Copyright (c) 2024 Chandan Maurya, Sangeeta Bajpai, Pramod Kumar Kushwaha, Umesh Chand, Sunita Singh
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and in vitro Antimicrobial Activity of Organotellurium Decorated 10-Membered Tetraazamacrocyclic Complexes of Cobalt(II)
Corresponding Author(s) : Chandan Maurya
Asian Journal of Chemistry,
Vol. 36 No. 5 (2024): Vol 36 Issue 5, 2024
Abstract
Three novel organotellurium decorated 10-membered tetraazamacrocyclic complexes of Co(II) were synthesized using template condensation of 1,1-diiodo-1-telluracyclopentane, 1,1-diodo-2-methyl-1-telluracyclopentane and 1,1-diiodo-1,1-diethyltellurium(IV) with 1,2-diaminopropane and cobalt dichloride hexahydrate in dry methanol in 2:2:1 molar ratio. The characterization of the synthesized cobalt(II) complexes was carried out using elemental analysis, spectroscopic studies (IR, proton NMR & proton decoupled carbon NMR) and molar conductance measurements. The results of these studies suggested that the complexes may be formulated as [CoLCl2] where L = {C4H8Te-(NHCH2CH(CH3)NH)}2, {C4H7(CH3)Te(NHCH2CH(CH3)NH)}2 and {(C2H5)2Te(NHCH2CH(CH3)NH)}2. The synthesized complexes were also screened for antimicrobial activity using broth microdilution and agar disc diffusion methods.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Yu, D. Qi and J. Li, Commun. Chem., 3, 189 (2020); https://doi.org/10.1038/s42004-020-00438-2
- M.S. Thakur, N. Singh, A. Sharma, R. Rana, A.R. Abdul Syukor, M. Naushad, S. Kumar, M. Kumar and L. Singh, Coord. Chem. Rev., 471, 214739 (2022); https://doi.org/10.1016/j.ccr.2022.214739
- X. Yu and D. Sun, Molecules, 18, 6230 (2013); https://doi.org/10.3390/molecules18066230
- B.D. Nath, K. Takaishi and T. Ema, Catal. Sci. Technol., 10, 12 (2020); https://doi.org/10.1039/C9CY01894H
- M. Yadav, D. Yadav, D.P. Singh and J.K. Kapoor, Inorg. Chim. Acta, 546, 121300 (2023); https://doi.org/10.1016/j.ica.2022.121300
- J. Seto, S. Tamura, N. Asai, N. Kishii, Y. Kijima and N. Matsuzawa, Pure Appl. Chem., 68, 1429 (1996); https://doi.org/10.1351/pac199668071429
- D. Xia, P. Wang, X. Ji, N.M. Khashab, J.L. Sessler and F. Huang, Chem. Rev., 120, 6070 (2020); https://doi.org/10.1021/acs.chemrev.9b00839
- A. Chaudhary and E. Rawat, Int. J. Inorg. Chem., 2014, 509151 (2014); https://doi.org/10.1155/2014/509151
- Q. He, G.I. Vargas-Zúñiga, S.H. Kim, S.K. Kim and J.L. Sessler, Chem. Rev., 119, 9753 (2019); https://doi.org/10.1021/acs.chemrev.8b00734
- M.T. Chaudhry, S. Akine and M.J. MacLachlan, Chem. Soc. Rev., 50, 10713 (2021); https://doi.org/10.1039/D1CS00225B
- J. Grajewski, Molecules, 27, 1004 (2022); https://doi.org/10.3390/molecules27031004
- A. Gulino, P. Dapporto, P. Rossi and I. Fragalà, Chem. Mater., 14, 4955 (2002); https://doi.org/10.1021/cm021183m
- Y. Cheng, T.J. Emge and J.G. Brennan, Inorg. Chem., 35, 7339 (1996); https://doi.org/10.1021/ic9603969
- N. Kushwah, G. Kedarnath, A. Wadawale, K.K. Halankar, B.P. Mandal, M. Jafar and B. Vishwanadh, Inorg. Chem., 62, 8823 (2023); https://doi.org/10.1021/acs.inorgchem.3c00269
- Y. Nishibayashi, K. Segawa, J.D. Singh, S. Fukuzawa, K. Ohe and S. Uemura, Organometallics, 15, 370 (1996); https://doi.org/10.1021/om950533u
- Y. Nishibayashi, J.D. Singh, Y. Arikawa, S. Uemura and M. Hidai, J. Organomet. Chem., 531, 13 (1997); https://doi.org/10.1016/S0022-328X(96)06681-8
- M. Kamboj, Phys. Sci. Rev., 8, 4541 (2023); https://doi.org/10.1515/psr-2021-0106
- A. Panda, S.C. Menon, H.B. Singh, C.P. Morley, R. Bachman, T.M. Cocker and R.J. Butcher, Eur. J. Inorg. Chem., 2005, 1114 (2005); https://doi.org/10.1002/ejic.200400757
- A.J. Barton, A.R.J. Genge, N.J. Hill, W. Levason, S.D. Orchard, B. Patel, G. Reid and A.J. Ward, Heteroatom Chem., 13, 550 (2002); https://doi.org/10.1002/hc.10100
- Nitu and K.K. Verma, E-J. Chem., 8, 1158 (2011); https://doi.org/10.1155/2011/768192
- N. Rathee and K. Verma, J. Serb. Chem. Soc., 77, 325 (2012); https://doi.org/10.2298/JSC101211200R
- S. Kumari, K. Verma and S. Garg, Int. J. Chem. Sci., 15, 207 (2017).
- S. Kumari and S. Garg, Chem. Sci. Trans., 8, 48 (2019); https://doi.org/10.7598/cst2019.1556
- A.I. Vogel, A Text Book of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis, Longman: London, edn. 3 (1972).
- G.T. Morgan and F.H. Burstall, J. Chem. Soc., 180 (1931); https://doi.org/10.1039/JR9310000180
- A.Z. Al-Rubaie and H.A. Al-Shirayda, J. Organomet. Chem., 294, 315 (1985); https://doi.org/10.1016/0022-328X(85)87446-5
- F.L. Gilbert and T.M. Lowry, J. Chem. Soc., 3179 (1928); https://doi.org/10.1039/JR9280003179
- I. Wiegand, K. Hilpert and R.E.W. Hancock, Nat. Protoc., 3, 163 (2008); https://doi.org/10.1038/nprot.2007.521
- M. Balouiri, M. Sadiki and S.K. Ibnsouda, J. Pharm. Anal., 6, 71 (2016); https://doi.org/10.1016/j.jpha.2015.11.005
- S. Kumari, K.K. Verma and S. Garg, J. Chem. Pharm. Res., 9, 189 (2017).
- S. Srivastava and A.K. Kalam, Synth. React. Inorg. Met.-Org. Chem., 34, 1529 (2004); https://doi.org/10.1081/SIM-200026581
- A.K. Panda, A. Panda, S. Sutar, P. Mishra, S. Pradhan, S. Ghos and S. Pany, J. Indian Chem. Soc., 86, 908 (2009).
- N.A.H.A.H. Al-Mohammadi, A.S.M. Al-Fahdawi and S.S.I. Al-Janabi, Iraqi J. Sci., 62, 1 (2021); https://doi.org/10.24996/ijs.2021.62.1.1
- D. Singh, K. Kumar, R. Kumar and J.J. Singh, Serb. Chem. Pharm. Res., 2, 339 (2010).
- O.S.M. Nasman, Phosphorus Sulfur Silicon Relat. Elem., 183, 1541 (2008); https://doi.org/10.1080/10426500701690939
- D.L. Pavia, G.M. Lampman, G.S. Kriz and J.R. Vyvyan, Introduction of Spectroscopy, Thomson Learning, edn 3 (2001).
References
J. Yu, D. Qi and J. Li, Commun. Chem., 3, 189 (2020); https://doi.org/10.1038/s42004-020-00438-2
M.S. Thakur, N. Singh, A. Sharma, R. Rana, A.R. Abdul Syukor, M. Naushad, S. Kumar, M. Kumar and L. Singh, Coord. Chem. Rev., 471, 214739 (2022); https://doi.org/10.1016/j.ccr.2022.214739
X. Yu and D. Sun, Molecules, 18, 6230 (2013); https://doi.org/10.3390/molecules18066230
B.D. Nath, K. Takaishi and T. Ema, Catal. Sci. Technol., 10, 12 (2020); https://doi.org/10.1039/C9CY01894H
M. Yadav, D. Yadav, D.P. Singh and J.K. Kapoor, Inorg. Chim. Acta, 546, 121300 (2023); https://doi.org/10.1016/j.ica.2022.121300
J. Seto, S. Tamura, N. Asai, N. Kishii, Y. Kijima and N. Matsuzawa, Pure Appl. Chem., 68, 1429 (1996); https://doi.org/10.1351/pac199668071429
D. Xia, P. Wang, X. Ji, N.M. Khashab, J.L. Sessler and F. Huang, Chem. Rev., 120, 6070 (2020); https://doi.org/10.1021/acs.chemrev.9b00839
A. Chaudhary and E. Rawat, Int. J. Inorg. Chem., 2014, 509151 (2014); https://doi.org/10.1155/2014/509151
Q. He, G.I. Vargas-Zúñiga, S.H. Kim, S.K. Kim and J.L. Sessler, Chem. Rev., 119, 9753 (2019); https://doi.org/10.1021/acs.chemrev.8b00734
M.T. Chaudhry, S. Akine and M.J. MacLachlan, Chem. Soc. Rev., 50, 10713 (2021); https://doi.org/10.1039/D1CS00225B
J. Grajewski, Molecules, 27, 1004 (2022); https://doi.org/10.3390/molecules27031004
A. Gulino, P. Dapporto, P. Rossi and I. Fragalà, Chem. Mater., 14, 4955 (2002); https://doi.org/10.1021/cm021183m
Y. Cheng, T.J. Emge and J.G. Brennan, Inorg. Chem., 35, 7339 (1996); https://doi.org/10.1021/ic9603969
N. Kushwah, G. Kedarnath, A. Wadawale, K.K. Halankar, B.P. Mandal, M. Jafar and B. Vishwanadh, Inorg. Chem., 62, 8823 (2023); https://doi.org/10.1021/acs.inorgchem.3c00269
Y. Nishibayashi, K. Segawa, J.D. Singh, S. Fukuzawa, K. Ohe and S. Uemura, Organometallics, 15, 370 (1996); https://doi.org/10.1021/om950533u
Y. Nishibayashi, J.D. Singh, Y. Arikawa, S. Uemura and M. Hidai, J. Organomet. Chem., 531, 13 (1997); https://doi.org/10.1016/S0022-328X(96)06681-8
M. Kamboj, Phys. Sci. Rev., 8, 4541 (2023); https://doi.org/10.1515/psr-2021-0106
A. Panda, S.C. Menon, H.B. Singh, C.P. Morley, R. Bachman, T.M. Cocker and R.J. Butcher, Eur. J. Inorg. Chem., 2005, 1114 (2005); https://doi.org/10.1002/ejic.200400757
A.J. Barton, A.R.J. Genge, N.J. Hill, W. Levason, S.D. Orchard, B. Patel, G. Reid and A.J. Ward, Heteroatom Chem., 13, 550 (2002); https://doi.org/10.1002/hc.10100
Nitu and K.K. Verma, E-J. Chem., 8, 1158 (2011); https://doi.org/10.1155/2011/768192
N. Rathee and K. Verma, J. Serb. Chem. Soc., 77, 325 (2012); https://doi.org/10.2298/JSC101211200R
S. Kumari, K. Verma and S. Garg, Int. J. Chem. Sci., 15, 207 (2017).
S. Kumari and S. Garg, Chem. Sci. Trans., 8, 48 (2019); https://doi.org/10.7598/cst2019.1556
A.I. Vogel, A Text Book of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis, Longman: London, edn. 3 (1972).
G.T. Morgan and F.H. Burstall, J. Chem. Soc., 180 (1931); https://doi.org/10.1039/JR9310000180
A.Z. Al-Rubaie and H.A. Al-Shirayda, J. Organomet. Chem., 294, 315 (1985); https://doi.org/10.1016/0022-328X(85)87446-5
F.L. Gilbert and T.M. Lowry, J. Chem. Soc., 3179 (1928); https://doi.org/10.1039/JR9280003179
I. Wiegand, K. Hilpert and R.E.W. Hancock, Nat. Protoc., 3, 163 (2008); https://doi.org/10.1038/nprot.2007.521
M. Balouiri, M. Sadiki and S.K. Ibnsouda, J. Pharm. Anal., 6, 71 (2016); https://doi.org/10.1016/j.jpha.2015.11.005
S. Kumari, K.K. Verma and S. Garg, J. Chem. Pharm. Res., 9, 189 (2017).
S. Srivastava and A.K. Kalam, Synth. React. Inorg. Met.-Org. Chem., 34, 1529 (2004); https://doi.org/10.1081/SIM-200026581
A.K. Panda, A. Panda, S. Sutar, P. Mishra, S. Pradhan, S. Ghos and S. Pany, J. Indian Chem. Soc., 86, 908 (2009).
N.A.H.A.H. Al-Mohammadi, A.S.M. Al-Fahdawi and S.S.I. Al-Janabi, Iraqi J. Sci., 62, 1 (2021); https://doi.org/10.24996/ijs.2021.62.1.1
D. Singh, K. Kumar, R. Kumar and J.J. Singh, Serb. Chem. Pharm. Res., 2, 339 (2010).
O.S.M. Nasman, Phosphorus Sulfur Silicon Relat. Elem., 183, 1541 (2008); https://doi.org/10.1080/10426500701690939
D.L. Pavia, G.M. Lampman, G.S. Kriz and J.R. Vyvyan, Introduction of Spectroscopy, Thomson Learning, edn 3 (2001).