Copyright (c) 2024 Asharani I V, M. Jeevarathinam, Abhishikta Halder, Archana Manoj
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Catalytic Reduction of 4-Nitrophenol Utilizing Bimetallic CuO-Co3O4 Nanoparticles Synthesized via Wrightia tinctoria Extract: A Green Approach
Corresponding Author(s) : I.V. Asharani
Asian Journal of Chemistry,
Vol. 36 No. 5 (2024): Vol 36 Issue 5, 2024
Abstract
In this investigation, copper oxide (CuO), cobalt oxide (Co3O4) and bimetallic copper oxide-cobalt oxide (CuO-Co3O4) nanoparticles were synthesized using an aqueous extract of Wrightia tinctoria leaves and characterized through UV-Vis, FT-IR, XRD, TEM and zeta potential analyses. The FT-IR analysis identified that specific phytoconstituents are responsible for the reduction and capping agents in nanoparticle synthesis. TEM analysis determined size and shape and zeta potential analysis assessed stability. The CuO and Co3O4 NPs, synthesized through an eco-friendly approach, were employed for 4-nitrophenol reduction with sodium borohydride. The reaction rate, was computed at 1 × 10-4 s-1, which indicated the pseudo-first-order kinetics. The synthesis of 4-aminophenol was also successfully acheived demonstrated that the excellent catalytic activity of CuO, Co3O4 and CuO-Co3O4 nanoparticles as catalysts.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Ling, M.J. Hackett and T. Hyeon, Nano Today, 9, 457 (2014); https://doi.org/10.1016/j.nantod.2014.06.005
- J. Zheng, M.S. Stevenson, R.S. Hikida and P.G. Van Patten, J. Phys. Chem. B, 106, 1252 (2002); https://doi.org/10.1021/jp013108p
- V.A. Bharathan, V. Yadukiran, A. Lazar, A.P. Singh and C.P. Vinod, ChemistrySelect, 1, 140 (2016); https://doi.org/10.1002/slct.201500006
- H. Karimi-Maleh, F. Karimi, S. Malekmohammadi, N. Zakariae, N. Atar, R. Esmaeili, S. Rostamnia, M.L. Yola, S. Movaghgharnezhad, S. Rajendran, A. Razmjou, Y. Orooji, S. Agarwal and V.K. Gupta, J. Mol. Liq., 310, 113185 (2020); https://doi.org/10.1016/j.molliq.2020.113185
- C. Huang, A. Notten and N. Rasters, J. Technol. Transf., 36, 145 (2011); https://doi.org/10.1007/s10961-009-9149-8
- P. Biswas and C.-Y. Wu, J. Air Waste Manage. Assoc., 55, 708 (2005); https://doi.org/10.1080/10473289.2005.10464656
- V.P. Aswathi, S. Meera, C.G.A. Maria and M. Nidhin, Nanotechnol. Environ. Eng., 8, 377 (2023); https://doi.org/10.1007/s41204-022-00276-8
- P. Raveendran, J. Fu and S.L. Wallen, J. Am. Chem. Soc., 125, 13940 (2003); https://doi.org/10.1021/ja029267j
- T. Jiao, H. Zhao, J. Zhou, Q. Zhang, X. Luo, J. Hu, Q. Peng and X. Yan, ACS Sustain. Chem. Eng., 3, 3130 (2015); https://doi.org/10.1021/acssuschemeng.5b00695
- K. Li, T. Jiao, R. Xing, G. Zou, J. Zhou, L. Zhang and Q. Peng, Sci. China Mater., 61, 728 (2018); https://doi.org/10.1007/s40843-017-9196-8
- H. Yang, S.J. Bradley, X. Wu, A. Chan, G.I.N. Waterhouse, T. Nann, J. Zhang, P.E. Kruger, S. Ma and S.G. Telfer, ACS Nano, 12, 4594 (2018); https://doi.org/10.1021/acsnano.8b01022
- F. Zhan, R. Wang, J. Yin, Z. Han, L. Zhang, T. Jiao, J. Zhou, L. Zhang and Q. Peng, RSC Adv., 9, 878 (2019); https://doi.org/10.1039/C8RA08516A
- L. Ge, M. Zhang, R. Wang, N. Li, L. Zhang, S. Liu and T. Jiao, RSC Adv., 10, 15091 (2020); https://doi.org/10.1039/D0RA01884H
- R. Costi, A.E. Saunders and U. Banin, Angew. Chem. Int. Ed., 49, 4878 (2010); https://doi.org/10.1002/anie.200906010
- Y. Orooji, R. Mohassel, O. Amiri, A. Sobhani and M. Salavati-Niasari, J. Alloys Compd., 835, 155240 (2020); https://doi.org/10.1016/j.jallcom.2020.155240
- Z. Taherian, A. Khataee and Y. Orooji, Renew. Sustain. Energy Rev., 134, 110130 (2020); https://doi.org/10.1016/j.rser.2020.110130
- H. Karimi-Maleh, F. Karimi, Y. Orooji, G. Mansouri, A. Razmjou, A. Aygun and F. Sen, Sci. Rep., 10, 11699 (2020); https://doi.org/10.1038/s41598-020-68663-2
- M.-B. Gholivand, A.R. Jalalvand, H.C. Goicoechea, G. Paimard and T. Skov, Talanta, 131, 249 (2015); https://doi.org/10.1016/j.talanta.2014.07.040
- R. Hassandoost, S.R. Pouran, A. Khataee, Y. Orooji and S.W. Joo, J. Hazard. Mater., 376, 200 (2019); https://doi.org/10.1016/j.jhazmat.2019.05.035
- Y. Orooji, M. Ghanbari, O. Amiri and M. Salavati-Niasari, J. Hazard. Mater., 389, 122079 (2020); https://doi.org/10.1016/j.jhazmat.2020.122079
- J. Perelaer, P.J. Smith, D. Soltman, S.K. Volkman, V. Subramanian, D. Mager, J.G. Korvink and U.S. Schubert, J. Mater. Chem., 20, 8446 (2010); https://doi.org/10.1039/c0jm00264j
- J. Gao, H. Gu and B. Xu, Acc. Chem. Res., 42, 1097 (2009); https://doi.org/10.1021/ar9000026
- Y. Wang, A.V. Biradar, G. Wang, K.K. Sharma, C.T. Duncan, S. Rangan and T. Asefa, Chem. Eur. J., 16, 10735 (2010); https://doi.org/10.1002/chem.201000354
- S. Jeong, H.C. Song, W.W. Lee, S.S. Lee, Y. Choi, W. Son, E.D. Kim, C.H. Paik, S.H. Oh and B.-H. Ryu, Langmuir, 27, 3144 (2011); https://doi.org/10.1021/la104136w
- N. Cioffi, L. Torsi, N. Ditaranto, G. Tantillo, L. Ghibelli, L. Sabbatini, T. Bleve-Zacheo, M. D’Alessio, P.G. Zambonin and E. Traversa, Chem. Mater., 17, 5255 (2005); https://doi.org/10.1021/cm0505244
- T.M.D. Dang, T.T.T. Le, E. Fribourg-Blanc and M.C. Dang, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2, 015009 (2011); https://doi.org/10.1088/2043-6262/2/1/015009
- J. Xiong, Y. Wang, Q. Xue and X. Wu, Green Chem., 13, 900 (2011); https://doi.org/10.1039/c0gc00772b
- R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K.S. Shivashangari and V. Ravikumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 121, 746 (2014); https://doi.org/10.1016/j.saa.2013.12.020
- S. Yallappa, J. Manjanna, M.A. Sindhe, N.D. Satyanarayan, S.N. Pramod and K. Nagaraja, Spectrochim. Acta A Mol. Biomol. Spectrosc., 110, 108 (2013); https://doi.org/10.1016/j.saa.2013.03.005
- R. Srivastava, Pharmacogn. Rev., 8, 36 (2014); https://doi.org/10.4103/0973-7847.125528
- J. Fick, H. Söderström, R.H. Lindberg, C. Phan, M. Tysklind and D.G.J. Larsson, Environ. Toxicol. Chem., 28, 2522 (2009); https://doi.org/10.1897/09-073.1
- P. Deka, D. Bhattacharjee, P. Sarmah, R.C. Deka and P. Bharali, in eds.: F. Kurisu, A. Ramanathan, A. Kazmi and M. Kumar, Catalytic Reduction of Water Contaminant ‘4-Nitrophenol’ over Manganese Oxide Supported Ni Nanoparticles; In: Trends in Asian Water Environmental Science and Technology, Springer International Publishing, Cham, pp. 35-48 (2017).
- T. Achamo and O.P. Yadav, Anal. Chem. Insights, 11, S31508 (2016); https://doi.org/10.4137/ACI.S31508
- R.D. Neal, Y. Inoue, R.A. Hughes and S. Neretina, J. Phys. Chem. C, 123, 12894 (2019); https://doi.org/10.1021/acs.jpcc.9b02396
- J. Zhang, G. Chen, D. Guay, M. Chaker and D. Ma, Nanoscale, 6, 2125 (2014); https://doi.org/10.1039/C3NR04715F
- Y. Woo and D.Y. Lai, Aromatic Amino and Nitro–Amino Compounds and Their Halogenated Derivatives, in Patty’s Toxicology, Wiley, pp. 1–96 (2012).
- N.F. Abd Razak and M. Shamsuddin, Inorg. Nano-Met. Chem., 50, 489 (2020); https://doi.org/10.1080/24701556.2020.1720724
- N.K.R. Bogireddy, P. Sahare, U. Pal, S.F.O. Méndez, L.M. Gomez and V. Agarwal, Chem. Eng. J., 388, 124237 (2020); https://doi.org/10.1016/j.cej.2020.124237
- W. Shen, Y. Qu, X. Pei, S. Li, S. You, J. Wang, Z. Zhang and J. Zhou, J. Hazard. Mater., 321, 299 (2017); https://doi.org/10.1016/j.jhazmat.2016.07.051
- Z. Xiong, H. Zhang, W. Zhang, B. Lai and G. Yao, Chem. Eng. J., 359, 13 (2019); https://doi.org/10.1016/j.cej.2018.11.111
- P. Zhao, X. Feng, D. Huang, G. Yang and D. Astruc, Coord. Chem. Rev., 287, 114 (2015); https://doi.org/10.1016/j.ccr.2015.01.002
- Z. Yan, N. Wang, M. Zhang, M. Xiang and Z. Xu, J. Environ. Chem. Eng., 9, 106174 (2021); https://doi.org/10.1016/j.jece.2021.106174
- A. Ahmad, Y. Wei, F. Syed, S. Khan, G.M. Khan, K. Tahir, A.U. Khan, M. Raza, F.U. Khan and Q. Yuan, J. Photochem. Photobiol. B, 161, 17 (2016); https://doi.org/10.1016/j.jphotobiol.2016.05.003
- S.A. Prisrin, M. Priyanga, K.M. Ponvel, K. Kaviarasan and S. Kalidass, J. Cluster Sci., 33, 765 (2022); https://doi.org/10.1007/s10876-021-02016-5
- S. Kumar, S. Baruah and A. Puzari, Polym. Bull., 77, 441 (2020); https://doi.org/10.1007/s00289-019-02760-9
- N.Y. Baran, T. Baran and M. Nasrollahzadeh, Sci. Rep., 13, 12008 (2023); https://doi.org/10.1038/s41598-023-38898-w
- Z. Liu, B. Hu, D. Li, P. Zhu, Y. Ye and R. Shen, Appl. Phys., 72, 30401 (2015).
- Y. Keereeta, R. Sirirak and A. Klinbumrung, Micro and Nanostructures, 186, 207757 (2024); https://doi.org/10.1016/j.micrna.2024.207757
- M. Tranchant, A. Serrà, C. Gunderson, E. Bertero, J. García-Amorós, E. Gómez, J. Michler and L. Philippe, Appl. Catal. A Gen., 602, 117698 (2020); https://doi.org/10.1016/j.apcata.2020.117698
- M. Sivagami and I.V. Asharani, J. Taiwan Inst. Chem. Eng., 149, 104981 (2023); https://doi.org/10.1016/j.jtice.2023.104981
References
D. Ling, M.J. Hackett and T. Hyeon, Nano Today, 9, 457 (2014); https://doi.org/10.1016/j.nantod.2014.06.005
J. Zheng, M.S. Stevenson, R.S. Hikida and P.G. Van Patten, J. Phys. Chem. B, 106, 1252 (2002); https://doi.org/10.1021/jp013108p
V.A. Bharathan, V. Yadukiran, A. Lazar, A.P. Singh and C.P. Vinod, ChemistrySelect, 1, 140 (2016); https://doi.org/10.1002/slct.201500006
H. Karimi-Maleh, F. Karimi, S. Malekmohammadi, N. Zakariae, N. Atar, R. Esmaeili, S. Rostamnia, M.L. Yola, S. Movaghgharnezhad, S. Rajendran, A. Razmjou, Y. Orooji, S. Agarwal and V.K. Gupta, J. Mol. Liq., 310, 113185 (2020); https://doi.org/10.1016/j.molliq.2020.113185
C. Huang, A. Notten and N. Rasters, J. Technol. Transf., 36, 145 (2011); https://doi.org/10.1007/s10961-009-9149-8
P. Biswas and C.-Y. Wu, J. Air Waste Manage. Assoc., 55, 708 (2005); https://doi.org/10.1080/10473289.2005.10464656
V.P. Aswathi, S. Meera, C.G.A. Maria and M. Nidhin, Nanotechnol. Environ. Eng., 8, 377 (2023); https://doi.org/10.1007/s41204-022-00276-8
P. Raveendran, J. Fu and S.L. Wallen, J. Am. Chem. Soc., 125, 13940 (2003); https://doi.org/10.1021/ja029267j
T. Jiao, H. Zhao, J. Zhou, Q. Zhang, X. Luo, J. Hu, Q. Peng and X. Yan, ACS Sustain. Chem. Eng., 3, 3130 (2015); https://doi.org/10.1021/acssuschemeng.5b00695
K. Li, T. Jiao, R. Xing, G. Zou, J. Zhou, L. Zhang and Q. Peng, Sci. China Mater., 61, 728 (2018); https://doi.org/10.1007/s40843-017-9196-8
H. Yang, S.J. Bradley, X. Wu, A. Chan, G.I.N. Waterhouse, T. Nann, J. Zhang, P.E. Kruger, S. Ma and S.G. Telfer, ACS Nano, 12, 4594 (2018); https://doi.org/10.1021/acsnano.8b01022
F. Zhan, R. Wang, J. Yin, Z. Han, L. Zhang, T. Jiao, J. Zhou, L. Zhang and Q. Peng, RSC Adv., 9, 878 (2019); https://doi.org/10.1039/C8RA08516A
L. Ge, M. Zhang, R. Wang, N. Li, L. Zhang, S. Liu and T. Jiao, RSC Adv., 10, 15091 (2020); https://doi.org/10.1039/D0RA01884H
R. Costi, A.E. Saunders and U. Banin, Angew. Chem. Int. Ed., 49, 4878 (2010); https://doi.org/10.1002/anie.200906010
Y. Orooji, R. Mohassel, O. Amiri, A. Sobhani and M. Salavati-Niasari, J. Alloys Compd., 835, 155240 (2020); https://doi.org/10.1016/j.jallcom.2020.155240
Z. Taherian, A. Khataee and Y. Orooji, Renew. Sustain. Energy Rev., 134, 110130 (2020); https://doi.org/10.1016/j.rser.2020.110130
H. Karimi-Maleh, F. Karimi, Y. Orooji, G. Mansouri, A. Razmjou, A. Aygun and F. Sen, Sci. Rep., 10, 11699 (2020); https://doi.org/10.1038/s41598-020-68663-2
M.-B. Gholivand, A.R. Jalalvand, H.C. Goicoechea, G. Paimard and T. Skov, Talanta, 131, 249 (2015); https://doi.org/10.1016/j.talanta.2014.07.040
R. Hassandoost, S.R. Pouran, A. Khataee, Y. Orooji and S.W. Joo, J. Hazard. Mater., 376, 200 (2019); https://doi.org/10.1016/j.jhazmat.2019.05.035
Y. Orooji, M. Ghanbari, O. Amiri and M. Salavati-Niasari, J. Hazard. Mater., 389, 122079 (2020); https://doi.org/10.1016/j.jhazmat.2020.122079
J. Perelaer, P.J. Smith, D. Soltman, S.K. Volkman, V. Subramanian, D. Mager, J.G. Korvink and U.S. Schubert, J. Mater. Chem., 20, 8446 (2010); https://doi.org/10.1039/c0jm00264j
J. Gao, H. Gu and B. Xu, Acc. Chem. Res., 42, 1097 (2009); https://doi.org/10.1021/ar9000026
Y. Wang, A.V. Biradar, G. Wang, K.K. Sharma, C.T. Duncan, S. Rangan and T. Asefa, Chem. Eur. J., 16, 10735 (2010); https://doi.org/10.1002/chem.201000354
S. Jeong, H.C. Song, W.W. Lee, S.S. Lee, Y. Choi, W. Son, E.D. Kim, C.H. Paik, S.H. Oh and B.-H. Ryu, Langmuir, 27, 3144 (2011); https://doi.org/10.1021/la104136w
N. Cioffi, L. Torsi, N. Ditaranto, G. Tantillo, L. Ghibelli, L. Sabbatini, T. Bleve-Zacheo, M. D’Alessio, P.G. Zambonin and E. Traversa, Chem. Mater., 17, 5255 (2005); https://doi.org/10.1021/cm0505244
T.M.D. Dang, T.T.T. Le, E. Fribourg-Blanc and M.C. Dang, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2, 015009 (2011); https://doi.org/10.1088/2043-6262/2/1/015009
J. Xiong, Y. Wang, Q. Xue and X. Wu, Green Chem., 13, 900 (2011); https://doi.org/10.1039/c0gc00772b
R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K.S. Shivashangari and V. Ravikumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 121, 746 (2014); https://doi.org/10.1016/j.saa.2013.12.020
S. Yallappa, J. Manjanna, M.A. Sindhe, N.D. Satyanarayan, S.N. Pramod and K. Nagaraja, Spectrochim. Acta A Mol. Biomol. Spectrosc., 110, 108 (2013); https://doi.org/10.1016/j.saa.2013.03.005
R. Srivastava, Pharmacogn. Rev., 8, 36 (2014); https://doi.org/10.4103/0973-7847.125528
J. Fick, H. Söderström, R.H. Lindberg, C. Phan, M. Tysklind and D.G.J. Larsson, Environ. Toxicol. Chem., 28, 2522 (2009); https://doi.org/10.1897/09-073.1
P. Deka, D. Bhattacharjee, P. Sarmah, R.C. Deka and P. Bharali, in eds.: F. Kurisu, A. Ramanathan, A. Kazmi and M. Kumar, Catalytic Reduction of Water Contaminant ‘4-Nitrophenol’ over Manganese Oxide Supported Ni Nanoparticles; In: Trends in Asian Water Environmental Science and Technology, Springer International Publishing, Cham, pp. 35-48 (2017).
T. Achamo and O.P. Yadav, Anal. Chem. Insights, 11, S31508 (2016); https://doi.org/10.4137/ACI.S31508
R.D. Neal, Y. Inoue, R.A. Hughes and S. Neretina, J. Phys. Chem. C, 123, 12894 (2019); https://doi.org/10.1021/acs.jpcc.9b02396
J. Zhang, G. Chen, D. Guay, M. Chaker and D. Ma, Nanoscale, 6, 2125 (2014); https://doi.org/10.1039/C3NR04715F
Y. Woo and D.Y. Lai, Aromatic Amino and Nitro–Amino Compounds and Their Halogenated Derivatives, in Patty’s Toxicology, Wiley, pp. 1–96 (2012).
N.F. Abd Razak and M. Shamsuddin, Inorg. Nano-Met. Chem., 50, 489 (2020); https://doi.org/10.1080/24701556.2020.1720724
N.K.R. Bogireddy, P. Sahare, U. Pal, S.F.O. Méndez, L.M. Gomez and V. Agarwal, Chem. Eng. J., 388, 124237 (2020); https://doi.org/10.1016/j.cej.2020.124237
W. Shen, Y. Qu, X. Pei, S. Li, S. You, J. Wang, Z. Zhang and J. Zhou, J. Hazard. Mater., 321, 299 (2017); https://doi.org/10.1016/j.jhazmat.2016.07.051
Z. Xiong, H. Zhang, W. Zhang, B. Lai and G. Yao, Chem. Eng. J., 359, 13 (2019); https://doi.org/10.1016/j.cej.2018.11.111
P. Zhao, X. Feng, D. Huang, G. Yang and D. Astruc, Coord. Chem. Rev., 287, 114 (2015); https://doi.org/10.1016/j.ccr.2015.01.002
Z. Yan, N. Wang, M. Zhang, M. Xiang and Z. Xu, J. Environ. Chem. Eng., 9, 106174 (2021); https://doi.org/10.1016/j.jece.2021.106174
A. Ahmad, Y. Wei, F. Syed, S. Khan, G.M. Khan, K. Tahir, A.U. Khan, M. Raza, F.U. Khan and Q. Yuan, J. Photochem. Photobiol. B, 161, 17 (2016); https://doi.org/10.1016/j.jphotobiol.2016.05.003
S.A. Prisrin, M. Priyanga, K.M. Ponvel, K. Kaviarasan and S. Kalidass, J. Cluster Sci., 33, 765 (2022); https://doi.org/10.1007/s10876-021-02016-5
S. Kumar, S. Baruah and A. Puzari, Polym. Bull., 77, 441 (2020); https://doi.org/10.1007/s00289-019-02760-9
N.Y. Baran, T. Baran and M. Nasrollahzadeh, Sci. Rep., 13, 12008 (2023); https://doi.org/10.1038/s41598-023-38898-w
Z. Liu, B. Hu, D. Li, P. Zhu, Y. Ye and R. Shen, Appl. Phys., 72, 30401 (2015).
Y. Keereeta, R. Sirirak and A. Klinbumrung, Micro and Nanostructures, 186, 207757 (2024); https://doi.org/10.1016/j.micrna.2024.207757
M. Tranchant, A. Serrà, C. Gunderson, E. Bertero, J. García-Amorós, E. Gómez, J. Michler and L. Philippe, Appl. Catal. A Gen., 602, 117698 (2020); https://doi.org/10.1016/j.apcata.2020.117698
M. Sivagami and I.V. Asharani, J. Taiwan Inst. Chem. Eng., 149, 104981 (2023); https://doi.org/10.1016/j.jtice.2023.104981