Copyright (c) 2024 P. Priyanka, B. Nalini
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Potential Cathode for Quasi Solid-State Sodium-Ion Batteries with Trivalent Doping of La3+ in Sodium Iron Phosphate
Corresponding Author(s) : B. Nalini
Asian Journal of Chemistry,
Vol. 36 No. 6 (2024): Vol 36 Issue 6, 2024
Abstract
In this work, a low cost and environmental friendly cathode material sodium iron phosphate (NaFePO4) has been investigated with trivalent doping of lanthanum (La3+). Maricite phase of NaFePO4 exhibits 154 mAhg-1 theoretical capacity and this phase is said to be electrochemically inactive, hence studies are focussed on enhancing the properties of NaFePO4. Lanthanum exhibits a trivalent state and can be favourable on doping in the Fe site. Hence, an attempt is made to synthesize five different concentrations of La3+ in NaFe1-xLaxPO4 (x = 0.02, 0.04, 0.06, 0.08 and 0.1) of its first kind. An initial discharge capacity of 116 mAhg-1 at a current density of 0.1 Ag-1 has been achieved over 100 cycles when 0.02 concentration of La dopant in NaFePO4 is constructed as cell with NaOH aqueous electrolyte. The La-doped NaFePO4 at 0.02 concentration (NL2) exhibits higher specific capacity and cyclic stability. The initial discharge capacity of 36 mAh g-1 at 0.5 A g-1 was achieved over 500 cycles in the quasi-solid-state sodium battery analysis using a CuS:Sn2Sb3 anode and a PVA-NaOH electrolyte. This study shows a light on trivalent doping of La3+ with different concentrations and their effect as cathode when assembled as full cell for the first time.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Manthiram, ACS Cent. Sci., 3, 1063 (2017); https://doi.org/10.1021/acscentsci.7b00288
- J.Y. Hwang, S.T. Myung and Y.K. Sun, Chem. Soc. Rev., 46, 3529 (2017); https://doi.org/10.1039/C6CS00776G
- P. Gupta, S. Pushpakanth, M.A. Haider and S. Basu, ACS Omega, 7, 5605 (2022); https://doi.org/10.1021/acsomega.1c05794
- S. Altundag, S. Altin, S. Yasar and E. Altin, Vacuum, 210, 111853 (2023); https://doi.org/10.1016/j.vacuum.2023.111853
- V. Priyanka, G. Savithiri, R. Subadevi and M. Sivakumar, Appl. Nanosci., 10, 3945 (2020); https://doi.org/10.1007/s13204-020-01506-8
- B.V. Rami Reddy, R. Ravikumar, C. Nithya and S. Gopukumar, J. Mater. Chem. A Mater. Energy Sustain., 3, 18059 (2015); https://doi.org/10.1039/C5TA03173G
- L. Wang, J. Wang, X. Zhang, Y. Ren, P. Zuo, G. Yin and J. Wang, Nano Energy, 34, 215 (2017); https://doi.org/10.1016/j.nanoen.2017.02.046
- Y. Zhu, H. Xu, J. Ma, P. Chen and Y. Chen, J. Solid State Chem., 317, 123669 (2023); https://doi.org/10.1016/j.jssc.2022.123669
- X.H. Ma, Y.Y. Wei, Y.D. Wu, J. Wang, W. Jia, J.H. Zhou, Z.F. Zi and J.M. Dai, Electrochim. Acta, 297, 392 (2019); https://doi.org/10.1016/j.electacta.2018.11.063
- J. Kim, D.H. Seo, H. Kim, I. Park, J.K. Yoo, S.K. Jung, Y.U. Park, W.A. Goddard III and K. Kang, Energy Environ. Sci., 8, 540 (2015); https://doi.org/10.1039/C4EE03215B
- D. Wang, Y. Wu, J. Lv, R. Wang and S. Xu, Colloids Surf. A Physicochem. Eng. Asp., 583, 123957 (2019); https://doi.org/10.1016/j.colsurfa.2019.123957
- P. Hermankova, M. Hermanek and R. Zboril, Eur. J. Inorg. Chem., 2010, 1110 (2010); https://doi.org/10.1002/ejic.200900835
- M. Hiratsuka, T. Honma and T. Komatsu, J. Alloys Compd., 885, 160928 (2021); https://doi.org/10.1016/j.jallcom.2021.160928
- P. Priyanka, B. Nalini, G.G. Soundarya, P. Christopher Selvin and D.P. Dutta, Front. Energy Res., 11, 1266653 (2023); https://doi.org/10.3389/fenrg.2023.1266653
- F. Xiong, Q. An, L. Xia, Y. Zhao, L. Mai, H. Tao and Y. Yue, Nano Energy, 57, 608 (2019); https://doi.org/10.1016/j.nanoen.2018.12.087
- N. Kuganathan and A. Chroneos, Materials, 12, 1348 (2019); https://doi.org/10.3390/ma12081348
- Y. Fang, J. Qian, X. Ai, H. Yang and Y. Cao, Nano Lett., 14, 339 (2014); https://doi.org/10.1021/nl501152f
- X. Ma, J. Xia, X. Wu, Z. Pan and P.K. Shen, Carbon, 146, 78 (2019); https://doi.org/10.1016/j.carbon.2019.02.004
- D. Tibebe, Y. Kassa and A.N. Bhaskarwar, BMC Chem., 13, 107 (2019); https://doi.org/10.1186/s13065-019-0628-1
- J.H. Bong and S. Adams, Funct. Mater. Lett., 14, 2141006 (2021); https://doi.org/10.1142/S179360472141006X
- M. Hilder, P.C. Howlett, D. Saurel, H. Anne, M. Casas-Cabanas, M. Armand, T. Rojo, D.R. MacFarlane and M. Forsyth, J. Power Sources, 406, 70 (2018); https://doi.org/10.1016/j.jpowsour.2018.09.102
- X. Chen, K. Du, Y. Lai, G. Shang, H. Li, Z. Xiao, Y. Chen, J. Li and Z. Zhang, J. Power Sources, 357, 164 (2017); https://doi.org/10.1016/j.jpowsour.2017.04.075
- L. Zhao, D. Zhou, W. Huang, X. Kang, Q. Shi, Z. Deng, X. Yan and Y. Yu, Int. J. Electrochem. Sci., 12, 3153 (2017); https://doi.org/10.20964/2017.04.35
- N. Wongittharom, T.C. Lee, C.H. Wang, Y.C. Wang and J.K. Chang, J. Mater. Chem. A Mater. Energy Sustain., 2, 5655 (2014); https://doi.org/10.1039/c3ta15273a
- Y. Zhu, Y. Xu, Y. Liu, C. Luo and C. Wang, Nanoscale, 5, 780 (2013); https://doi.org/10.1039/C2NR32758A
- K. Zaghib, J. Trottier, P. Hovington, F. Brochu, A. Guerfi, A. Mauger and C.M. Julien, J. Power Sources, 196, 9612 (2011); https://doi.org/10.1016/j.jpowsour.2011.06.061
- N.V. Kosova, V.R. Podugolnikov, E.T. Devyatkina and A.B. Slobodyuk, Mater. Res. Bull., 60, 849 (2014); https://doi.org/10.1016/j.materresbull.2014.09.081
References
A. Manthiram, ACS Cent. Sci., 3, 1063 (2017); https://doi.org/10.1021/acscentsci.7b00288
J.Y. Hwang, S.T. Myung and Y.K. Sun, Chem. Soc. Rev., 46, 3529 (2017); https://doi.org/10.1039/C6CS00776G
P. Gupta, S. Pushpakanth, M.A. Haider and S. Basu, ACS Omega, 7, 5605 (2022); https://doi.org/10.1021/acsomega.1c05794
S. Altundag, S. Altin, S. Yasar and E. Altin, Vacuum, 210, 111853 (2023); https://doi.org/10.1016/j.vacuum.2023.111853
V. Priyanka, G. Savithiri, R. Subadevi and M. Sivakumar, Appl. Nanosci., 10, 3945 (2020); https://doi.org/10.1007/s13204-020-01506-8
B.V. Rami Reddy, R. Ravikumar, C. Nithya and S. Gopukumar, J. Mater. Chem. A Mater. Energy Sustain., 3, 18059 (2015); https://doi.org/10.1039/C5TA03173G
L. Wang, J. Wang, X. Zhang, Y. Ren, P. Zuo, G. Yin and J. Wang, Nano Energy, 34, 215 (2017); https://doi.org/10.1016/j.nanoen.2017.02.046
Y. Zhu, H. Xu, J. Ma, P. Chen and Y. Chen, J. Solid State Chem., 317, 123669 (2023); https://doi.org/10.1016/j.jssc.2022.123669
X.H. Ma, Y.Y. Wei, Y.D. Wu, J. Wang, W. Jia, J.H. Zhou, Z.F. Zi and J.M. Dai, Electrochim. Acta, 297, 392 (2019); https://doi.org/10.1016/j.electacta.2018.11.063
J. Kim, D.H. Seo, H. Kim, I. Park, J.K. Yoo, S.K. Jung, Y.U. Park, W.A. Goddard III and K. Kang, Energy Environ. Sci., 8, 540 (2015); https://doi.org/10.1039/C4EE03215B
D. Wang, Y. Wu, J. Lv, R. Wang and S. Xu, Colloids Surf. A Physicochem. Eng. Asp., 583, 123957 (2019); https://doi.org/10.1016/j.colsurfa.2019.123957
P. Hermankova, M. Hermanek and R. Zboril, Eur. J. Inorg. Chem., 2010, 1110 (2010); https://doi.org/10.1002/ejic.200900835
M. Hiratsuka, T. Honma and T. Komatsu, J. Alloys Compd., 885, 160928 (2021); https://doi.org/10.1016/j.jallcom.2021.160928
P. Priyanka, B. Nalini, G.G. Soundarya, P. Christopher Selvin and D.P. Dutta, Front. Energy Res., 11, 1266653 (2023); https://doi.org/10.3389/fenrg.2023.1266653
F. Xiong, Q. An, L. Xia, Y. Zhao, L. Mai, H. Tao and Y. Yue, Nano Energy, 57, 608 (2019); https://doi.org/10.1016/j.nanoen.2018.12.087
N. Kuganathan and A. Chroneos, Materials, 12, 1348 (2019); https://doi.org/10.3390/ma12081348
Y. Fang, J. Qian, X. Ai, H. Yang and Y. Cao, Nano Lett., 14, 339 (2014); https://doi.org/10.1021/nl501152f
X. Ma, J. Xia, X. Wu, Z. Pan and P.K. Shen, Carbon, 146, 78 (2019); https://doi.org/10.1016/j.carbon.2019.02.004
D. Tibebe, Y. Kassa and A.N. Bhaskarwar, BMC Chem., 13, 107 (2019); https://doi.org/10.1186/s13065-019-0628-1
J.H. Bong and S. Adams, Funct. Mater. Lett., 14, 2141006 (2021); https://doi.org/10.1142/S179360472141006X
M. Hilder, P.C. Howlett, D. Saurel, H. Anne, M. Casas-Cabanas, M. Armand, T. Rojo, D.R. MacFarlane and M. Forsyth, J. Power Sources, 406, 70 (2018); https://doi.org/10.1016/j.jpowsour.2018.09.102
X. Chen, K. Du, Y. Lai, G. Shang, H. Li, Z. Xiao, Y. Chen, J. Li and Z. Zhang, J. Power Sources, 357, 164 (2017); https://doi.org/10.1016/j.jpowsour.2017.04.075
L. Zhao, D. Zhou, W. Huang, X. Kang, Q. Shi, Z. Deng, X. Yan and Y. Yu, Int. J. Electrochem. Sci., 12, 3153 (2017); https://doi.org/10.20964/2017.04.35
N. Wongittharom, T.C. Lee, C.H. Wang, Y.C. Wang and J.K. Chang, J. Mater. Chem. A Mater. Energy Sustain., 2, 5655 (2014); https://doi.org/10.1039/c3ta15273a
Y. Zhu, Y. Xu, Y. Liu, C. Luo and C. Wang, Nanoscale, 5, 780 (2013); https://doi.org/10.1039/C2NR32758A
K. Zaghib, J. Trottier, P. Hovington, F. Brochu, A. Guerfi, A. Mauger and C.M. Julien, J. Power Sources, 196, 9612 (2011); https://doi.org/10.1016/j.jpowsour.2011.06.061
N.V. Kosova, V.R. Podugolnikov, E.T. Devyatkina and A.B. Slobodyuk, Mater. Res. Bull., 60, 849 (2014); https://doi.org/10.1016/j.materresbull.2014.09.081