Copyright (c) 2024 Dr Paramjyot Kumar Jha Paramjyot Jha, GOURAV SINGLA, SAVIDH KHAN, PARDEEP KUMAR NAGPAL
This work is licensed under a Creative Commons Attribution 4.0 International License.
Correlation of Electrical Conductivity and Microstructure with the Band Gap of Oxysulfide Glass-Ceramics for Na-Ion Battery
Corresponding Author(s) : Paramjyot Kumar Jha
Asian Journal of Chemistry,
Vol. 36 No. 5 (2024): Vol 36 Issue 5, 2024
Abstract
In the present investigation, a glass-ceramics with the composition of xNa2S + (100–x)P2S5, where x = 40, 45, 50 and 55, were successfully synthesized by employing the melt-quenching method. Comprehensive characterization of the glass-ceramic samples was conducted using X-ray diffraction (XRD), UV-visible spectroscopy, impedance spectroscopy (IS) and field emission scanning electron microscopy (FE-SEM) techniques. The XRD analysis revealed the presence of three distinct phases, namely NaPO3, Na2S2O3 and Na3PS4, in all samples. Significantly, NaPO3 and Na2S2O3 exhibited an orthorhombic crystal structure, while Na3PS4 displayed a tetragonal crystal structure. The densities of the synthesized samples fell within the range of 2.24 to 2.35 g/cc, surpassing those of Li2S-based solid electrolytes commonly used in portable devices. The band gap of the materials varied from 2.99 to 3.60 eV. Significantly, an inverse relationship between Na2S content (modifier) and band gap was observed, indicating a decrease in band gaps with increasing Na2S content. This phenomenon is beneficial for enhancing ionic conductivity. At ambient temperature, samples with x values of 50 and 55 demonstrated remarkable conductivity on the order of 10-4 S cm-1. Overall, the synthesized glass ceramics exhibit promising features, such as higher density compared to conventional Li2S-based solid electrolytes and favourable band gap values, suggesting their potential application in enhancing ionic conductivity for various electronic devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Rong, Y. Lu, X. Qi, Q. Zhou, W. Kong and K. Tang, Energy Storage Sci. Technol., 9, 515 (2020); https://doi.org/10.19799/j.cnki.2095-4239.2020.0054
- M. Nishijima, I.D. Gocheva, S. Okada, T. Doi, J.I. Yamaki and T. Nishida, J. Power Sources, 190, 558 (2009); https://doi.org/10.1016/j.jpowsour.2009.01.051
- A. Rudola, A.J.T. Rennie, R. Heap, S.S. Meysami, A. Lowbridge, F. Mazzali, R. Sayers, C.J. Wright and J. Barker, J. Mater. Chem. A Mater. Energy Sustain., 9, 8279 (2021); https://doi.org/10.1039/D1TA00376C
- P. Sharma, P.K. Jha, P.K. Diwan and O.P. Pandey, J. Non-Cryst. Solids, 477, 31 (2017); https://doi.org/10.1016/j.jnoncrysol.2017.09.046
- N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, M. Yonemura, R. Kanno, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto and A. Mitsui, Nat. Mater., 10, 682 (2011); https://doi.org/10.1038/nmat3066
- D. Larink, H. Eckert and S.W. Martin, J. Phys. Chem. C, 116, 22698 (2012); https://doi.org/10.1021/jp3068365
- Y.K. Startsev, A.A. Pronkin, I.A. Sokolov and I.V. Murin, Glass Phys. Chem., 37, 263 (2011); https://doi.org/10.1134/S1087659611030138
- B.E. Francisco, C.M. Jones, S.H. Lee and C.R. Stoldt, Appl. Phys. Lett., 100, 103902 (2012); https://doi.org/10.1063/1.3693521
- M. Tatsumisago and A. Hayashi, Solid State Ion., 225, 342 (2012); https://doi.org/10.1016/j.ssi.2012.03.013
- M. Tatsumisago, T. Saito and T. Minami, Chem. Lett., 30, 790 (2001); https://doi.org/10.1246/cl.2001.790
- F. Mizuno, A. Hayashi, K. Tadanaga and M. Tatsumisago, Adv. Mater., 17, 918 (2005); https://doi.org/10.1002/adma.200401286
- A. Hayashi, K. Minami, S. Ujiie and M. Tatsumisago, J. Non-Cryst. Solids, 356, 2670 (2010); https://doi.org/10.1016/j.jnoncrysol.2010.04.048
- N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada and T. Sasaki, Adv. Mater., 18, 2226 (2006); https://doi.org/10.1002/adma.200502604
- M. Tatsumisago and A. Hayashi, Funct. Mater. Lett., 1, 31 (2008); https://doi.org/10.1142/S1793604708000071
- L. Zhao, T. Zhang, W. Li, T. Li, L. Zhang, X. Zhang and Z. Wang, Engineering, 24, 172 (2023); https://doi.org/10.1016/j.eng.2021.08.032
- S. Xu, H. Dong, D. Yang, C. Wu, Y. Yao, X. Rui, S. Chou and Y. Yu, ACS Cent. Sci., 9, 2012 (2023); https://doi.org/10.1021/acscentsci.3c01022
- A. Hayashi, K. Noi, A. Sakuda and M. Tatsumisago, Nat. Commun., 3, 856 (2012); https://doi.org/10.1038/ncomms1843
- S.S. Berbano, I. Seo, C.M. Bischoff, K.E. Schuller and S.W. Martin, J. Non-Cryst. Solids, 358, 93 (2012); https://doi.org/10.1016/j.jnoncrysol.2011.08.030
- P.K. Jha, O.P. Pandey and K. Singh, J. Mol. Struct., 1083, 278 (2015); https://doi.org/10.1016/j.molstruc.2014.11.027
- A. Sakuda, A. Hayashi and M. Tatsumisago, Sci. Rep., 3, 2261 (2013); https://doi.org/10.1038/srep02261
- V.M. Yogesh and V.S. Shrivastava, Adv. Appl. Sci. Res., 2, 295 (2011).
- G. Kaur, M. Kumar, K. Singh and O.P. Pandey, J. Non-Cryst. Solids, 357, 863 (2011).
- J.A. Duffy, Phys. Chem. Glasses, 42, 151 (2001).
- D. Stenz, H.B. George and S.E. Feller, Phys. Chem. Glasses, 41, 406 (2000).
- R. Kanno and M. Murayama, J. Electrochem. Soc., 148, A742 (2001); https://doi.org/10.1149/1.1379028
References
X. Rong, Y. Lu, X. Qi, Q. Zhou, W. Kong and K. Tang, Energy Storage Sci. Technol., 9, 515 (2020); https://doi.org/10.19799/j.cnki.2095-4239.2020.0054
M. Nishijima, I.D. Gocheva, S. Okada, T. Doi, J.I. Yamaki and T. Nishida, J. Power Sources, 190, 558 (2009); https://doi.org/10.1016/j.jpowsour.2009.01.051
A. Rudola, A.J.T. Rennie, R. Heap, S.S. Meysami, A. Lowbridge, F. Mazzali, R. Sayers, C.J. Wright and J. Barker, J. Mater. Chem. A Mater. Energy Sustain., 9, 8279 (2021); https://doi.org/10.1039/D1TA00376C
P. Sharma, P.K. Jha, P.K. Diwan and O.P. Pandey, J. Non-Cryst. Solids, 477, 31 (2017); https://doi.org/10.1016/j.jnoncrysol.2017.09.046
N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, M. Yonemura, R. Kanno, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto and A. Mitsui, Nat. Mater., 10, 682 (2011); https://doi.org/10.1038/nmat3066
D. Larink, H. Eckert and S.W. Martin, J. Phys. Chem. C, 116, 22698 (2012); https://doi.org/10.1021/jp3068365
Y.K. Startsev, A.A. Pronkin, I.A. Sokolov and I.V. Murin, Glass Phys. Chem., 37, 263 (2011); https://doi.org/10.1134/S1087659611030138
B.E. Francisco, C.M. Jones, S.H. Lee and C.R. Stoldt, Appl. Phys. Lett., 100, 103902 (2012); https://doi.org/10.1063/1.3693521
M. Tatsumisago and A. Hayashi, Solid State Ion., 225, 342 (2012); https://doi.org/10.1016/j.ssi.2012.03.013
M. Tatsumisago, T. Saito and T. Minami, Chem. Lett., 30, 790 (2001); https://doi.org/10.1246/cl.2001.790
F. Mizuno, A. Hayashi, K. Tadanaga and M. Tatsumisago, Adv. Mater., 17, 918 (2005); https://doi.org/10.1002/adma.200401286
A. Hayashi, K. Minami, S. Ujiie and M. Tatsumisago, J. Non-Cryst. Solids, 356, 2670 (2010); https://doi.org/10.1016/j.jnoncrysol.2010.04.048
N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada and T. Sasaki, Adv. Mater., 18, 2226 (2006); https://doi.org/10.1002/adma.200502604
M. Tatsumisago and A. Hayashi, Funct. Mater. Lett., 1, 31 (2008); https://doi.org/10.1142/S1793604708000071
L. Zhao, T. Zhang, W. Li, T. Li, L. Zhang, X. Zhang and Z. Wang, Engineering, 24, 172 (2023); https://doi.org/10.1016/j.eng.2021.08.032
S. Xu, H. Dong, D. Yang, C. Wu, Y. Yao, X. Rui, S. Chou and Y. Yu, ACS Cent. Sci., 9, 2012 (2023); https://doi.org/10.1021/acscentsci.3c01022
A. Hayashi, K. Noi, A. Sakuda and M. Tatsumisago, Nat. Commun., 3, 856 (2012); https://doi.org/10.1038/ncomms1843
S.S. Berbano, I. Seo, C.M. Bischoff, K.E. Schuller and S.W. Martin, J. Non-Cryst. Solids, 358, 93 (2012); https://doi.org/10.1016/j.jnoncrysol.2011.08.030
P.K. Jha, O.P. Pandey and K. Singh, J. Mol. Struct., 1083, 278 (2015); https://doi.org/10.1016/j.molstruc.2014.11.027
A. Sakuda, A. Hayashi and M. Tatsumisago, Sci. Rep., 3, 2261 (2013); https://doi.org/10.1038/srep02261
V.M. Yogesh and V.S. Shrivastava, Adv. Appl. Sci. Res., 2, 295 (2011).
G. Kaur, M. Kumar, K. Singh and O.P. Pandey, J. Non-Cryst. Solids, 357, 863 (2011).
J.A. Duffy, Phys. Chem. Glasses, 42, 151 (2001).
D. Stenz, H.B. George and S.E. Feller, Phys. Chem. Glasses, 41, 406 (2000).
R. Kanno and M. Murayama, J. Electrochem. Soc., 148, A742 (2001); https://doi.org/10.1149/1.1379028