Copyright (c) 2024 HARIDHARAN NEELAMEGAN
This work is licensed under a Creative Commons Attribution 4.0 International License.
Controlled Magnetite Grafted Poly(glycidyl methacrylates) for Heavy Metal Absorption and Recovery via SET-LRP
Corresponding Author(s) : N. Haridharan
Asian Journal of Chemistry,
Vol. 36 No. 5 (2024): Vol 36 Issue 5, 2024
Abstract
A versatile magnetite based stringent polymer for effective metal capture was prepared by reacting iron oxide based initiator with glycidyl methacrylate monomer via single-electron transfer living radical polymerization (SET-LRP) technique. The versatile grafted polymer was successfully synthesized by metal catalyzed living radical polymerization using the catalyst system Cu/N,N,N',N'',N'''-pentamethyldiethylenetriamine as the ligand. The structural confirmation of the initiator and the grafted polymer was analyzed by using instrumentation methods such as proton nuclear magnetic resonance spectroscopy, UV-visible, TGA, SEM and gel permeation chromatography for molecular weight measurements. As the polymerization time increased, both the conversion and the molecular weight were observed to increase linearly with time. Narrow dispersed lower polydispersity index (PDI) and dispensable magnetite-g-PGMA was utilized for the extract of toxic lead from the wastewater. Sustained binding was observed due to the presence of epoxide ring in the repeating units of the polymer and recovered by magnetic effect. The material shows good stability as evident by TGA curves and better affinity to toxic lead as observed by UV-visible and SEM techniques.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Briffa, E. Sinagra and R. Blundell, Heliyon, 6, e04691 (2020); https://doi.org/10.1016/j.heliyon.2020.e04691
- N.E. Hira, S.S.M. Lock, N.F. Shoparwe, I.S.M. Lock, L.G. Lim, C.L. Yiin, Y.H. Chan and M. Hassam, Sustainability, 15, 1510 (2023); https://doi.org/10.3390/su15021510
- L. Pokrajac, A. Abbas, W. Chrzanowski, G.M. Dias, B.J. Eggleton, S. Maguire, E. Maine, T. Malloy, J. Nathwani, L. Nazar, A. Sips, J. Sone, A. van den Berg, P.S. Weiss and S. Mitra, ACS Nano, 15, 18608 (2021); https://doi.org/10.1021/acsnano.1c10919
- H. Sadegh, G.A.M. Ali, V.K. Gupta, A.S.H. Makhlouf, R. Shahryari-Ghoshekandi, M.N. Nadagouda, M. Sillanpää and E. Megiel, J. Nanostruct. Chem., 7, 1 (2017); https://doi.org/10.1007/s40097-017-0219-4
- A.G. Niculescu, C. Chircov and A.M. Grumezescu, Methods, 199, 16 (2022); https://doi.org/10.1016/j.ymeth.2021.04.018
- Q. Lu, K. Choi, J.D. Nam and H.J. Choi, Polymers, 13, 512 (2021); https://doi.org/10.3390/polym13040512
- S.H. Kwon, J.S. An, S.Y. Choi, K.H. Chung and H.J. Choi, Macromol. Res., 27, 448 (2019); https://doi.org/10.1007/s13233-019-7065-9
- M. Ul-Islam, M.W. Ullah, S. Khan, S. Manan, W.A. Khattak, W. Ahmad, N. Shah and J.K. Park, Environ. Sci. Pollut. Res. Int., 24, 12713 (2017); https://doi.org/10.1007/s11356-017-8765-3
- D.E. Park, H.S. Chae, H.J. Choi and A. Maity, J. Mater. Chem. C Mater. Opt. Electron. Devices, 3, 3150 (2015); https://doi.org/10.1039/C5TC00007F
- Y.Z. Dong and H.J. Choi, Macromol. Res., 26, 667 (2018); https://doi.org/10.1007/s13233-018-6097-x
- L. Mohammed, H.G. Gomaa, D. Ragab and J. Zhu, Particuology, 30, 1 (2017); https://doi.org/10.1016/j.partic.2016.06.001
- X. Jiang, J.B. Mietner, C. Harder, R. Komban, S. Chen, C. Strelow, U. Sazama, M. Fröba, C. Gimmler, P. Müller-Buschbaum, S.V. Roth and J.R.G. Navarro, ACS Appl. Mater. Interfaces, 15, 5687 (2023); https://doi.org/10.1021/acsami.2c20775
- G. Lligadas, S. Grama and V. Percec, Biomacromolecules, 18, 2981 (2017); https://doi.org/10.1021/acs.biomac.7b01131
- W.A. Braunecker and K. Matyjaszewski, Prog. Polym. Sci., 32, 93 (2007); https://doi.org/10.1016/j.progpolymsci.2006.11.002
- N.H. Nguyen and V. Percec, J. Polym. Sci. A Polym. Chem., 48, 5109 (2010); https://doi.org/10.1002/pola.24309
- K.M. Rehan, K.A. Basha and S.M. Safiullah, J. Inorg. Organomet. Polym. Mater., 33, 2172 (2023); https://doi.org/10.1007/s10904-023-02671-3
- O.A. Yeshchenko, S.Z. Malynych, S.O. Polomarev, Y. Galabura, G. Chumanov and I. Luzinov, RSC Adv., 9, 8498 (2019); https://doi.org/10.1039/C9RA00498J
- X. Xu, J. Qiao, J. Yin, Y. Gao, X. Zhang, Y. Ding, Y. Liu, Z. Xin, J. Gao, F. Huang and Z. Song, J. Polym. Sci. B, Polym. Phys., 42, 1042 (2004); https://doi.org/10.1002/polb.10694
- C. Jiang, W. Fan, N. Zhang, G. Zhao, W. Wang, L. Bai, H. Chen and H. Yang. Hydrogels, 28, 9785 (2021); https://doi.org/10.1007/s10570-021-04170-5
- R.A. Bini, R.F.C. Marques, F.J. Santos, J.A. Chaker and M.M. Jafelicci Jr., J. Magn. Magn. Mater., 324, 534 (2012); https://doi.org/10.1016/j.jmmm.2011.08.035
- H. Cong, B. Yu, L. Gao, B. Yang, F. Gao, H. Zhang and Y. Liu, RSC Adv., 8, 2593 (2018); https://doi.org/10.1039/C7RA13158E
References
J. Briffa, E. Sinagra and R. Blundell, Heliyon, 6, e04691 (2020); https://doi.org/10.1016/j.heliyon.2020.e04691
N.E. Hira, S.S.M. Lock, N.F. Shoparwe, I.S.M. Lock, L.G. Lim, C.L. Yiin, Y.H. Chan and M. Hassam, Sustainability, 15, 1510 (2023); https://doi.org/10.3390/su15021510
L. Pokrajac, A. Abbas, W. Chrzanowski, G.M. Dias, B.J. Eggleton, S. Maguire, E. Maine, T. Malloy, J. Nathwani, L. Nazar, A. Sips, J. Sone, A. van den Berg, P.S. Weiss and S. Mitra, ACS Nano, 15, 18608 (2021); https://doi.org/10.1021/acsnano.1c10919
H. Sadegh, G.A.M. Ali, V.K. Gupta, A.S.H. Makhlouf, R. Shahryari-Ghoshekandi, M.N. Nadagouda, M. Sillanpää and E. Megiel, J. Nanostruct. Chem., 7, 1 (2017); https://doi.org/10.1007/s40097-017-0219-4
A.G. Niculescu, C. Chircov and A.M. Grumezescu, Methods, 199, 16 (2022); https://doi.org/10.1016/j.ymeth.2021.04.018
Q. Lu, K. Choi, J.D. Nam and H.J. Choi, Polymers, 13, 512 (2021); https://doi.org/10.3390/polym13040512
S.H. Kwon, J.S. An, S.Y. Choi, K.H. Chung and H.J. Choi, Macromol. Res., 27, 448 (2019); https://doi.org/10.1007/s13233-019-7065-9
M. Ul-Islam, M.W. Ullah, S. Khan, S. Manan, W.A. Khattak, W. Ahmad, N. Shah and J.K. Park, Environ. Sci. Pollut. Res. Int., 24, 12713 (2017); https://doi.org/10.1007/s11356-017-8765-3
D.E. Park, H.S. Chae, H.J. Choi and A. Maity, J. Mater. Chem. C Mater. Opt. Electron. Devices, 3, 3150 (2015); https://doi.org/10.1039/C5TC00007F
Y.Z. Dong and H.J. Choi, Macromol. Res., 26, 667 (2018); https://doi.org/10.1007/s13233-018-6097-x
L. Mohammed, H.G. Gomaa, D. Ragab and J. Zhu, Particuology, 30, 1 (2017); https://doi.org/10.1016/j.partic.2016.06.001
X. Jiang, J.B. Mietner, C. Harder, R. Komban, S. Chen, C. Strelow, U. Sazama, M. Fröba, C. Gimmler, P. Müller-Buschbaum, S.V. Roth and J.R.G. Navarro, ACS Appl. Mater. Interfaces, 15, 5687 (2023); https://doi.org/10.1021/acsami.2c20775
G. Lligadas, S. Grama and V. Percec, Biomacromolecules, 18, 2981 (2017); https://doi.org/10.1021/acs.biomac.7b01131
W.A. Braunecker and K. Matyjaszewski, Prog. Polym. Sci., 32, 93 (2007); https://doi.org/10.1016/j.progpolymsci.2006.11.002
N.H. Nguyen and V. Percec, J. Polym. Sci. A Polym. Chem., 48, 5109 (2010); https://doi.org/10.1002/pola.24309
K.M. Rehan, K.A. Basha and S.M. Safiullah, J. Inorg. Organomet. Polym. Mater., 33, 2172 (2023); https://doi.org/10.1007/s10904-023-02671-3
O.A. Yeshchenko, S.Z. Malynych, S.O. Polomarev, Y. Galabura, G. Chumanov and I. Luzinov, RSC Adv., 9, 8498 (2019); https://doi.org/10.1039/C9RA00498J
X. Xu, J. Qiao, J. Yin, Y. Gao, X. Zhang, Y. Ding, Y. Liu, Z. Xin, J. Gao, F. Huang and Z. Song, J. Polym. Sci. B, Polym. Phys., 42, 1042 (2004); https://doi.org/10.1002/polb.10694
C. Jiang, W. Fan, N. Zhang, G. Zhao, W. Wang, L. Bai, H. Chen and H. Yang. Hydrogels, 28, 9785 (2021); https://doi.org/10.1007/s10570-021-04170-5
R.A. Bini, R.F.C. Marques, F.J. Santos, J.A. Chaker and M.M. Jafelicci Jr., J. Magn. Magn. Mater., 324, 534 (2012); https://doi.org/10.1016/j.jmmm.2011.08.035
H. Cong, B. Yu, L. Gao, B. Yang, F. Gao, H. Zhang and Y. Liu, RSC Adv., 8, 2593 (2018); https://doi.org/10.1039/C7RA13158E