Copyright (c) 2024 Lakshmana B, Abhirami D, Rangaswamy J, Abhirami D, Vinaya , Dwarakanath V, Dr.Y.B.Basavaraju Yeriyuru
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Anticancer Evaluation and Molecular Docking Studies of 1-(2-Fluorobenzyl)piperazine Triazoles: A Novel Breast Cancer Cell Inhibitors
Corresponding Author(s) : Yeriyur B. Basavaraju
Asian Journal of Chemistry,
Vol. 36 No. 4 (2024): Vol 36 Issue 4, 2024
Abstract
New series of 1-(2-fluorobenzyl)piperazine triazoles 7(a-k) have been synthesized and evaluated for anticancer activity. The molecular structures of all the compounds were established by employing 1H NMR, 13C NMR and mass spectral analysis. In vitro anticancer activity was evaluated using MTT assay against MCF7 breast cancer cell line. Compounds 7i and 7j bearing 4-fluorophenyl and 2-fluorophenyl pendant from triazole substituent phenyl ring exhibited the highest anticancer efficacy with IC50 values of 12.09 µg/mL and 15.12 µg/mL, respectively. A molecular docking study conducted on human HER2 complexed with hercepatin fab was acquired from Protein Data Bank (PDB ID: 1N8Z). Molecular docking studies demonstrated Leu443, Gly442 and Leu27 as key residues interacting with active compounds.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Mohite, V. Yadav, R. Pandhare, S. Maitra, F.M. Saleh, R.M. Saleem, H.S. Al-Malky, V. Kumarasamy, V. Subramaniyan, M.M. Abdel-Daim, and D.E. Uti, ACS Omega, 9, 7277 (2024); https://doi.org/10.1021/acsomega.3c06501
- A.T. Toriola and G. Colditz, Breast Cancer Res. Treat., 138, 665 (2013); https://doi.org/10.1007/s10549-013-2500-7
- P. Murawa, D. Murawa, B. Adamczyk and K. Polom, Rep. Pract. Oncol. Radiother., 19, 165 (2014); https://doi.org/10.1016/j.rpor.2013.12.003
- N. Kerru, L. Gummidi, S. Maddila, K.K. Gangu and S.B. Jonnalagadda, Molecules, 25, 1909 (2020); https://doi.org/10.3390/molecules25081909
- L.-Y. Zhang, B.-L. Wang, Y.-Z. Zhan, Y. Zhang, X. Zhang and Z.-M. Li, Chin. Chem. Lett., 27, 163 (2016); https://doi.org/10.1016/j.cclet.2015.09.015
- A.Z. Omar, N.A. Alshaye, T.M. Mosa, S.K. El-Sadany, E.A. Hamed and M.A. El-Atawy, Molecules, 27, 3698 (2022); https://doi.org/10.3390/molecules27123698
- N.E.A. Abd El-Sattar, K. El-Adl, M.A. El-Hashash, S.A. Salama and M.M. Elhady, Bioorg. Chem., 115, 105186 (2021); https://doi.org/10.1016/j.bioorg.2021.105186
- G.Y. Li, S.G. Yan and S. Jiang, Youji Huaxue, 28, 2001 (2008); http://sioc-journal.cn/Jwk_yjhx/EN/abstract/abstract325439.shtml
- F. Ahmadi, M.R. Ghayahbashi, M. Sharifzadeh, E. Alipoiur, S.N. Ostad, M. Vosooghi, H.R. Khademi and M. Amini, Med. Chem., 11, 69 (2014); https://doi.org/10.2174/1573406410666140613154507
- X. Li, X.Q. Li, H.-M. Liu, X.-Z. Zhou and Z.-H. Shao, Org. Med. Chem. Lett., 26, 2191 (2012); https://doi.org/10.1186/2191-2858-2-26
- Y.G. Zheng, W. Xue and Q.Q. Guo, Youji Huaxue, 31, 912 (2011); http://sioc-journal.cn/Jwk_yjhx/EN/Y2011/V31/I06/912
- M. Guo, Z. Yan, X. Wang, H. Xu, C. Guo, Z. Hou and P. Gong, Bioorg. Med. Chem. Lett., 78, 129044 (2022); https://doi.org/10.1016/j.bmcl.2022.129044
- K.N. Ankali, J. Rangaswamy, M. Shalavadi, N. Naik and G. Krishnamurthy, J. Mol. Struct., 1236, 130357 (2021); https://doi.org/10.1016/j.molstruc.2021.130357
- K. Yin, L.H. Jiang, H.X. Zhou, Y. Huang and J.N. Xiang, Youji Huaxue, 28, 1016 (2008); http://sioc-journal.cn/Jwk_yjhx/EN/Y2008/V28/I06/1016
- C. Li, L. Huang, Y. Zhang, X. Guo, N. Cao, C. Yao, L. Duan, X. Li and S. Pang, Fish Shellfish Immunol., 131, 646 (2022); https://doi.org/10.1016/j.fsi.2022.10.059
- P. Russell, J. Agric. Sci., 143, 11 (2005); https://doi.org/10.1017/S0021859605004971
- Y. Zou, S. Yu, R. Li, Q. Zhao, X. Li, M. Wu, T. Huang, X. Chai, H. Hu and Q. Wu, Eur. J. Med. Chem., 74, 366 (2014); https://doi.org/10.1016/j.ejmech.2014.01.009
- P. Yadav, C.P. Kaushik and A. Kumar, Synth. Commun., 52, 2149 (2022); https://doi.org/10.1080/00397911.2022.2132868
- H. Foks, M. Janowiec, Z. Zwolska and E. Augustynowicz-Kopec, Phosphorus Sulfur Silicon Relat. Elem., 180, 537 (2005); https://doi.org/10.1080/104265090517280
- T. Mosmann, J. Immunol. Methods, 65, 55 (1983); https://doi.org/10.1016/0022-1759(83)90303-4
- M.A. Diab, G.G. Mohamed, W.H. Mahmoud, A.Z. ElSonbati, S.M. Morgan and S.Y. Abbas, Appl. Organomet. Chem., 33, e4945 (2019); https://doi.org/10.1002/aoc.4945
- R. Konakanchi, R. Mallela, R. Guda and L.R. Kotha, Res. Chem. Intermed., 44, 27 (2018); https://doi.org/10.1007/s11164-017-3089-y
- B.T. Worrell, J.A. Malik and V.V. Fokin, Science, 340, 457 (2013); https://doi.org/10.1126/science.1229506
- M.V. Berridge and A.S. Tan, Arch. Biochem. Biophys., 303, 474 (1993); https://doi.org/10.1006/abbi.1993.1311
References
P. Mohite, V. Yadav, R. Pandhare, S. Maitra, F.M. Saleh, R.M. Saleem, H.S. Al-Malky, V. Kumarasamy, V. Subramaniyan, M.M. Abdel-Daim, and D.E. Uti, ACS Omega, 9, 7277 (2024); https://doi.org/10.1021/acsomega.3c06501
A.T. Toriola and G. Colditz, Breast Cancer Res. Treat., 138, 665 (2013); https://doi.org/10.1007/s10549-013-2500-7
P. Murawa, D. Murawa, B. Adamczyk and K. Polom, Rep. Pract. Oncol. Radiother., 19, 165 (2014); https://doi.org/10.1016/j.rpor.2013.12.003
N. Kerru, L. Gummidi, S. Maddila, K.K. Gangu and S.B. Jonnalagadda, Molecules, 25, 1909 (2020); https://doi.org/10.3390/molecules25081909
L.-Y. Zhang, B.-L. Wang, Y.-Z. Zhan, Y. Zhang, X. Zhang and Z.-M. Li, Chin. Chem. Lett., 27, 163 (2016); https://doi.org/10.1016/j.cclet.2015.09.015
A.Z. Omar, N.A. Alshaye, T.M. Mosa, S.K. El-Sadany, E.A. Hamed and M.A. El-Atawy, Molecules, 27, 3698 (2022); https://doi.org/10.3390/molecules27123698
N.E.A. Abd El-Sattar, K. El-Adl, M.A. El-Hashash, S.A. Salama and M.M. Elhady, Bioorg. Chem., 115, 105186 (2021); https://doi.org/10.1016/j.bioorg.2021.105186
G.Y. Li, S.G. Yan and S. Jiang, Youji Huaxue, 28, 2001 (2008); http://sioc-journal.cn/Jwk_yjhx/EN/abstract/abstract325439.shtml
F. Ahmadi, M.R. Ghayahbashi, M. Sharifzadeh, E. Alipoiur, S.N. Ostad, M. Vosooghi, H.R. Khademi and M. Amini, Med. Chem., 11, 69 (2014); https://doi.org/10.2174/1573406410666140613154507
X. Li, X.Q. Li, H.-M. Liu, X.-Z. Zhou and Z.-H. Shao, Org. Med. Chem. Lett., 26, 2191 (2012); https://doi.org/10.1186/2191-2858-2-26
Y.G. Zheng, W. Xue and Q.Q. Guo, Youji Huaxue, 31, 912 (2011); http://sioc-journal.cn/Jwk_yjhx/EN/Y2011/V31/I06/912
M. Guo, Z. Yan, X. Wang, H. Xu, C. Guo, Z. Hou and P. Gong, Bioorg. Med. Chem. Lett., 78, 129044 (2022); https://doi.org/10.1016/j.bmcl.2022.129044
K.N. Ankali, J. Rangaswamy, M. Shalavadi, N. Naik and G. Krishnamurthy, J. Mol. Struct., 1236, 130357 (2021); https://doi.org/10.1016/j.molstruc.2021.130357
K. Yin, L.H. Jiang, H.X. Zhou, Y. Huang and J.N. Xiang, Youji Huaxue, 28, 1016 (2008); http://sioc-journal.cn/Jwk_yjhx/EN/Y2008/V28/I06/1016
C. Li, L. Huang, Y. Zhang, X. Guo, N. Cao, C. Yao, L. Duan, X. Li and S. Pang, Fish Shellfish Immunol., 131, 646 (2022); https://doi.org/10.1016/j.fsi.2022.10.059
P. Russell, J. Agric. Sci., 143, 11 (2005); https://doi.org/10.1017/S0021859605004971
Y. Zou, S. Yu, R. Li, Q. Zhao, X. Li, M. Wu, T. Huang, X. Chai, H. Hu and Q. Wu, Eur. J. Med. Chem., 74, 366 (2014); https://doi.org/10.1016/j.ejmech.2014.01.009
P. Yadav, C.P. Kaushik and A. Kumar, Synth. Commun., 52, 2149 (2022); https://doi.org/10.1080/00397911.2022.2132868
H. Foks, M. Janowiec, Z. Zwolska and E. Augustynowicz-Kopec, Phosphorus Sulfur Silicon Relat. Elem., 180, 537 (2005); https://doi.org/10.1080/104265090517280
T. Mosmann, J. Immunol. Methods, 65, 55 (1983); https://doi.org/10.1016/0022-1759(83)90303-4
M.A. Diab, G.G. Mohamed, W.H. Mahmoud, A.Z. ElSonbati, S.M. Morgan and S.Y. Abbas, Appl. Organomet. Chem., 33, e4945 (2019); https://doi.org/10.1002/aoc.4945
R. Konakanchi, R. Mallela, R. Guda and L.R. Kotha, Res. Chem. Intermed., 44, 27 (2018); https://doi.org/10.1007/s11164-017-3089-y
B.T. Worrell, J.A. Malik and V.V. Fokin, Science, 340, 457 (2013); https://doi.org/10.1126/science.1229506
M.V. Berridge and A.S. Tan, Arch. Biochem. Biophys., 303, 474 (1993); https://doi.org/10.1006/abbi.1993.1311