Copyright (c) 2024 Rajesh P, Balaji M, Velmani V, Parethe G T, Kavica S
This work is licensed under a Creative Commons Attribution 4.0 International License.
Rivea hypocrateriformis Plant Extract Mediated Synthesis of ZnO Nanoparticles: Characterization, Antioxidant and Anticancer Activities
Corresponding Author(s) : P. Rajesh
Asian Journal of Chemistry,
Vol. 36 No. 5 (2024): Vol 36 Issue 5, 2024
Abstract
Nanomedicine has emerged as a promising approach for cancer diagnosis and treatment. This study explores the green synthesis of zinc oxide nanoparticles using Rivea hypocrateriformis extract. The synthesized ZnO nanoparticles were characterized through UV-vis, FT-IR, zeta potential, XRD, SEM with EDS and TEM analyses. These nanoparticles were also evaluated for their impact on A549 cell lines. The UV visible spectroscopy identified absorbance peaks, while FT-IR analysis detected various functional groups. SEM and XRD images confirmed the partial crystal spherical form and crystal nature. The cytotoxicity assessments revealed an enhanced cytotoxic effect, marking a significant step toward synthesizing ZnONPs as potential anticancer agents. This research suggests the potential of these nanoparticles as chemo-preventive agents in future cancer treatments, in addition to their strong antioxidant properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Mottaghitalab, M. Farokhi, Y. Fatahi, F. Atyabi and R. Dinarvand, J. Control. Release, 295, 250 (2019); https://doi.org/10.1016/j.jconrel.2019.01.009
- A.C. MacKinnon, J. Kopatz and T. Sethi, Br. Med. Bull., 95, 47 (2010); https://doi.org/10.1093/bmb/ldq023
- O. Oyebode, N.-B. Kandala, P.J. Chilton and R.J. Lilford, Health Policy Plan, 31, 984 (2016); https://doi.org/10.1093/heapol/czw022
- S.S. Saboo, S. Khadabadi and G.G. Tapadiya, Asian Pac. J. Trop. Dis., 2(Suppl.1), S503 (2012); https://doi.org/10.1016/S2222-1808(12)60211-4
- N. Krithiga, A. Rajalakshmi and A. Jayachitra, J. Nanosci., 2015, 928204 (2015); https://doi.org/10.1155/2015/928204
- Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doðan, V. Avrutin, S.-J. Cho and H. Morkoç, J. Appl. Phys., 98, 041301 (2005); https://doi.org/10.1063/1.1992666
- R. Resmi, J. Yoonus and B. Beena, Mater. Today Proc., 46, 3062 (2021); https://doi.org/10.1016/j.matpr.2021.02.498
- R. Dobrucka and J. Dlugaszewska, Saudi J. Biol. Sci., 23, 517 (2016); https://doi.org/10.1016/j.sjbs.2015.05.016
- R. Yuvakkumar, J. Suresh, B. Saravanakumar, A.J. Nathanael, S.I. Hong and V. Rajendran, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 250 (2015); https://doi.org/10.1016/j.saa.2014.08.022
- R.Y. Hong, J.H. Li, L.L. Chen, D.Q. Liu, H.Z. Li, Y. Zheng and J. Ding, Powder Technol., 189, 426 (2009); https://doi.org/10.1016/j.powtec.2008.07.004
- K.M. Kumar, B.K. Mandal, E.A. Naidu, M. Sinha, K. Siva Kumar and P.S. Reddy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 104, 171 (2013); https://doi.org/10.1016/j.saa.2012.11.025
- J. Fowsiya, G. Madhumitha, N.A. Al-Dhabi and M.V. Arasu, J. Photochem. Photobiol. B, 162, 395 (2016); https://doi.org/10.1016/j.jphotobiol.2016.07.011
- M. Hosny and M. Fawzy, Adv. Powder Technol., 32, 2891 (2021); https://doi.org/10.1016/j.apt.2021.06.004
- F.S. Freyria, B. Bonelli, M. Tomatis, M. Ghiazza, E. Gazzano, D. Ghigo, E. Garrone and B. Fubini, Chem. Res. Toxicol., 25, 850 (2012); https://doi.org/10.1021/tx2004294
References
F. Mottaghitalab, M. Farokhi, Y. Fatahi, F. Atyabi and R. Dinarvand, J. Control. Release, 295, 250 (2019); https://doi.org/10.1016/j.jconrel.2019.01.009
A.C. MacKinnon, J. Kopatz and T. Sethi, Br. Med. Bull., 95, 47 (2010); https://doi.org/10.1093/bmb/ldq023
O. Oyebode, N.-B. Kandala, P.J. Chilton and R.J. Lilford, Health Policy Plan, 31, 984 (2016); https://doi.org/10.1093/heapol/czw022
S.S. Saboo, S. Khadabadi and G.G. Tapadiya, Asian Pac. J. Trop. Dis., 2(Suppl.1), S503 (2012); https://doi.org/10.1016/S2222-1808(12)60211-4
N. Krithiga, A. Rajalakshmi and A. Jayachitra, J. Nanosci., 2015, 928204 (2015); https://doi.org/10.1155/2015/928204
Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doðan, V. Avrutin, S.-J. Cho and H. Morkoç, J. Appl. Phys., 98, 041301 (2005); https://doi.org/10.1063/1.1992666
R. Resmi, J. Yoonus and B. Beena, Mater. Today Proc., 46, 3062 (2021); https://doi.org/10.1016/j.matpr.2021.02.498
R. Dobrucka and J. Dlugaszewska, Saudi J. Biol. Sci., 23, 517 (2016); https://doi.org/10.1016/j.sjbs.2015.05.016
R. Yuvakkumar, J. Suresh, B. Saravanakumar, A.J. Nathanael, S.I. Hong and V. Rajendran, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 250 (2015); https://doi.org/10.1016/j.saa.2014.08.022
R.Y. Hong, J.H. Li, L.L. Chen, D.Q. Liu, H.Z. Li, Y. Zheng and J. Ding, Powder Technol., 189, 426 (2009); https://doi.org/10.1016/j.powtec.2008.07.004
K.M. Kumar, B.K. Mandal, E.A. Naidu, M. Sinha, K. Siva Kumar and P.S. Reddy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 104, 171 (2013); https://doi.org/10.1016/j.saa.2012.11.025
J. Fowsiya, G. Madhumitha, N.A. Al-Dhabi and M.V. Arasu, J. Photochem. Photobiol. B, 162, 395 (2016); https://doi.org/10.1016/j.jphotobiol.2016.07.011
M. Hosny and M. Fawzy, Adv. Powder Technol., 32, 2891 (2021); https://doi.org/10.1016/j.apt.2021.06.004
F.S. Freyria, B. Bonelli, M. Tomatis, M. Ghiazza, E. Gazzano, D. Ghigo, E. Garrone and B. Fubini, Chem. Res. Toxicol., 25, 850 (2012); https://doi.org/10.1021/tx2004294