. Toxicol., 36, 155 (2006); https://doi.org/10.1080/10408440500534032
- S.R. Shelnutt, P. Goad and D.V. Belsito, Crit. Rev. Toxicol., 37, 375 (2007); https://doi.org/10.1080/10408440701266582
- M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew and K.N. Beeregowda, Interdiscip. Toxicol., 7, 60 (2014); https://doi.org/10.2478/intox-2014-0009
- M.S. More, P.G. Joshi, Y.K. Mishra and P.K. Khanna, Mater. Today Chem., 14, 100195 (2019); https://doi.org/10.1016/j.mtchem.2019.100195
- L.H. Abdel-Rahman, M.T. Basha, B.S. Al-Farhan, W. Alharbi, M.R. Shehata, N.O. Al Zamil and D. Abou El-ezz, Molecules, 28, 4777 (2023); https://doi.org/10.3390/molecules28124777
- A. Amardeep, V. Dangi, P. Kumar, M. Meenakshi, M. Baral, B. Arya and T. Sheoran, Orient. J. Chem., 40, 274 (2024); https://doi.org/10.13005/ojc/400133
- B.J. Duke and B. O’Leary, J. Chem. Educ., 69, 529 (1992); https://doi.org/10.1021/ed069p529
- Y.C. Xu, N. Li, X. Yan and H.X. Zou, Environ. Sci. Pollut. Res. Int., 30, 91780 (2023); https://doi.org/10.1007/s11356-023-28854-6
- R. Pal and P.K. Chattaraj, J. Indian Chem. Soc., 98, 100008 (2021); https://doi.org/10.1016/j.jics.2021.100008
- J. Yu, N.Q. Su and W. Yang, JACS Au, 2, 1383 (2022); https://doi.org/10.1021/jacsau.2c00085
- C.G. Zhan, J.A. Nichols and D.A. Dixon, J. Phys. Chem. A, 107, 4184 (2003); https://doi.org/10.1021/jp0225774
- R. Shankar, K. Senthilkumar and P. Kolandaivel, Int. J. Quantum Chem., 109, 764 (2009); https://doi.org/10.1002/qua.21883
- J.L. Gázquez, in eds.: K.D. Sen, Hardness and Softness in Density Functional Theory, In: Chemical Hardness. Structure and Bonding, Springer-Verlag: Berlin/Heidelberg, vol. 80, pp. 27-43 (1993).
- H. Xu, D.C. Xu and Y. Wang, ACS Omega, 2, 7185 (2017); https://doi.org/10.1021/acsomega.7b01039
- M. Franco-Pérez and J.L. Gázquez, J. Phys. Chem. A, 123, 10065 (2019); https://doi.org/10.1021/acs.jpca.9b07468
- P.W. Ayers, M. Mohamed and F. Heidar-Zadeh, in eds.: S. Liu, The Hard/Soft Acid/Base Rule: A Perspective from Conceptual Density Functional Theory, In: Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory,Wiley; vol. 2, pp. 263–279 (2022).
- L. Domingo, M. Ríos-Gutiérrez and P. Pérez, Molecules, 21, 748 (2016); https://doi.org/10.3390/molecules21060748
- D. Chakraborty and P.K. Chattaraj, Chem. Sci., 12, 6264 (2021); https://doi.org/10.1039/D0SC07017C
- P.V. Bernhardt and P. Comba, Inorg. Chem., 31, 2638 (1992); https://doi.org/10.1021/ic00038a060
- W. Wang, J. Zhu, Q. Huang, L. Zhu, D. Wang, W. Li and W. Yu, Molecules, 29, 308 (2024); https://doi.org/10.3390/molecules29020308
- R.E. Aderne, B.G.A.L. Borges, H.C. Ávila, F. Von Kieseritzky, J. Hellberg, M. Koehler, M. Cremona, L.S. Roman, C.M. Araujo, M.L.M. Rocco and C.F.N. Marchiori, Mater. Adv., 3, 1791 (2022); https://doi.org/10.1039/D1MA00652E
- L. Domingo, Molecules, 21, 1319 (2016); https://doi.org/10.3390/molecules21101319
- R.D. Hancock, Acc. Chem. Res., 23, 253 (1990); https://doi.org/10.1021/ar00176a003
- R.J. Bartlett, I. Grabowski, S. Hirata and S. Ivanov, J. Chem. Phys., 122, 034104 (2005); https://doi.org/10.1063/1.1809605
- P. Pérez, L.R. Domingo, A. Aizman and R. Contreras, Theor. Comput. Chem., 19, 139 (2007); https://doi.org/10.1016/S1380-7323(07)80010-0
- A. Daolio, A. Pizzi, M. Calabrese, G. Terraneo, S. Bordignon, A. Frontera and G. Resnati, Angew. Chem. Int. Ed., 60, 20723 (2021); https://doi.org/10.1002/anie.202107978
- S. Kenouche, C. Sandoval-Yañez and J.I. Martínez-Araya, Chem. Phys. Lett., 801, 139708 (2022); https://doi.org/10.1016/j.cplett.2022.139708
References
M.K. Abd Elnabi, N.E. Elkaliny, M.M. Elyazied, S.H. Azab, S.A. Elkhalifa, S. Elmasry, M.S. Mouhamed, E.M. Shalamesh, N.A. Alhorieny, A.E. Abd Elaty, I.M. Elgendy, A.E. Etman, K.E. Saad, K. Tsigkou, S.S. Ali, M. Kornaros and Y.A.-G. Mahmoud, Toxics, 11, 580 (2023); https://doi.org/10.3390/toxics11070580
M. Balali-Mood, K. Naseri, Z. Tahergorabi, M.R. Khazdair and M. Sadeghi, Front. Pharmacol., 12, 643972 (2021); https://doi.org/10.3389/fphar.2021.643972
T. Arao, S. Ishikawa, M. Murakami, K. Abe, Y. Maejima and T. Makino, Paddy Water Environ., 8, 247 (2010); https://doi.org/10.1007/s10333-010-0205-7
J.W. Eaton and M. Qian, Free Radic. Biol. Med., 32, 833 (2002); https://doi.org/10.1016/S0891-5849(02)00772-4
G. Papanikolaou and K. Pantopoulos, Toxicol. Appl. Pharmacol., 202, 199 (2005); https://doi.org/10.1016/j.taap.2004.06.021
R.M. Saaltink, S.C. Dekker, M.B. Eppinga, J. Griffioen and M.J. Wassen, Plant Soil, 416, 83 (2017); https://doi.org/10.1007/s11104-017-3190-4
C. Exley, Morphologie, 100, 51 (2016); https://doi.org/10.1016/j.morpho.2015.12.003
M. Closset, K. Cailliau, S. Slaby and M. Marin, Int. J. Mol. Sci., 23, 31 (2021); https://doi.org/10.3390/ijms23010031
R.W. Gensemer and R.C. Playle, Crit. Rev. Environ. Sci. Technol., 29, 315 (1999); https://doi.org/10.1080/10643389991259245
M. Costa and C.B. Klein, Crit. Rev. Toxicol., 36, 155 (2006); https://doi.org/10.1080/10408440500534032
S.R. Shelnutt, P. Goad and D.V. Belsito, Crit. Rev. Toxicol., 37, 375 (2007); https://doi.org/10.1080/10408440701266582
M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew and K.N. Beeregowda, Interdiscip. Toxicol., 7, 60 (2014); https://doi.org/10.2478/intox-2014-0009
M.S. More, P.G. Joshi, Y.K. Mishra and P.K. Khanna, Mater. Today Chem., 14, 100195 (2019); https://doi.org/10.1016/j.mtchem.2019.100195
L.H. Abdel-Rahman, M.T. Basha, B.S. Al-Farhan, W. Alharbi, M.R. Shehata, N.O. Al Zamil and D. Abou El-ezz, Molecules, 28, 4777 (2023); https://doi.org/10.3390/molecules28124777
A. Amardeep, V. Dangi, P. Kumar, M. Meenakshi, M. Baral, B. Arya and T. Sheoran, Orient. J. Chem., 40, 274 (2024); https://doi.org/10.13005/ojc/400133
B.J. Duke and B. O’Leary, J. Chem. Educ., 69, 529 (1992); https://doi.org/10.1021/ed069p529
Y.C. Xu, N. Li, X. Yan and H.X. Zou, Environ. Sci. Pollut. Res. Int., 30, 91780 (2023); https://doi.org/10.1007/s11356-023-28854-6
R. Pal and P.K. Chattaraj, J. Indian Chem. Soc., 98, 100008 (2021); https://doi.org/10.1016/j.jics.2021.100008
J. Yu, N.Q. Su and W. Yang, JACS Au, 2, 1383 (2022); https://doi.org/10.1021/jacsau.2c00085
C.G. Zhan, J.A. Nichols and D.A. Dixon, J. Phys. Chem. A, 107, 4184 (2003); https://doi.org/10.1021/jp0225774
R. Shankar, K. Senthilkumar and P. Kolandaivel, Int. J. Quantum Chem., 109, 764 (2009); https://doi.org/10.1002/qua.21883
J.L. Gázquez, in eds.: K.D. Sen, Hardness and Softness in Density Functional Theory, In: Chemical Hardness. Structure and Bonding, Springer-Verlag: Berlin/Heidelberg, vol. 80, pp. 27-43 (1993).
H. Xu, D.C. Xu and Y. Wang, ACS Omega, 2, 7185 (2017); https://doi.org/10.1021/acsomega.7b01039
M. Franco-Pérez and J.L. Gázquez, J. Phys. Chem. A, 123, 10065 (2019); https://doi.org/10.1021/acs.jpca.9b07468
P.W. Ayers, M. Mohamed and F. Heidar-Zadeh, in eds.: S. Liu, The Hard/Soft Acid/Base Rule: A Perspective from Conceptual Density Functional Theory, In: Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory,Wiley; vol. 2, pp. 263–279 (2022).
L. Domingo, M. Ríos-Gutiérrez and P. Pérez, Molecules, 21, 748 (2016); https://doi.org/10.3390/molecules21060748
D. Chakraborty and P.K. Chattaraj, Chem. Sci., 12, 6264 (2021); https://doi.org/10.1039/D0SC07017C
P.V. Bernhardt and P. Comba, Inorg. Chem., 31, 2638 (1992); https://doi.org/10.1021/ic00038a060
W. Wang, J. Zhu, Q. Huang, L. Zhu, D. Wang, W. Li and W. Yu, Molecules, 29, 308 (2024); https://doi.org/10.3390/molecules29020308
R.E. Aderne, B.G.A.L. Borges, H.C. Ávila, F. Von Kieseritzky, J. Hellberg, M. Koehler, M. Cremona, L.S. Roman, C.M. Araujo, M.L.M. Rocco and C.F.N. Marchiori, Mater. Adv., 3, 1791 (2022); https://doi.org/10.1039/D1MA00652E
L. Domingo, Molecules, 21, 1319 (2016); https://doi.org/10.3390/molecules21101319
R.D. Hancock, Acc. Chem. Res., 23, 253 (1990); https://doi.org/10.1021/ar00176a003
R.J. Bartlett, I. Grabowski, S. Hirata and S. Ivanov, J. Chem. Phys., 122, 034104 (2005); https://doi.org/10.1063/1.1809605
P. Pérez, L.R. Domingo, A. Aizman and R. Contreras, Theor. Comput. Chem., 19, 139 (2007); https://doi.org/10.1016/S1380-7323(07)80010-0
A. Daolio, A. Pizzi, M. Calabrese, G. Terraneo, S. Bordignon, A. Frontera and G. Resnati, Angew. Chem. Int. Ed., 60, 20723 (2021); https://doi.org/10.1002/anie.202107978
S. Kenouche, C. Sandoval-Yañez and J.I. Martínez-Araya, Chem. Phys. Lett., 801, 139708 (2022); https://doi.org/10.1016/j.cplett.2022.139708