Copyright (c) 2024 J.B. Dahiya, Kismat Dhillon, Vishal Soni
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Phosphorus-Nitrogen based Flame-Retardant Combined with Zinc Borate on Thermal Stability and Flame Retardancy of Epoxy Clay Nanocomposites
Corresponding Author(s) : J.B. Dahiya
Asian Journal of Chemistry,
Vol. 36 No. 4 (2024): Vol 36 Issue 4, 2024
Abstract
A phosphorus-nitrogen containing 6,6'-(piperazine-1,4-diyl)bis(6H-dibenzo[c,e][1,2]oxaphosphinine 6-oxide) (DOPO-PZ) flame-retardant was synthesized and its effect combined with zinc borate (ZnB) and nanoclay (NC) on thermal stability and flame retardancy of epoxy resin was studied. Various epoxy composites containing DOPO, DOPO-PZ, ZnB and NC using curing agent diaminodiphenylsulfone (DDS) were prepared. The X-ray diffraction (XRD) and transmission electron microscope (TEM) micrographs of the composites showed intercalated nanostructure of epoxy-clay nanocomposites. In thermogravimetric analysis (TGA), pure epoxy gave 3.4% char yield at 700 ºC in nitrogen atmosphere, while in case of EP/DOPO-PZ/ZnB/NC sample having 1% phosphorus content, 5 wt.% zinc borate (ZnB) and 3 wt.% nanoclay (NC), the char yield is increased to 24.0%. Differential scanning calorimetry (DSC) study showed decrease in the glass transition temperature (Tg) on the addition of flame-retardant due to plasticization effect and increase in Tg on addition of nanoclay due to formation of nanostructure of epoxy composites. The EP/DOPO-PZ/ZnB/NC nanocomposite sample exhibited a limiting oxygen index (LOI) value of 29.2% and passed the UL-94 test with a V-0 rating and thus achieved a sufficient flame retardancy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.Y. Shieh and C.S. Wang, Polymer, 42, 7617 (2001); https://doi.org/10.1016/S0032-3861(01)00257-9
- Q. Wang and W. Shi, Polym. Degrad. Stab., 91, 1747 (2006); https://doi.org/10.1016/j.polymdegradstab.2005.11.018
- Y. Tan, Z.B. Shao, L.X. Yu, Y.J. Xu, W.H. Rao, L. Chen and Y.Z. Wang, Polym. Degrad. Stab., 131, 62 (2016); https://doi.org/10.1016/j.polymdegradstab.2016.07.004
- K. Wu, L. Song, Y. Hu, H. Lu, B.K. Kandola and E. Kandare, Prog. Org. Coat., 65, 490 (2009); https://doi.org/10.1016/j.porgcoat.2009.04.008
- Y. Nakamura, M. Yamaguchi, M. Okubo and T. Matsumoto, J. Appl. Polym. Sci., 45, 1281 (1992); https://doi.org/10.1002/app.1992.070450716
- S. Ganguli, A.K. Roy and D.P. Anderson, Carbon, 46, 806 (2008); https://doi.org/10.1016/j.carbon.2008.02.008
- Y. Xu, D.D.L. Chung and C. Mroz, Compos., Part A Appl. Sci. Manuf., 32, 1749 (2001); https://doi.org/10.1016/S1359-835X(01)00023-9
- C. Zeng, S. Lu, L. Song, X. Xiao, J. Gao, L. Pan, Z. He and J. Yu, RSC Adv., 5, 35773 (2015); https://doi.org/10.1039/C5RA01967B
- A.M. Amaro, L. Bernardo, D.G. Pinto, S. Lopes, J. Rodrigues and C.S. Louro, Composites Part B Eng., 84, 17 (2016); https://doi.org/10.1016/j.compositesb.2015.08.062
- A. Toldy, P. Anna, I. Csontos, A. Szabo and G. Marosi, Polym. Degrad. Stab., 92, 2223 (2007); https://doi.org/10.1016/j.polymdegradstab.2007.04.017
- M. Hussain, R.J. Varley, Z. Mathys, Y.B. Cheng and G.P. Simon, J. Appl. Polym. Sci., 91, 1233 (2004); https://doi.org/10.1002/app.13267
- D. Galpaya, M. Wang, G. George, N. Motta, E. Waclawik and C. Yan, J. Appl. Phys., 116, 053518 (2014); https://doi.org/10.1063/1.4892089
- M.J. Xu, G.R. Xu, Y. Leng and B. Li, Polym. Degrad. Stab., 123, 105 (2016); https://doi.org/10.1016/j.polymdegradstab.2015.11.018
- M. Gao, W. Wu and Y. Yan, J. Therm. Anal. Calorim., 95, 605 (2009); https://doi.org/10.1007/s10973-008-9766-8
- G. Bertelli, G. Camino, L. Costa and R. Locatelli, Polym. Degrad. Stab., 18, 225 (1987); https://doi.org/10.1016/0141-3910(87)90003-6
- S. Maiti, S. Banerjee and S.K. Palit, Prog. Polym. Sci., 18, 227 (1993); https://doi.org/10.1016/0079-6700(93)90026-9
- Y.-L. Liu, G.-H. Hsiue and Y.-S. Chiu, J. Polym. Sci. A Polym. Chem., 35, 565 (1997); https://doi.org/10.1002/(SICI)1099-0518(199702)35:3<565::AID-POLA22>3.0.CO;2-L
- Y.-L. Liu, G.-H. Hsiue, R.-H. Lee and Y.-S. Chiu, J. Appl. Polym. Sci., 63, 895 (1997); https://doi.org/10.1002/(SICI)1097-4628(19970214)63:7<895::AID-APP9>3.0.CO;2-L
- C.S. Wang and C.H. Lin, J. Appl. Polym. Sci., 74, 1635 (1999); https://doi.org/10.1002/(SICI)1097-4628(19991114)74:7<1635::AID-APP4>3.0.CO;2-P
- V. Soni and J.B. Dahiya, High Perform. Polym., 35, 740 (2023); https://doi.org/10.1177/09540083231169166
- S. Huo, S. Yang, J. Wang, J. Cheng, Q. Zhang, Y. Hu, G. Ding, Q. Zhang and P. Song, J. Hazard. Mater., 386, 121984 (2020); https://doi.org/10.1016/j.jhazmat.2019.121984
- C.S. Wu, Y.L. Liu and Y.S. Chiu, Polymer, 43, 4277 (2002); https://doi.org/10.1016/S0032-3861(02)00234-3
- M. Alexandre and P. Dubois, Mater. Sci. Eng. Rep., 28, 1 (2000); https://doi.org/10.1016/S0927-796X(00)00012-7
- E. Manias, A. Touny, L. Wu, W.K. Strawhecker, B. Lu and T.C. Chung, Chem. Mater., 13, 3516 (2001); https://doi.org/10.1021/cm0110627
- J.W. Gilman, C.L. Jackson, A.B. Morgan, R. Harris, E. Manias, E.P. Giannelis, M. Wuthenow, D. Hilton and S.H. Phillips, Chem. Mater., 12, 1866 (2000); https://doi.org/10.1021/cm0001760
- S.S. Le Corre, M. Berchel, H. Couthon-Gourvès, J.-P. Haelters and P.-A. Jaffrès, Beilstein J. Org. Chem., 10, 1166 (2014); https://doi.org/10.3762/bjoc.10.117
- P. Jangra and J.B. Dahiya, Mater. Res. Innov., 22, 387 (2017); https://doi.org/10.1080/14328917.2017.1325059
- J. Geng, J. Qin and J. He, Polymers, 13, 3496 (2021); https://doi.org/10.3390/polym13203496
References
J.Y. Shieh and C.S. Wang, Polymer, 42, 7617 (2001); https://doi.org/10.1016/S0032-3861(01)00257-9
Q. Wang and W. Shi, Polym. Degrad. Stab., 91, 1747 (2006); https://doi.org/10.1016/j.polymdegradstab.2005.11.018
Y. Tan, Z.B. Shao, L.X. Yu, Y.J. Xu, W.H. Rao, L. Chen and Y.Z. Wang, Polym. Degrad. Stab., 131, 62 (2016); https://doi.org/10.1016/j.polymdegradstab.2016.07.004
K. Wu, L. Song, Y. Hu, H. Lu, B.K. Kandola and E. Kandare, Prog. Org. Coat., 65, 490 (2009); https://doi.org/10.1016/j.porgcoat.2009.04.008
Y. Nakamura, M. Yamaguchi, M. Okubo and T. Matsumoto, J. Appl. Polym. Sci., 45, 1281 (1992); https://doi.org/10.1002/app.1992.070450716
S. Ganguli, A.K. Roy and D.P. Anderson, Carbon, 46, 806 (2008); https://doi.org/10.1016/j.carbon.2008.02.008
Y. Xu, D.D.L. Chung and C. Mroz, Compos., Part A Appl. Sci. Manuf., 32, 1749 (2001); https://doi.org/10.1016/S1359-835X(01)00023-9
C. Zeng, S. Lu, L. Song, X. Xiao, J. Gao, L. Pan, Z. He and J. Yu, RSC Adv., 5, 35773 (2015); https://doi.org/10.1039/C5RA01967B
A.M. Amaro, L. Bernardo, D.G. Pinto, S. Lopes, J. Rodrigues and C.S. Louro, Composites Part B Eng., 84, 17 (2016); https://doi.org/10.1016/j.compositesb.2015.08.062
A. Toldy, P. Anna, I. Csontos, A. Szabo and G. Marosi, Polym. Degrad. Stab., 92, 2223 (2007); https://doi.org/10.1016/j.polymdegradstab.2007.04.017
M. Hussain, R.J. Varley, Z. Mathys, Y.B. Cheng and G.P. Simon, J. Appl. Polym. Sci., 91, 1233 (2004); https://doi.org/10.1002/app.13267
D. Galpaya, M. Wang, G. George, N. Motta, E. Waclawik and C. Yan, J. Appl. Phys., 116, 053518 (2014); https://doi.org/10.1063/1.4892089
M.J. Xu, G.R. Xu, Y. Leng and B. Li, Polym. Degrad. Stab., 123, 105 (2016); https://doi.org/10.1016/j.polymdegradstab.2015.11.018
M. Gao, W. Wu and Y. Yan, J. Therm. Anal. Calorim., 95, 605 (2009); https://doi.org/10.1007/s10973-008-9766-8
G. Bertelli, G. Camino, L. Costa and R. Locatelli, Polym. Degrad. Stab., 18, 225 (1987); https://doi.org/10.1016/0141-3910(87)90003-6
S. Maiti, S. Banerjee and S.K. Palit, Prog. Polym. Sci., 18, 227 (1993); https://doi.org/10.1016/0079-6700(93)90026-9
Y.-L. Liu, G.-H. Hsiue and Y.-S. Chiu, J. Polym. Sci. A Polym. Chem., 35, 565 (1997); https://doi.org/10.1002/(SICI)1099-0518(199702)35:3<565::AID-POLA22>3.0.CO;2-L
Y.-L. Liu, G.-H. Hsiue, R.-H. Lee and Y.-S. Chiu, J. Appl. Polym. Sci., 63, 895 (1997); https://doi.org/10.1002/(SICI)1097-4628(19970214)63:7<895::AID-APP9>3.0.CO;2-L
C.S. Wang and C.H. Lin, J. Appl. Polym. Sci., 74, 1635 (1999); https://doi.org/10.1002/(SICI)1097-4628(19991114)74:7<1635::AID-APP4>3.0.CO;2-P
V. Soni and J.B. Dahiya, High Perform. Polym., 35, 740 (2023); https://doi.org/10.1177/09540083231169166
S. Huo, S. Yang, J. Wang, J. Cheng, Q. Zhang, Y. Hu, G. Ding, Q. Zhang and P. Song, J. Hazard. Mater., 386, 121984 (2020); https://doi.org/10.1016/j.jhazmat.2019.121984
C.S. Wu, Y.L. Liu and Y.S. Chiu, Polymer, 43, 4277 (2002); https://doi.org/10.1016/S0032-3861(02)00234-3
M. Alexandre and P. Dubois, Mater. Sci. Eng. Rep., 28, 1 (2000); https://doi.org/10.1016/S0927-796X(00)00012-7
E. Manias, A. Touny, L. Wu, W.K. Strawhecker, B. Lu and T.C. Chung, Chem. Mater., 13, 3516 (2001); https://doi.org/10.1021/cm0110627
J.W. Gilman, C.L. Jackson, A.B. Morgan, R. Harris, E. Manias, E.P. Giannelis, M. Wuthenow, D. Hilton and S.H. Phillips, Chem. Mater., 12, 1866 (2000); https://doi.org/10.1021/cm0001760
S.S. Le Corre, M. Berchel, H. Couthon-Gourvès, J.-P. Haelters and P.-A. Jaffrès, Beilstein J. Org. Chem., 10, 1166 (2014); https://doi.org/10.3762/bjoc.10.117
P. Jangra and J.B. Dahiya, Mater. Res. Innov., 22, 387 (2017); https://doi.org/10.1080/14328917.2017.1325059
J. Geng, J. Qin and J. He, Polymers, 13, 3496 (2021); https://doi.org/10.3390/polym13203496