This work is licensed under a Creative Commons Attribution 4.0 International License.
Sol-Gel Spin Coated Transparent Single-TiO2 and SiO2 Thin Film on Glass for Opto-electronic Applications
Corresponding Author(s) : Saravanan Sigamani
Asian Journal of Chemistry,
Vol. 36 No. 4 (2024): Vol 36 Issue 4, 2024
Abstract
Great attention has been given on the sol-gel synthesis and spin-coating deposition techniques for the fabrication of various thin films. Because of its simple technique to fabricate dielectric (metal oxide) films using tetraethyl orthosilicate and titanium isopropoxide precursors. In this work, transparent single layer of SiO2 and TiO2 thin film was deposited on a glass substrate and characterized by FTIR, UV-visible spectroscopy, fluorescence and scanning electron microscopy techniques. The single layer thin film was mechanically stable and strong by adhering to glass substrates. The FTIR transmittance spectrum evidenced the existence of Si-O-Si and Ti-O-Ti at ~1100 and 1400 cm-1. The UV-visible absorbance spectra of single layer of SiO2 and TiO2 thin films showed strong absorption at below 00 nm. The excitation wavelength at 380 nm, the fluorescence spectra of both thin films showed the highest emission spectrum in between 733-798 nm. The SEM studies confirmed the smooth surface in both SiO2 and TiO2 layers. Further, it could be useful for various applications such as back reflector in solar cells, anti-reflection coatings, hydrophobic and anti-fogging materials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.J.D. Whiteside, J.A. Chininis and H.K. Hunt, Coatings, 6, 35 (2016); https://doi.org/10.3390/coatings6030035
- Z. Hu, F. Huang and Y. Cao, Small Methods, 1, 1700264 (2017); https://doi.org/10.1002/smtd.201700264
- M.H. Himel, B. Sikder, T. Ahmed and S.M. Choudhury, Nanoscale Adv., 5, 596 (2023); https://doi.org/10.1039/D2NA00571A
- G.M. Luz and J.F. Mano, Philosoph. Trans. A, 367(1893), 1587 (2009); https://doi.org/10.1098/rsta.2009.0007
- D. Wang, Z. Liu, H. Wang, M. Li, L.J. Guo and C. Zhang, Nanophotonics, 12, 1019 (2023); https://doi.org/10.1515/nanoph-2022-0063
- O.O. Abegunde, E.T. Akinlabi, O.P. Oladijo, S. Akinlabi and A.U. Ude, AIMS Mater. Sci., 6, 174 (2019); https://doi.org/10.3934/matersci.2019.2.174
- A.J. Haider, Z.N. Jameel and I.H.M. Al-Hussaini, Energy Proc., 157, 17 (2019); https://doi.org/10.1016/j.egypro.2018.11.159
- R. Li, T. Li and Q. Zhou, Catalysts, 10, 804 (2020); https://doi.org/10.3390/catal10070804
- X. Kang, S. Liu, Z. Dai, Y. He, X. Song and Z. Tan, Catalysts, 9, 191 (2019); https://doi.org/10.3390/catal9020191
- I. Ali, M. Suhail, Z.A. Alothman and A. Alwarthan, RSC Adv., 8, 30125 (2018); https://doi.org/10.1039/C8RA06517A
- F.M. Fardo, R.S. Ribeiro, J.A. Strauss, J. Nardi, L.C. Ferreira, G. Schmökel, T.M.H. Costa, M.B. Pereira and F. Horowitz, Appl. Optics, 59, 7720 (2020); https://doi.org/10.1364/AO.397484
- G. Shukla and A. Subramanian, Appl. Optics, 59, 10483 (2020); https://doi.org/10.1364/AO.404553
- B. Arjun Kumar V. Vetrivelan, G. Ramalingam, A. Manikandan, S. Viswanathan, P. Boomi and G. Ravi, Physica B: Cond. Matter, 633, 413770 (2022). https://doi.org/10.1016/j.physb.2022.413770
- D.J. Kim, S.H. Hahn, S.H. Oh and E.J. Kim, Mater. Lett., 57, 355 (2002); https://doi.org/10.1016/S0167-577X(02)00790-5
- S. Saravanan, R.S. Dubey and Y. Venkatesh, Mater. Today: Proc., 64, 1666 (2022); https://doi.org/10.1016/j.matpr.2022.04.993
- R.S. Dubey and S. Saravanan, Nanosystems: Phys., Chem., Math., 13, 223 (2022); https://doi.org/10.17586/2220-8054-2022-13-2-220-226
- Y. de Jesús Acosta-Silva, M. Toledano-Ayala, S. Gallardo-Hernández, L.A. Godínez and A. Méndez-López, Nanomaterials, 13, 1403 (2023); https://doi.org/10.3390/nano13081403
- H.M. Yadav and J.-S. Kim, J. Mater. Sci.: Mater. Electron., 27, 10082 (2016); https://doi.org/10.1007/s10854-016-5082-4
- J.B. Chemin, S. Bulou, K. Baba, C. Fontaine, T. Sindzingre, N.D. Boscher and P. Choquet, Sci. Rep., 8, 9603 (2018); https://doi.org/10.1038/s41598-018-27526-7
- L. Ye, Y. Zhang, X. Zhang, T. Hu, R. Ji, B. Ding and B. Jiang, Solar Energy Mater. Solar Cells, 111, 160 (2013); https://doi.org/10.1016/j.solmat.2012.12.037
- A. Fattah-Alhosseini, A.H. Jawad, M. Maaza and K. Babaei, Surf. Interface, 16, 194 (2019); https://doi.org/10.1016/j.surfin.2018.10.005
- K. Ramakrishnan, V. Gayathri, K. Aravinthkumar, K. Ramachandran, B. Ajitha, M. Rameshbabu, S. Sasiflorence, S. Karazhanov, K. Praba and C.R. Mohan, Inorg. Chem. Commun., 144, 109842 (2022); https://doi.org/10.1016/j.inoche.2022.109842
- R.-C. Suciu, M.-C. Rosu, T.-D. Silipas, A.R. Biris, I. Bratu and E. Indrea, Rev. Roum. Chim., 56, 607 (2011).
- H. Adullah, D.-H. Kuo, J.-Y. Lee, C.-M. Wu, Appl. Phys. A, 122, 750 (2016); https://doi.org/10.1007/s00339-016-0276-4
- S. Saravanan and R.S. Dubey, Roman. J. Inform. Sci. Technol., 23, 105 (2020).
- J. Wang, R. Qianwen, X. Xu, B. Zhu and W. Zhang, IOP Conf. Series: Earth Environ. Sci., 310, 042029 (2019); https://doi.org/10.1088/1755-1315/310/4/042029
- J. Wang, Q. Ran, X. Xu, B. Zhu and W. Zhang, IOP Conf. Series: Earth Environ. Sci., 310, 042029 (2019); https://doi.org/10.1088/1755-1315/310/4/042029
- G.A. Nowsherwan, A. Zaib, A.A. Shah, M. Khan, A. Shakoor, S.N.S. Bukhari, M. Riaz, S.S. Hussain, M.A. Shar and A. Alhazaa, Energies, 16, 900 (2023); https://doi.org/10.3390/en16020900
- R.A. Aziz and I. Sopyan, Indian J. Chem., 48A, 951 (2009).
- F. Farzaneh and L. J. Fourozune, Bull. Mater. Sci., 37, 1 (2014); https://doi.org/10.1007/s12034-014-0622-0
- A. Nilchi, S.R. Garmarodi and S.J. Darzi, Sep. Sci. Technol., 45, 801 (2010); https://doi.org/10.1080/01496390903562332
- S. Saravanan, R.S. Dubey and P.S. Subbarao, Nanomater. Energy, 12, 44 (2023); https://doi.org/10.1680/jnaen.22.00039
- R. Ayouchi, L.S. de Melo, S.R. Bhattacharyya, N. Bundaleski, O. Teodoro, L. Santos and R. Schwarz, Proc. Technol., 17, 303 (2014); https://doi.org/10.1016/j.protcy.2014.10.241
- M. Ciprian, E. Alexandru, and D. Anca, Bull. Mater. Sci., 40, 473 (2017); https://doi.org/10.1007/s12034-017-1398-9
- D.C. Halin, M.M.A.B. Abdullah, N. Mahmed, S.N.A. Abdul Malek, P. Vizureanu and A.W. Azhari, IOP Conf. Series: Mater. Sci. Eng., 209, 012002-1-8 (2017); https://doi.org/10.1088/1757-899X/209/1/012002
- A.K.N. Fadzeelah, M.Z. Ramli, N. Amri and H.I. Maarof, IEEE Symposium on Humanities, Science and Engineering Research, pp. 52-57 (2012); https://doi.org/10.1109/SHUSER.2012.6268887
- T. Touam, L. Znaidi, D. Vrel, I. N. Kuzntsova, O. Brinza, A. Fischer and A. Boudrioua, Coatings, 3, 49 (2013); https://doi.org/10.3390/coatings3010049
- B.R. Bricchi, M. Sygletou, L. Ornago, G. Terraneo, C. Mancarella, F. Bisio, L. Stasi, F. Rusconi, E. Mogni, M. Ghidelli, P. Biagioni and A.L. Bassi, Mater. Adv., 2, 7064 (2021); https://doi.org/10.1039/D1MA00584G
References
P.J.D. Whiteside, J.A. Chininis and H.K. Hunt, Coatings, 6, 35 (2016); https://doi.org/10.3390/coatings6030035
Z. Hu, F. Huang and Y. Cao, Small Methods, 1, 1700264 (2017); https://doi.org/10.1002/smtd.201700264
M.H. Himel, B. Sikder, T. Ahmed and S.M. Choudhury, Nanoscale Adv., 5, 596 (2023); https://doi.org/10.1039/D2NA00571A
G.M. Luz and J.F. Mano, Philosoph. Trans. A, 367(1893), 1587 (2009); https://doi.org/10.1098/rsta.2009.0007
D. Wang, Z. Liu, H. Wang, M. Li, L.J. Guo and C. Zhang, Nanophotonics, 12, 1019 (2023); https://doi.org/10.1515/nanoph-2022-0063
O.O. Abegunde, E.T. Akinlabi, O.P. Oladijo, S. Akinlabi and A.U. Ude, AIMS Mater. Sci., 6, 174 (2019); https://doi.org/10.3934/matersci.2019.2.174
A.J. Haider, Z.N. Jameel and I.H.M. Al-Hussaini, Energy Proc., 157, 17 (2019); https://doi.org/10.1016/j.egypro.2018.11.159
R. Li, T. Li and Q. Zhou, Catalysts, 10, 804 (2020); https://doi.org/10.3390/catal10070804
X. Kang, S. Liu, Z. Dai, Y. He, X. Song and Z. Tan, Catalysts, 9, 191 (2019); https://doi.org/10.3390/catal9020191
I. Ali, M. Suhail, Z.A. Alothman and A. Alwarthan, RSC Adv., 8, 30125 (2018); https://doi.org/10.1039/C8RA06517A
F.M. Fardo, R.S. Ribeiro, J.A. Strauss, J. Nardi, L.C. Ferreira, G. Schmökel, T.M.H. Costa, M.B. Pereira and F. Horowitz, Appl. Optics, 59, 7720 (2020); https://doi.org/10.1364/AO.397484
G. Shukla and A. Subramanian, Appl. Optics, 59, 10483 (2020); https://doi.org/10.1364/AO.404553
B. Arjun Kumar V. Vetrivelan, G. Ramalingam, A. Manikandan, S. Viswanathan, P. Boomi and G. Ravi, Physica B: Cond. Matter, 633, 413770 (2022). https://doi.org/10.1016/j.physb.2022.413770
D.J. Kim, S.H. Hahn, S.H. Oh and E.J. Kim, Mater. Lett., 57, 355 (2002); https://doi.org/10.1016/S0167-577X(02)00790-5
S. Saravanan, R.S. Dubey and Y. Venkatesh, Mater. Today: Proc., 64, 1666 (2022); https://doi.org/10.1016/j.matpr.2022.04.993
R.S. Dubey and S. Saravanan, Nanosystems: Phys., Chem., Math., 13, 223 (2022); https://doi.org/10.17586/2220-8054-2022-13-2-220-226
Y. de Jesús Acosta-Silva, M. Toledano-Ayala, S. Gallardo-Hernández, L.A. Godínez and A. Méndez-López, Nanomaterials, 13, 1403 (2023); https://doi.org/10.3390/nano13081403
H.M. Yadav and J.-S. Kim, J. Mater. Sci.: Mater. Electron., 27, 10082 (2016); https://doi.org/10.1007/s10854-016-5082-4
J.B. Chemin, S. Bulou, K. Baba, C. Fontaine, T. Sindzingre, N.D. Boscher and P. Choquet, Sci. Rep., 8, 9603 (2018); https://doi.org/10.1038/s41598-018-27526-7
L. Ye, Y. Zhang, X. Zhang, T. Hu, R. Ji, B. Ding and B. Jiang, Solar Energy Mater. Solar Cells, 111, 160 (2013); https://doi.org/10.1016/j.solmat.2012.12.037
A. Fattah-Alhosseini, A.H. Jawad, M. Maaza and K. Babaei, Surf. Interface, 16, 194 (2019); https://doi.org/10.1016/j.surfin.2018.10.005
K. Ramakrishnan, V. Gayathri, K. Aravinthkumar, K. Ramachandran, B. Ajitha, M. Rameshbabu, S. Sasiflorence, S. Karazhanov, K. Praba and C.R. Mohan, Inorg. Chem. Commun., 144, 109842 (2022); https://doi.org/10.1016/j.inoche.2022.109842
R.-C. Suciu, M.-C. Rosu, T.-D. Silipas, A.R. Biris, I. Bratu and E. Indrea, Rev. Roum. Chim., 56, 607 (2011).
H. Adullah, D.-H. Kuo, J.-Y. Lee, C.-M. Wu, Appl. Phys. A, 122, 750 (2016); https://doi.org/10.1007/s00339-016-0276-4
S. Saravanan and R.S. Dubey, Roman. J. Inform. Sci. Technol., 23, 105 (2020).
J. Wang, R. Qianwen, X. Xu, B. Zhu and W. Zhang, IOP Conf. Series: Earth Environ. Sci., 310, 042029 (2019); https://doi.org/10.1088/1755-1315/310/4/042029
J. Wang, Q. Ran, X. Xu, B. Zhu and W. Zhang, IOP Conf. Series: Earth Environ. Sci., 310, 042029 (2019); https://doi.org/10.1088/1755-1315/310/4/042029
G.A. Nowsherwan, A. Zaib, A.A. Shah, M. Khan, A. Shakoor, S.N.S. Bukhari, M. Riaz, S.S. Hussain, M.A. Shar and A. Alhazaa, Energies, 16, 900 (2023); https://doi.org/10.3390/en16020900
R.A. Aziz and I. Sopyan, Indian J. Chem., 48A, 951 (2009).
F. Farzaneh and L. J. Fourozune, Bull. Mater. Sci., 37, 1 (2014); https://doi.org/10.1007/s12034-014-0622-0
A. Nilchi, S.R. Garmarodi and S.J. Darzi, Sep. Sci. Technol., 45, 801 (2010); https://doi.org/10.1080/01496390903562332
S. Saravanan, R.S. Dubey and P.S. Subbarao, Nanomater. Energy, 12, 44 (2023); https://doi.org/10.1680/jnaen.22.00039
R. Ayouchi, L.S. de Melo, S.R. Bhattacharyya, N. Bundaleski, O. Teodoro, L. Santos and R. Schwarz, Proc. Technol., 17, 303 (2014); https://doi.org/10.1016/j.protcy.2014.10.241
M. Ciprian, E. Alexandru, and D. Anca, Bull. Mater. Sci., 40, 473 (2017); https://doi.org/10.1007/s12034-017-1398-9
D.C. Halin, M.M.A.B. Abdullah, N. Mahmed, S.N.A. Abdul Malek, P. Vizureanu and A.W. Azhari, IOP Conf. Series: Mater. Sci. Eng., 209, 012002-1-8 (2017); https://doi.org/10.1088/1757-899X/209/1/012002
A.K.N. Fadzeelah, M.Z. Ramli, N. Amri and H.I. Maarof, IEEE Symposium on Humanities, Science and Engineering Research, pp. 52-57 (2012); https://doi.org/10.1109/SHUSER.2012.6268887
T. Touam, L. Znaidi, D. Vrel, I. N. Kuzntsova, O. Brinza, A. Fischer and A. Boudrioua, Coatings, 3, 49 (2013); https://doi.org/10.3390/coatings3010049
B.R. Bricchi, M. Sygletou, L. Ornago, G. Terraneo, C. Mancarella, F. Bisio, L. Stasi, F. Rusconi, E. Mogni, M. Ghidelli, P. Biagioni and A.L. Bassi, Mater. Adv., 2, 7064 (2021); https://doi.org/10.1039/D1MA00584G