This work is licensed under a Creative Commons Attribution 4.0 International License.
Green Synthesis and Characterization of CaO Nanoparticles using Hen Eggshells and its Impact on Biomass Concentration, Chlorophyll-a and Lipid Content of Chlorella sp.
Corresponding Author(s) : Abhishek Chauhan
Asian Journal of Chemistry,
Vol. 36 No. 5 (2024): Vol 36 Issue 5, 2024
Abstract
Biodegradable wastes e.g. the outer cover of a boiled hen egg generally haphazardly discarded by humans in different locations of the country and generates problems for the local creatures. Although different researchers reported different methods to utilize the waste through the nanotechnological approach. Here, green synthesis of calcium oxide (CaO) nanoparticles from the hen eggshells was carried out and characterized them by using X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray (EDX) analysis, Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible spectrophotometer (UV). Further application of the synthesized nanoparticles was done on Chlorella sp. to investigate the impact on algal growth, lipid and chlorophylls. Synthesized CaO nanoparticles were applied in different concentration (0, 10, 20 and 30 mg L–1) and readings were monitored for 20 days. The highest biomass concentration 242.56 mg L–1 was achieved for the nanoparticle concentration of 20 mg L–1 and the lipid content increased up to 35.71% in 20 mg L–1. These results pave the way for enhanced algal biofuel production.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.F. Ahmed, M. Mofijur, N. Rafa, A.T. Chowdhury, S. Chowdhury, M. Nahrin, A.B.M.S. Islam and H.C. Ong, Environ. Res., 204, 111967 (2022); https://doi.org/10.1016/j.envres.2021.111967
- S. Bakand and A. Hayes, Int. J. Mol. Sci., 17, 929 (2016); https://doi.org/10.3390/ijms17060929
- I. Hussain, N.B. Singh, A. Singh, H. Singh and S.C. Singh, Biotechnol. Lett., 38, 545 (2016); https://doi.org/10.1007/s10529-015-2026-7
- N. Shreyash, S. Bajpai, M.A. Khan, Y. Vijay, S.K. Tiwary and M. Sonker, ACS Appl. Nano Mater., 4, 11428 (2021); https://doi.org/10.1021/acsanm.1c02946
- A. Jayachandran, A.T.R and A.S. Nair, Biochem. Biophys. Rep., 26,100995; https://doi.org/10.1016/j.bbrep.2021.100995
- A. Gour and N.K. Jain, Artif. Cells Nanomed. Biotechnol., 47, 844 (2019); https://doi.org/10.1080/21691401.2019.1577878
- R.S. Hamida, M.A. Ali, N. Mugren, M.I. Al-Zaban, M.M. Bin-Meferij and A. Redhwan, ACS Omega, 8, 29169 (2023); https://doi.org/10.1021/acsomega.3c02368
- D. Kulkarni, R. Sherkar, C. Shirsathe, R. Sonwane, N. Varpe, S. Shelke, S.R. Pardeshi, G. Dhaneshwar, V. Junnuthula, S. Dyawanapelly and M.P. More, Front. Bioeng. Biotechnol., 11, 1159193 (2023); https://doi.org/10.3389/fbioe.2023.1159193
- V.P. Aswathi, S. Meera, C.G.A. Maria and M. Nidhin, Nanotechnol. Environ. Eng., 8, 377 (2023); https://doi.org/10.1007/s41204-022-00276-8
- P.K. Dikshit, J. Kumar, A.K. Das, S. Sadhu, S. Sharma, S. Singh, P.K. Gupta and B.S. Kim, Catalysts, 11, 902 (2021); https://doi.org/10.3390/catal11080902
- S. Jadoun, R. Arif, N.K. Jangid and R.K. Meena, Environ. Chem. Lett., 19, 355 (2021); https://doi.org/10.1007/s10311-020-01074-x
- I. Ijaz, E. Gilani, A. Nazir and A. Bukhari, Green Chem. Lett. Rev., 13, 223 (2020); https://doi.org/10.1080/17518253.2020.1802517
- P. Kaushik and A. Chauhan, Indian J. Microbiol., 48, 348 (2008); https://doi.org/10.1007/s12088-008-0043-0
- S. Zhang, L. Zhang, G. Xu, F. Li and X. Li, Front. Microbiol., 13, 970028 (2022); https://doi.org/10.3389/fmicb.2022.970028
- K. Thor, Front. Plant Sci., 10, 440 (2019); https://doi.org/10.3389/fpls.2019.00440
- E. Hoiczyk and A. Hansel, J. Bacteriol., 182, 1191 (2000); https://doi.org/10.1128/JB.182.5.1191-1199.2000
- C.-C. Tang, X.-Y. Zhang, R. Wang, T.-Y. Wang, Z.-W. He and X.C. Wang, Environ. Res., 207, 112228 (2022); https://doi.org/10.1016/j.envres.2021.112228
- J. Yang, W. Li, C. Xing, G. Xing, Y. Guo and H. Yuan, Environ. Res., 208, 112696 (2022); https://doi.org/10.1016/j.envres.2022.112696
- A. Farooq, S. Javad, K. Jabeen, A. Ali Shah, A. Ahmad, A. Noor Shah, M. Nasser Alyemeni, W. F.A Mosa and A. Abbas, J. King Saud Univ. Sci., 35, 102647 (2023); https://doi.org/10.1016/j.jksus.2023.102647
- Y. Mbenga, M.S. Mthana, D.M.N. Mthiyane, O.E. Ogunjinmi, M. Singh and D.C. Onwudiwe, Inorg. Chem. Commun., 151, 110581 (2023); https://doi.org/10.1016/j.inoche.2023.110581
- G. Marquis, B. Ramasamy, S. Banwarilal and A.P. Munusamy, J. Photochem. Photobiol. B, 155, 28 (2016); https://doi.org/10.1016/j.jphotobiol.2015.12.013
- J. Arora, A. Ranjan, A. Chauhan, V.D. Rajput, S. Sushkova, E.V. Prazdnova, T. Minkina, R. Biswas, S. Joshi, T. Jindal and R. Prasad, Appl. Biochem. Biotechnol., (2023); https://doi.org/10.1007/s12010-023-04647-y
- S. Kumar, G. Stecher, M. Li, C. Knyaz and K. Tamura, Mol. Biol. Evol., 35, 1547 (2018); https://doi.org/10.1093/molbev/msy096
- A. Chauhan and T. Jindal, Microbiological Methods for Environment, Food and Pharmaceutical Analysis, Springer Nature (2020).
- O. Awogbemi, F. Inambao and E.I. Onuh, Heliyon, 6, e05283 (2020); https://doi.org/10.1016/j.heliyon.2020.e05283
- S.L. Nielsen and B.W. Hansen, Aquacult. Res., 50, 2698 (2019); https://doi.org/10.1111/are.14227
- R.J. Porra, W.A. Thompson and P.E. Kriedemann, Biochim. Biophys. Acta Bioenerg., 975, 384 (1989); https://doi.org/10.1016/S0005-2728(89)80347-0
- E.G. Bligh and W.J. Dyer, Can. J. Biochem. Physiol., 37, 911 (1959); https://doi.org/10.1139/y59-099
- K. Gaurav, S. Kumari and J. Dutta, J. Biochem. Technol., 12, 49 (2021); https://doi.org/10.51847/eqTib7hM7Z
- S. Kumar, V. Sharma, J.K. Pradhan, S.K. Sharma, P. Singh and J.K. Sharma, Nano Biomed. Eng., 13, 172 (2021); https://doi.org/10.5101/nbe.v13i2.p172-178
- M.-M. Pedavoah, M. Badu, N.O. Boadi and J.A.M. Awudza, Green and Sustainable Chem., 08, 208 (2018); https://doi.org/10.4236/gsc.2018.82015
- M.S. Tizo, L.A.V. Blanco, A.C.Q. Cagas, B.R.B. Dela Cruz, J.C. Encoy, J.V. Gunting, R.O. Arazo and V.I.F. Mabayo, Sustain. Environ. Res., 28, 326 (2018); https://doi.org/10.1016/j.serj.2018.09.002
- H.J. Choi, Biotechnol. Biotechnol. Equip., 29, 666 (2015); https://doi.org/10.1080/13102818.2015.1031177
- M.S. Rana, S. Bhushan, D.R. Sudhakar and S.K. Prajapati, Algal Res., 49, 101942 (2020); https://doi.org/10.1016/j.algal.2020.101942
- H.-S. Jeon, S.E. Park, B. Ahn and Y.-K. Kim, Biotechnol. Bioprocess Eng., 22, 136 (2017); https://doi.org/10.1007/s12257-016-0657-8
- M.K. Kanwar, S. Sun, X. Chu and J. Zhou, In: A. Husen and M. Iqbal, Impacts of Metal and Metal Oxide Nanoparticles on Plant Growth and Productivity, In: Nanomaterials and Plant Potential, Springer International Publishing, pp. 379-392 (2019).
- S. Kavitha, M. Schikaran, R.Y. Kannah, M. Gunasekaran, G. Kumar and J.R. Banu, Bioresour. Technol., 289, 121624 (2019); https://doi.org/10.1016/j.biortech.2019.121624
- L. Vargas-Estrada, P.U. Okoye, R. Muñoz, E. Novelo Maldonado, A. González-Sánchez and P.J. Sebastian, Algal Res., 78, 103399 (2024); https://doi.org/10.1016/j.algal.2024.103399
- M. Bibi, X. Zhu, M. Munir and I. Angelidaki, Chemosphere, 282, 131044 (2021); https://doi.org/10.1016/j.chemosphere.2021.131044
- M.M.S. Ismaiel and M.D. Piercey-Normore, Environ. Pollut., 341, 123002 (2024); https://doi.org/10.1016/j.envpol.2023.123002
References
S.F. Ahmed, M. Mofijur, N. Rafa, A.T. Chowdhury, S. Chowdhury, M. Nahrin, A.B.M.S. Islam and H.C. Ong, Environ. Res., 204, 111967 (2022); https://doi.org/10.1016/j.envres.2021.111967
S. Bakand and A. Hayes, Int. J. Mol. Sci., 17, 929 (2016); https://doi.org/10.3390/ijms17060929
I. Hussain, N.B. Singh, A. Singh, H. Singh and S.C. Singh, Biotechnol. Lett., 38, 545 (2016); https://doi.org/10.1007/s10529-015-2026-7
N. Shreyash, S. Bajpai, M.A. Khan, Y. Vijay, S.K. Tiwary and M. Sonker, ACS Appl. Nano Mater., 4, 11428 (2021); https://doi.org/10.1021/acsanm.1c02946
A. Jayachandran, A.T.R and A.S. Nair, Biochem. Biophys. Rep., 26,100995; https://doi.org/10.1016/j.bbrep.2021.100995
A. Gour and N.K. Jain, Artif. Cells Nanomed. Biotechnol., 47, 844 (2019); https://doi.org/10.1080/21691401.2019.1577878
R.S. Hamida, M.A. Ali, N. Mugren, M.I. Al-Zaban, M.M. Bin-Meferij and A. Redhwan, ACS Omega, 8, 29169 (2023); https://doi.org/10.1021/acsomega.3c02368
D. Kulkarni, R. Sherkar, C. Shirsathe, R. Sonwane, N. Varpe, S. Shelke, S.R. Pardeshi, G. Dhaneshwar, V. Junnuthula, S. Dyawanapelly and M.P. More, Front. Bioeng. Biotechnol., 11, 1159193 (2023); https://doi.org/10.3389/fbioe.2023.1159193
V.P. Aswathi, S. Meera, C.G.A. Maria and M. Nidhin, Nanotechnol. Environ. Eng., 8, 377 (2023); https://doi.org/10.1007/s41204-022-00276-8
P.K. Dikshit, J. Kumar, A.K. Das, S. Sadhu, S. Sharma, S. Singh, P.K. Gupta and B.S. Kim, Catalysts, 11, 902 (2021); https://doi.org/10.3390/catal11080902
S. Jadoun, R. Arif, N.K. Jangid and R.K. Meena, Environ. Chem. Lett., 19, 355 (2021); https://doi.org/10.1007/s10311-020-01074-x
I. Ijaz, E. Gilani, A. Nazir and A. Bukhari, Green Chem. Lett. Rev., 13, 223 (2020); https://doi.org/10.1080/17518253.2020.1802517
P. Kaushik and A. Chauhan, Indian J. Microbiol., 48, 348 (2008); https://doi.org/10.1007/s12088-008-0043-0
S. Zhang, L. Zhang, G. Xu, F. Li and X. Li, Front. Microbiol., 13, 970028 (2022); https://doi.org/10.3389/fmicb.2022.970028
K. Thor, Front. Plant Sci., 10, 440 (2019); https://doi.org/10.3389/fpls.2019.00440
E. Hoiczyk and A. Hansel, J. Bacteriol., 182, 1191 (2000); https://doi.org/10.1128/JB.182.5.1191-1199.2000
C.-C. Tang, X.-Y. Zhang, R. Wang, T.-Y. Wang, Z.-W. He and X.C. Wang, Environ. Res., 207, 112228 (2022); https://doi.org/10.1016/j.envres.2021.112228
J. Yang, W. Li, C. Xing, G. Xing, Y. Guo and H. Yuan, Environ. Res., 208, 112696 (2022); https://doi.org/10.1016/j.envres.2022.112696
A. Farooq, S. Javad, K. Jabeen, A. Ali Shah, A. Ahmad, A. Noor Shah, M. Nasser Alyemeni, W. F.A Mosa and A. Abbas, J. King Saud Univ. Sci., 35, 102647 (2023); https://doi.org/10.1016/j.jksus.2023.102647
Y. Mbenga, M.S. Mthana, D.M.N. Mthiyane, O.E. Ogunjinmi, M. Singh and D.C. Onwudiwe, Inorg. Chem. Commun., 151, 110581 (2023); https://doi.org/10.1016/j.inoche.2023.110581
G. Marquis, B. Ramasamy, S. Banwarilal and A.P. Munusamy, J. Photochem. Photobiol. B, 155, 28 (2016); https://doi.org/10.1016/j.jphotobiol.2015.12.013
J. Arora, A. Ranjan, A. Chauhan, V.D. Rajput, S. Sushkova, E.V. Prazdnova, T. Minkina, R. Biswas, S. Joshi, T. Jindal and R. Prasad, Appl. Biochem. Biotechnol., (2023); https://doi.org/10.1007/s12010-023-04647-y
S. Kumar, G. Stecher, M. Li, C. Knyaz and K. Tamura, Mol. Biol. Evol., 35, 1547 (2018); https://doi.org/10.1093/molbev/msy096
A. Chauhan and T. Jindal, Microbiological Methods for Environment, Food and Pharmaceutical Analysis, Springer Nature (2020).
O. Awogbemi, F. Inambao and E.I. Onuh, Heliyon, 6, e05283 (2020); https://doi.org/10.1016/j.heliyon.2020.e05283
S.L. Nielsen and B.W. Hansen, Aquacult. Res., 50, 2698 (2019); https://doi.org/10.1111/are.14227
R.J. Porra, W.A. Thompson and P.E. Kriedemann, Biochim. Biophys. Acta Bioenerg., 975, 384 (1989); https://doi.org/10.1016/S0005-2728(89)80347-0
E.G. Bligh and W.J. Dyer, Can. J. Biochem. Physiol., 37, 911 (1959); https://doi.org/10.1139/y59-099
K. Gaurav, S. Kumari and J. Dutta, J. Biochem. Technol., 12, 49 (2021); https://doi.org/10.51847/eqTib7hM7Z
S. Kumar, V. Sharma, J.K. Pradhan, S.K. Sharma, P. Singh and J.K. Sharma, Nano Biomed. Eng., 13, 172 (2021); https://doi.org/10.5101/nbe.v13i2.p172-178
M.-M. Pedavoah, M. Badu, N.O. Boadi and J.A.M. Awudza, Green and Sustainable Chem., 08, 208 (2018); https://doi.org/10.4236/gsc.2018.82015
M.S. Tizo, L.A.V. Blanco, A.C.Q. Cagas, B.R.B. Dela Cruz, J.C. Encoy, J.V. Gunting, R.O. Arazo and V.I.F. Mabayo, Sustain. Environ. Res., 28, 326 (2018); https://doi.org/10.1016/j.serj.2018.09.002
H.J. Choi, Biotechnol. Biotechnol. Equip., 29, 666 (2015); https://doi.org/10.1080/13102818.2015.1031177
M.S. Rana, S. Bhushan, D.R. Sudhakar and S.K. Prajapati, Algal Res., 49, 101942 (2020); https://doi.org/10.1016/j.algal.2020.101942
H.-S. Jeon, S.E. Park, B. Ahn and Y.-K. Kim, Biotechnol. Bioprocess Eng., 22, 136 (2017); https://doi.org/10.1007/s12257-016-0657-8
M.K. Kanwar, S. Sun, X. Chu and J. Zhou, In: A. Husen and M. Iqbal, Impacts of Metal and Metal Oxide Nanoparticles on Plant Growth and Productivity, In: Nanomaterials and Plant Potential, Springer International Publishing, pp. 379-392 (2019).
S. Kavitha, M. Schikaran, R.Y. Kannah, M. Gunasekaran, G. Kumar and J.R. Banu, Bioresour. Technol., 289, 121624 (2019); https://doi.org/10.1016/j.biortech.2019.121624
L. Vargas-Estrada, P.U. Okoye, R. Muñoz, E. Novelo Maldonado, A. González-Sánchez and P.J. Sebastian, Algal Res., 78, 103399 (2024); https://doi.org/10.1016/j.algal.2024.103399
M. Bibi, X. Zhu, M. Munir and I. Angelidaki, Chemosphere, 282, 131044 (2021); https://doi.org/10.1016/j.chemosphere.2021.131044
M.M.S. Ismaiel and M.D. Piercey-Normore, Environ. Pollut., 341, 123002 (2024); https://doi.org/10.1016/j.envpol.2023.123002