Copyright (c) 2024 Ramanjaneyulu Kongara, Usha Rani N, Prasad Rao P T. S. R. K.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Onion Seed Essential Oil-Grafted Zerovalent Copper Nanoparticles as Promising Material for Supercapacitor Electrodes in Energy Storage Device
Corresponding Author(s) : Ramanjaneyulu Kongara
Asian Journal of Chemistry,
Vol. 36 No. 6 (2024): Vol 36 Issue 6, 2024
Abstract
Nanobiotechnology was considered as unique branch of contemporary science that facilitates paradigm shift in the field of material research. This study utilizes easy, convenient and cost-effective essential oil isolated from the onion seed as reducing agent for fabrication of copper nanoparticles and applicability of synthesized nanoparticles as supercapacitor electrodes. In the synthesis process, solution colour turned from pale blue to green and then it reach reddish brown colour due to reduction in Cu2+ in copper sulphate in to Cu0 nanoparticles that exhibit characteristic wavelength maxima of 292 nm on UV-visible spectrophotometer. The GCMS analysis confirms the involvement of 2-phenylethanol, 1-hexanol, α-phellandrene, 2-pentylfuran, palmitic acid and trimethylbenzene from essential oil in the formation of nanoparticles. The particles were in spherical shape with most abundant particle size of ~ 17 nm having monoclinic phase crystal structure with 80.95% copper content. The supercapacitor application of the synthesized nanoparticles was investigated through electrochemical investigation. The specific conductance of synthesized nanoparticles was assessed through cyclic voltammetry that exhibit an impressive response of 364, 332, 311, 255 and 206 F/g, respectively at 10, 20, 40, 60 and 100 mV/s. The specific capacitance of nanoparticles was confirmed as 364 F/g with 97.1% retention capacity after 6000 cycles. The findings indicate that copper oxide nanoparticles, obtained biologically, exhibit promising applicability with well-suitability for use in the energy storage devices. Overall, the results of the current study show that the biologically produced copper oxide nanoparticles have intriguing uses as supercapacitor electrodes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Kumar, S.-B. Kim, S.-Y. Lee and S.-J. Park, Nanomaterials, 12, 3708 (2022); https://doi.org/10.3390/nano12203708
- A.R. Bagheri, N. Aramesh, M.S. Hasnain, A.K. Nayak and R.S. Varma, Chem. Phys. Impact, 7, 100255 (2023); https://doi.org/10.1016/j.chphi.2023.100255
- S. Khasim, A. Pasha, S.G. Dastager, C. Panneerselvam, T.A. Hamdalla, S.A. Al-Ghamdi, S. Alfadhli, M.B. Makandar, J.B. Albalawi and A.A. Darwish, Ceram. Int., 49, 20688 (2023); https://doi.org/10.1016/j.ceramint.2023.03.200
- V.V. Makarov, A.J. Love, O.V. Sinitsyna, S.S. Makarova, I.V. Yaminsky, M.E. Taliansky and N.O. Kalinina, Acta Nat., 6, 35 (2014); https://doi.org/10.32607/20758251-2014-6-1-35-44
- D. Gupta, A. Boora, A. Thakur and T.K. Gupta, Environ. Res., 231, 116316 (2023); https://doi.org/10.1016/j.envres.2023.116316
- G. Marslin, K. Siram, Q. Maqbool, R.K. Selvakesavan, D. Kruszka, P. Kachlicki and G. Franklin, Materials, 11, 940 (2018); https://doi.org/10.3390/ma11060940
- R.V. Bhupatiraju, B.S. Kumar, P. Peddi and V.S. Tangeti, J. Chem. Metrol., 17, 181 (2023); https://doi.org/10.25135/jcm.98.2311.2975
- R.B. Varma and B.S. Rao, Res. J. Pharm. Technol., 15, 5158 (2022); https://doi.org/10.52711/0974-360X.2022.00868
- F. Kianian, N. Marefati, M. Boskabady, S.Z. Ghasemi and M.H. Boskabady, Iran. J. Pharm. Res., 20, 107 (2021); https://doi.org/10.22037/ijpr.2020.112781.13946
- A. Galavi, H. Hosseinzadeh and B.M. Razavi, Iran. J. Basic Med. Sci., 24, 3 (2021); https://doi.org/10.22038/ijbms.2020.46956.10843
- N.A. Sagar, S. Pareek, N. Benkeblia and J. Xiao, Food Sci. Nutr., 3, 380 (2022); https://doi.org/10.1002/fft2.135
- B.H.R. Varma and B.S. Rao, Res. J. Chem. Environ., 27, 54 (2023); https://doi.org/10.25303/2702rjce054061
- M. Nishimura, T. Muro, M. Kobori and J. Nishihira, Nutrients, 12, 91 (2019); https://doi.org/10.3390/nu12010091
- R.V. Bhupatiraju, S.R. Battula, M.V.N.R. Kapavarapu and V.R. Mandapati, Ann. Pharm. Fr., 81, 64 (2023); https://doi.org/10.1016/j.pharma.2022.06.012
- Y. Wang, Q. Li, X. Peng, Z. Li, J. Xiang, Y. Chen, K. Hao, S. Wang, D. Nie, Y. Cui, F. Lv, Y. Wang, W. Wu, D. Guo and H. Si, Front. Bioeng. Biotechnol., 10, 856651 (2022); https://doi.org/10.3389/fbioe.2022.856651
- K.O. Saygi, B. Kacmaz and S. Gul, Dig. J. Nanomater. Biostruct., 16, 1527 (2021); https://doi.org/10.15251/DJNB.2021.164.1527
- H. Veisi, N. Dadres, P. Mohammadi and S. Hemmati, Mater. Sci. Eng. C, 105, 110031 (2019); https://doi.org/10.1016/j.msec.2019.110031
- M.H. Moosavy, M. de la Guardia, A. Mokhtarzadeh, S.A. Khatibi, N. Hosseinzadeh and N. Hajipour, Sci. Rep., 13, 7230 (2023); https://doi.org/10.1038/s41598-023-33632-y
- M.V. de Oliveira Brisola Maciel, A. da Rosa Almeida, M.H. Machado, W.C. Elias, C.G. da Rosa, G.L. Teixeira, C.M. Noronha, F.C. Bertoldi, M.R. Nunes, R.D. de Armas and P.L. Manique Barreto, Biocatal. Agric. Biotechnol., 28, 101746 (2020); https://doi.org/10.1016/j.bcab.2020.101746
- S. Pervaiz, I. Bibi, W. Rehman, H.F. Alotaibi, A.J. Obaidullah, L. Rasheed and M. M. Alanazi, Antibiotics, 12, 1090 (2023); https://doi.org/10.3390/antibiotics12071090
- Z. Zakeri, A. Allafchian, M.R. Vahabi and S.A.H. Jalali, Micro Nano Lett., 16, 533 (2021); https://doi.org/10.1049/mna2.12082
- R.D. Abdul Jalill, IET Nanobiotechnol., 12, 678 (2018); https://doi.org/10.1049/iet-nbt.2017.0139
- S. Ahmadi, M. Fazilati, H. Nazem and S.M. Mousavi, Biomed. Res. Int., 2021, 8822645 (2021); https://doi.org/10.1155/2021/8822645
- M. Rashidipour, S. Soroush, B. Ashrafi, A. Sepahvand, B. Rasoulian, S.S. Sohrabi and E. Babaeenezhad, Biologia, 79, 333 (2023); https://doi.org/10.1007/s11756-023-01555-8
- D. Pathania, S. Kumar, P. Thakur, V. Chaudhary, A. Kaushik, R.S. Varma, H. Furukawa, M. Sharma and A. Khosla, Sci. Rep., 12, 11431 (2022); https://doi.org/10.1038/s41598-022-14984-3
- L. Dorjee, R. Gogoi, D. Kamil, R. Kumar, T.K. Mondal, S. Pattanayak and B. Gurung, Front. Microbiol., 14, 1204512 (2023); https://doi.org/10.3389/fmicb.2023.1204512
- S. Rajkumar, E. Elanthamilan, S.-F. Wang, H. Chryso, P.V.D. Balan and J.P. Merlin, Resour. Conserv. Recycling, 180, 106180 (2022); https://doi.org/10.1016/j.resconrec.2022.106180
- I.L. Ikhioya, E.U. Onoh, A.C. Nkele, B.C. Abor, B. Obitte, M. Maaza and F.I. Ezema, East. Eur. J. Phys., 1, 162 (2023); https://doi.org/10.26565/2312-4334-2023-1-20
- P.M.Y. Ansari, R.M. Muthukrishnan, R.I. Khan, K. Sakthipandi, C. Vedhi and S.M. Abdul Kader, Chem. Phys. Impact., 7, 100374 (2023); https://doi.org/10.1016/j.chphi.2023.100374
- M.A. Alsharif, A. Alatawi, T.A. Hamdalla, S. Alfadhli and A.A.A. Darwish, Sci. Rep., 13, 22321 (2023); https://doi.org/10.1038/s41598-023-49760-4
- J. Meena, N. Kumaraguru, N.S. Veerappa, J. Tatsugi, A.S. Kumar, P. Shin and K. Santhakumar, Sci. Rep., 13, 22499 (2023); https://doi.org/10.1038/s41598-023-49706-w
- S.C. Mali, A. Dhaka, S. Sharma and R. Trivedi, Inorg. Chem. Commun., 25, 110448 (2023); https://doi.org/10.1016/j.inoche.2023.110448
- J.S. Kumar, M. Jana, P. Khanra, P. Samanta, H. Koo, N.C. Murmu and T. Kuila, Electrochim. Acta, 193, 104 (2016); https://doi.org/10.1016/j.electacta.2016.02.069
- A.M. Alturki Benign, Biomass Convers. Biorefin., 18, 1 (2022); https://doi.org/10.1007/s13399-022-03303-5
- S. Ravichandran, J. Radhakrishnan, P. Sengodan and R. Rajendran, J. Mater. Sci. Mater. Electron., 33, 9403 (2022); https://doi.org/10.1007/s10854-021-07340-0
- H.E. Nsude, K.U. Nsude, G.M. Whyte, R.M. Obodo, C. Iroegbu, M. Maaza and F.I. Ezema, J. Nanopart. Res., 22, 352 (2022); https://doi.org/10.1007/s11051-020-05071-7
- R. Teimuri-Mofrad, R. Hadi, H. Abbasi, E. Payami and S. Neshad, J. Organomet. Chem., 899, 120915 (2019); https://doi.org/10.1016/j.jorganchem.2019.120915
- S. Yadav, N. Rani and K. Saini, Mater. Today Proc., 49, 2124 (2022); https://doi.org/10.1016/j.matpr.2021.08.323
- Y.N. Sudhakar, H. Hemant, S.S. Nitinkumar, P. Poornesh and M. Selvakumar, Ionics, 23, 1267 (2017); https://doi.org/10.1007/s11581-016-1923-7
References
N. Kumar, S.-B. Kim, S.-Y. Lee and S.-J. Park, Nanomaterials, 12, 3708 (2022); https://doi.org/10.3390/nano12203708
A.R. Bagheri, N. Aramesh, M.S. Hasnain, A.K. Nayak and R.S. Varma, Chem. Phys. Impact, 7, 100255 (2023); https://doi.org/10.1016/j.chphi.2023.100255
S. Khasim, A. Pasha, S.G. Dastager, C. Panneerselvam, T.A. Hamdalla, S.A. Al-Ghamdi, S. Alfadhli, M.B. Makandar, J.B. Albalawi and A.A. Darwish, Ceram. Int., 49, 20688 (2023); https://doi.org/10.1016/j.ceramint.2023.03.200
V.V. Makarov, A.J. Love, O.V. Sinitsyna, S.S. Makarova, I.V. Yaminsky, M.E. Taliansky and N.O. Kalinina, Acta Nat., 6, 35 (2014); https://doi.org/10.32607/20758251-2014-6-1-35-44
D. Gupta, A. Boora, A. Thakur and T.K. Gupta, Environ. Res., 231, 116316 (2023); https://doi.org/10.1016/j.envres.2023.116316
G. Marslin, K. Siram, Q. Maqbool, R.K. Selvakesavan, D. Kruszka, P. Kachlicki and G. Franklin, Materials, 11, 940 (2018); https://doi.org/10.3390/ma11060940
R.V. Bhupatiraju, B.S. Kumar, P. Peddi and V.S. Tangeti, J. Chem. Metrol., 17, 181 (2023); https://doi.org/10.25135/jcm.98.2311.2975
R.B. Varma and B.S. Rao, Res. J. Pharm. Technol., 15, 5158 (2022); https://doi.org/10.52711/0974-360X.2022.00868
F. Kianian, N. Marefati, M. Boskabady, S.Z. Ghasemi and M.H. Boskabady, Iran. J. Pharm. Res., 20, 107 (2021); https://doi.org/10.22037/ijpr.2020.112781.13946
A. Galavi, H. Hosseinzadeh and B.M. Razavi, Iran. J. Basic Med. Sci., 24, 3 (2021); https://doi.org/10.22038/ijbms.2020.46956.10843
N.A. Sagar, S. Pareek, N. Benkeblia and J. Xiao, Food Sci. Nutr., 3, 380 (2022); https://doi.org/10.1002/fft2.135
B.H.R. Varma and B.S. Rao, Res. J. Chem. Environ., 27, 54 (2023); https://doi.org/10.25303/2702rjce054061
M. Nishimura, T. Muro, M. Kobori and J. Nishihira, Nutrients, 12, 91 (2019); https://doi.org/10.3390/nu12010091
R.V. Bhupatiraju, S.R. Battula, M.V.N.R. Kapavarapu and V.R. Mandapati, Ann. Pharm. Fr., 81, 64 (2023); https://doi.org/10.1016/j.pharma.2022.06.012
Y. Wang, Q. Li, X. Peng, Z. Li, J. Xiang, Y. Chen, K. Hao, S. Wang, D. Nie, Y. Cui, F. Lv, Y. Wang, W. Wu, D. Guo and H. Si, Front. Bioeng. Biotechnol., 10, 856651 (2022); https://doi.org/10.3389/fbioe.2022.856651
K.O. Saygi, B. Kacmaz and S. Gul, Dig. J. Nanomater. Biostruct., 16, 1527 (2021); https://doi.org/10.15251/DJNB.2021.164.1527
H. Veisi, N. Dadres, P. Mohammadi and S. Hemmati, Mater. Sci. Eng. C, 105, 110031 (2019); https://doi.org/10.1016/j.msec.2019.110031
M.H. Moosavy, M. de la Guardia, A. Mokhtarzadeh, S.A. Khatibi, N. Hosseinzadeh and N. Hajipour, Sci. Rep., 13, 7230 (2023); https://doi.org/10.1038/s41598-023-33632-y
M.V. de Oliveira Brisola Maciel, A. da Rosa Almeida, M.H. Machado, W.C. Elias, C.G. da Rosa, G.L. Teixeira, C.M. Noronha, F.C. Bertoldi, M.R. Nunes, R.D. de Armas and P.L. Manique Barreto, Biocatal. Agric. Biotechnol., 28, 101746 (2020); https://doi.org/10.1016/j.bcab.2020.101746
S. Pervaiz, I. Bibi, W. Rehman, H.F. Alotaibi, A.J. Obaidullah, L. Rasheed and M. M. Alanazi, Antibiotics, 12, 1090 (2023); https://doi.org/10.3390/antibiotics12071090
Z. Zakeri, A. Allafchian, M.R. Vahabi and S.A.H. Jalali, Micro Nano Lett., 16, 533 (2021); https://doi.org/10.1049/mna2.12082
R.D. Abdul Jalill, IET Nanobiotechnol., 12, 678 (2018); https://doi.org/10.1049/iet-nbt.2017.0139
S. Ahmadi, M. Fazilati, H. Nazem and S.M. Mousavi, Biomed. Res. Int., 2021, 8822645 (2021); https://doi.org/10.1155/2021/8822645
M. Rashidipour, S. Soroush, B. Ashrafi, A. Sepahvand, B. Rasoulian, S.S. Sohrabi and E. Babaeenezhad, Biologia, 79, 333 (2023); https://doi.org/10.1007/s11756-023-01555-8
D. Pathania, S. Kumar, P. Thakur, V. Chaudhary, A. Kaushik, R.S. Varma, H. Furukawa, M. Sharma and A. Khosla, Sci. Rep., 12, 11431 (2022); https://doi.org/10.1038/s41598-022-14984-3
L. Dorjee, R. Gogoi, D. Kamil, R. Kumar, T.K. Mondal, S. Pattanayak and B. Gurung, Front. Microbiol., 14, 1204512 (2023); https://doi.org/10.3389/fmicb.2023.1204512
S. Rajkumar, E. Elanthamilan, S.-F. Wang, H. Chryso, P.V.D. Balan and J.P. Merlin, Resour. Conserv. Recycling, 180, 106180 (2022); https://doi.org/10.1016/j.resconrec.2022.106180
I.L. Ikhioya, E.U. Onoh, A.C. Nkele, B.C. Abor, B. Obitte, M. Maaza and F.I. Ezema, East. Eur. J. Phys., 1, 162 (2023); https://doi.org/10.26565/2312-4334-2023-1-20
P.M.Y. Ansari, R.M. Muthukrishnan, R.I. Khan, K. Sakthipandi, C. Vedhi and S.M. Abdul Kader, Chem. Phys. Impact., 7, 100374 (2023); https://doi.org/10.1016/j.chphi.2023.100374
M.A. Alsharif, A. Alatawi, T.A. Hamdalla, S. Alfadhli and A.A.A. Darwish, Sci. Rep., 13, 22321 (2023); https://doi.org/10.1038/s41598-023-49760-4
J. Meena, N. Kumaraguru, N.S. Veerappa, J. Tatsugi, A.S. Kumar, P. Shin and K. Santhakumar, Sci. Rep., 13, 22499 (2023); https://doi.org/10.1038/s41598-023-49706-w
S.C. Mali, A. Dhaka, S. Sharma and R. Trivedi, Inorg. Chem. Commun., 25, 110448 (2023); https://doi.org/10.1016/j.inoche.2023.110448
J.S. Kumar, M. Jana, P. Khanra, P. Samanta, H. Koo, N.C. Murmu and T. Kuila, Electrochim. Acta, 193, 104 (2016); https://doi.org/10.1016/j.electacta.2016.02.069
A.M. Alturki Benign, Biomass Convers. Biorefin., 18, 1 (2022); https://doi.org/10.1007/s13399-022-03303-5
S. Ravichandran, J. Radhakrishnan, P. Sengodan and R. Rajendran, J. Mater. Sci. Mater. Electron., 33, 9403 (2022); https://doi.org/10.1007/s10854-021-07340-0
H.E. Nsude, K.U. Nsude, G.M. Whyte, R.M. Obodo, C. Iroegbu, M. Maaza and F.I. Ezema, J. Nanopart. Res., 22, 352 (2022); https://doi.org/10.1007/s11051-020-05071-7
R. Teimuri-Mofrad, R. Hadi, H. Abbasi, E. Payami and S. Neshad, J. Organomet. Chem., 899, 120915 (2019); https://doi.org/10.1016/j.jorganchem.2019.120915
S. Yadav, N. Rani and K. Saini, Mater. Today Proc., 49, 2124 (2022); https://doi.org/10.1016/j.matpr.2021.08.323
Y.N. Sudhakar, H. Hemant, S.S. Nitinkumar, P. Poornesh and M. Selvakumar, Ionics, 23, 1267 (2017); https://doi.org/10.1007/s11581-016-1923-7