Copyright (c) 2024 D. Geetha, Y.B. Basavaraju, K. Roopa
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Antimicrobial Activity of Heterocycle based Chalcone Derivatives
Corresponding Author(s) : Y.B. Basavaraju
Asian Journal of Chemistry,
Vol. 36 No. 6 (2024): Vol 36 Issue 6, 2024
Abstract
An efficient procedure for the synthesis of novel chalcones containing heterocyclic ring by Claisen-Schmidt condensation of 2-acetyl thiophene with heterocyclic carboxaldehyde, substituted benzaldehyde in the presence of aqueous alkaline bases produced chalcones in good yield (3a-f) is developed. These chalcones undergoes hydroamination with N-protected N-Boc piperazine followed by deprotection with trifluoroacetic acid gives corresponding amino derivatives with good yield (7a-f). The synthesized compounds were characterized by melting point, FTIR, 1H & 13C NMR and MS spectroscopic data. The synthesized compounds were also evaluated in vitro for their antibacterial activity against different bacterial and fungal species. Among the sythesized compounds, compound 7c showed the maximum potent antibacterial and antifungal activities.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Arif, M. Rana, S. Yasmeen, Amaduddin, M.S. Khan, M. Abid, M.S. Khan and Rahisuddin, J. Mol. Struct., 1208, 127875 (2020); https://doi.org/10.1016/j.molstruc.2020.127905
- R. Gupta and R.P. Chaudhary, Heterocycl. Commun., 19, 207 (2013); https://doi.org/10.1515/hc-2013-0024
- M. Rudrapal, R.S. Satyanandam, T.S. Swaroopini, T.N. Lakshmi, S.K. Jaha and S. Zaheera, Med. Chem. Res., 22, 2840 (2013); https://doi.org/10.1007/s00044-012-0278-5
- D. Gupta and D.K. Jain, J. Adv. Pharm. Technol. Res., 6, 114 (2015); https://doi.org/10.4103/2231-4040.161507
- A.E.G.E. Amr, N.M. Sabrry, M.M. Abdalla and B.F. Abdel-Wahab, Eur. J. Med. Chem., 44, 725 (2009); https://doi.org/10.1016/j.ejmech.2008.05.004
- A.O. Gorgulu, K. Koran, F. Ozen, S. Tekin, S. Sandal, J. Mol. Struct., 1087, 1 (2015); https://doi.org/10.1016/j.molstruc.2015.01.033
- L. Pan, X. Li, C. Gong, H. Jin and B. Qin, Microb. Pathog., 95, 186 (2016); https://doi.org/10.1016/j.micpath.2016.04.012
- I. Baramaki, M.D. Altintop, R. Arslan, F. Alyu Altinok, A. Özdemir, I. Dallali, A. Hasan and N. Bektas Türkmen, ACS Omega, 9, 12183 (2024); https://doi.org/10.1021/acsomega.4c00026
- N.A.A. Elkanzi, H. Hrichi, R.A. Alolayan, W. Derafa, F.M. Zahou and R.B. Bakr, ACS Omega, 7, 27769 (2022); https://doi.org/10.1021/acsomega.2c01779
- D. Ramyashree, K.R. Raghavendra, A.D. Kumar, C.B. Vagish and K.A. Kumar, Asian J. Chem., 29, 1538 (2017); https://doi.org/10.14233/ajchem.2017.20561
- T.E. Müller, K.C. Hultzsch, M. Yus, F. Foubelo and M. Tada, Chem. Rev., 108, 3795 (2008); https://doi.org/10.1021/cr0306788
- N.K. Gupta, P. Reif, P. Palenicek and M. Rose, ACS Catal., 12, 10400 (2022); https://doi.org/10.1021/acscatal.2c01717
- R.-H. Zhang, H.-Y. Guo, H. Deng, J. Li and Z.-S. Quan, J. Enzyme Inhib. Med. Chem., 36, 1165 (2021); https://doi.org/10.1080/14756366.2021.1931861
- E. Vitaku, D.T. Smith and J.T. Njardarson, J. Med. Chem., 57, 10257 (2014); https://doi.org/10.1021/jm501100b
- L. Brunton, B. Chabner and B. Knollman, Goodman and Gilman’s The Pharmacological Basis of Therapeutics, MacGraw-Hill: New York, NY, USA (2010).
- C. Durand and M. Szostak, Organics, 2, 337 (2021); https://doi.org/10.3390/org2040018
- M.N. Romanelli, L. Braconi, A. Gabellini, D. Manetti, G. Marotta and E. Teodori, Molecules, 29, 68 (2023); https://doi.org/10.3390/molecules29010068
References
R. Arif, M. Rana, S. Yasmeen, Amaduddin, M.S. Khan, M. Abid, M.S. Khan and Rahisuddin, J. Mol. Struct., 1208, 127875 (2020); https://doi.org/10.1016/j.molstruc.2020.127905
R. Gupta and R.P. Chaudhary, Heterocycl. Commun., 19, 207 (2013); https://doi.org/10.1515/hc-2013-0024
M. Rudrapal, R.S. Satyanandam, T.S. Swaroopini, T.N. Lakshmi, S.K. Jaha and S. Zaheera, Med. Chem. Res., 22, 2840 (2013); https://doi.org/10.1007/s00044-012-0278-5
D. Gupta and D.K. Jain, J. Adv. Pharm. Technol. Res., 6, 114 (2015); https://doi.org/10.4103/2231-4040.161507
A.E.G.E. Amr, N.M. Sabrry, M.M. Abdalla and B.F. Abdel-Wahab, Eur. J. Med. Chem., 44, 725 (2009); https://doi.org/10.1016/j.ejmech.2008.05.004
A.O. Gorgulu, K. Koran, F. Ozen, S. Tekin, S. Sandal, J. Mol. Struct., 1087, 1 (2015); https://doi.org/10.1016/j.molstruc.2015.01.033
L. Pan, X. Li, C. Gong, H. Jin and B. Qin, Microb. Pathog., 95, 186 (2016); https://doi.org/10.1016/j.micpath.2016.04.012
I. Baramaki, M.D. Altintop, R. Arslan, F. Alyu Altinok, A. Özdemir, I. Dallali, A. Hasan and N. Bektas Türkmen, ACS Omega, 9, 12183 (2024); https://doi.org/10.1021/acsomega.4c00026
N.A.A. Elkanzi, H. Hrichi, R.A. Alolayan, W. Derafa, F.M. Zahou and R.B. Bakr, ACS Omega, 7, 27769 (2022); https://doi.org/10.1021/acsomega.2c01779
D. Ramyashree, K.R. Raghavendra, A.D. Kumar, C.B. Vagish and K.A. Kumar, Asian J. Chem., 29, 1538 (2017); https://doi.org/10.14233/ajchem.2017.20561
T.E. Müller, K.C. Hultzsch, M. Yus, F. Foubelo and M. Tada, Chem. Rev., 108, 3795 (2008); https://doi.org/10.1021/cr0306788
N.K. Gupta, P. Reif, P. Palenicek and M. Rose, ACS Catal., 12, 10400 (2022); https://doi.org/10.1021/acscatal.2c01717
R.-H. Zhang, H.-Y. Guo, H. Deng, J. Li and Z.-S. Quan, J. Enzyme Inhib. Med. Chem., 36, 1165 (2021); https://doi.org/10.1080/14756366.2021.1931861
E. Vitaku, D.T. Smith and J.T. Njardarson, J. Med. Chem., 57, 10257 (2014); https://doi.org/10.1021/jm501100b
L. Brunton, B. Chabner and B. Knollman, Goodman and Gilman’s The Pharmacological Basis of Therapeutics, MacGraw-Hill: New York, NY, USA (2010).
C. Durand and M. Szostak, Organics, 2, 337 (2021); https://doi.org/10.3390/org2040018
M.N. Romanelli, L. Braconi, A. Gabellini, D. Manetti, G. Marotta and E. Teodori, Molecules, 29, 68 (2023); https://doi.org/10.3390/molecules29010068