Copyright (c) 2024 Dr Supratim Suin, Dr Buddhadeb Dutta
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recent Advancements in the Applications of Covalent Organic Frameworks for Cancer Therapeutics: A Review
Corresponding Author(s) : Supratim Suin
Asian Journal of Chemistry,
Vol. 36 No. 4 (2024): Vol 36 Issue 4, 2024
Abstract
Covalent organic frameworks (COFs) have gained significant attention in recent years as efficient cancer therapeutics owing to their uniform porosity, biocompatibility, diversified structures and stability in the biological medium. This review aimed to explore different synthetic strategies to obtain COFs for biomedical applications. Several synthetic procedures viz. solvothermal synthesis, ionothermal synthesis, microwave synthesis, mechanochemical synthesis, sonochemical synthesis have discussed been in terms of their applications in cancer therapy. The cancer therapeutics involves cancer drug delivery, photodynamic therapy (PDT), photo thermal therapy (PTT) and sonodynamic therapy (SDT). In some instances, single therapeutics treatments appear as inadequate effect and thus necessitate combination therapies for effective cancer termination with minimal side effects. The current study covers all the main synthetic techniques and uses of COFs in various cancer therapeutic treatments.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.-X. Wu and Y.-W. Yang, Adv. Mater., 29, 1606134 (2017); https://doi.org/10.1002/adma.201606134
- Y. Wang, Q. Zhao, N. Han, L. Bai, J. Li, J. Liu, E. Che, L. Hu, Q. Zhang, T. Jiang and S. Wang, Nanomedicine, 11, 313 (2015); https://doi.org/10.1016/j.nano.2014.09.014
- H. Liu, D. Chen, L. Li, T. Liu, L. Tan, X. Wu and F. Tang, Angew. Chem. Int. Ed., 50, 891 (2011); https://doi.org/10.1002/anie.201002820
- H. Liu, T. Liu, X. Wu, L. Li, L. Tan, D. Chen and F. Tang, Adv. Mater., 24, 755 (2012); https://doi.org/10.1002/adma.201103343
- A. Zebibula, N. Alifu, L. Xia, C. Sun, X. Yu, D. Xue, L. Liu, G. Li and J. Qian, Adv. Funct. Mater., 28, 1703451 (2018); https://doi.org/10.1002/adfm.201703451
- T. Guo, Y. Wu, Y. Lin, X. Xu, H. Lian, G. Huang, J.Z. Liu, X. Wu and H.H. Yang, Small, 14, 1702815 (2018); https://doi.org/10.1002/smll.201702815
- S. Das, P. Heasman, T. Ben and S. Qiu, Chem. Rev., 117, 1515 (2017); https://doi.org/10.1021/acs.chemrev.6b00439
- P. Yadav, H. Yadav, V.G. Shah, G. Shah and G. Dhaka, J. Clin. Diagn. Res., 9, ZE21 (2015); https://doi.org/10.7860/JCDR/2015/13907.6565
- G. Ahuja and K. Pathak, Indian J. Pharm. Sci., 71, 599 (2009); https://doi.org/10.4103/0250-474X.59540
- H. Ma, J. Hu and P.X. Ma, Adv. Funct. Mater., 20, 2833 (2010); https://doi.org/10.1002/adfm.201000922
- Z. Li and Y.W. Yang, J. Mater. Chem. B Mater. Biol. Med., 5, 9728 (2017); https://doi.org/10.1039/C7TB02647A
- P. Shivanand and O.L. Sprockel, Int. J. Pharm., 167, 83 (1998); https://doi.org/10.1016/S0378-5173(98)00047-7
- P. Gunatillake, R. Mayadunne and R. Adhikari, Biotechnol. Annu. Rev., 12, 301 (2006); https://doi.org/10.1016/S1387-2656(06)12009-8
- A.P. Acharya, J.S. Lewis and B.G. Keselowsky, Biomaterials, 34, 3422 (2013); https://doi.org/10.1016/j.biomaterials.2013.01.032
- M.L. Ratay, A.J. Glowacki, S.C. Balmert, A.P. Acharya, J. Polat, L.P. Andrews, M.V. Fedorchak, J.S. Schuman, D.A.A. Vignali and S.R. Little, J. Control. Release, 258, 208 (2017); https://doi.org/10.1016/j.jconrel.2017.05.007
- A.P. Acharya, M.R. Carstens, J.S. Lewis, N. Dolgova, C.Q. Xia, M.J. Clare-Salzler and B.G. Keselowsky, J. Mater. Chem. B Mater. Biol. Med., 4, 1672 (2016); https://doi.org/10.1039/C5TB01754H
- O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi and J. Kim, Nature, 423, 705 (2003); https://doi.org/10.1038/nature01650
- A.Y. Al-Maharma, S.P. Patil and B. Markert, Mater. Res. Expr., 7, 122001 (2020); https://doi.org/10.1088/2053-1591/abcc5d
- H. Furukawa, K.E. Cordova, M. O’Keeffe and O.M. Yaghi, Science, 341, 1230444 (2013); https://doi.org/10.1126/science.1230444
- Y. Zhao, Chem. Mater., 28, 8079 (2016); https://doi.org/10.1021/acs.chemmater.6b04677
- M.H. Sun, S.Z. Huang, L.H. Chen, Y. Li, X.Y. Yang, Z.Y. Yuan and B.L. Su, Chem. Soc. Rev., 45, 3479 (2016); https://doi.org/10.1039/C6CS00135A
- C. Wang, Y.V. Kaneti, Y. Bando, J. Lin, C. Liu, J. Li and Y. Yamauchi, Mater. Horiz., 5, 394 (2018); https://doi.org/10.1039/C8MH00133B
- G. Xu, P. Nie, H. Dou, B. Ding, L. Li and X. Zhang, Mater. Today, 20, 191 (2017); https://doi.org/10.1016/j.mattod.2016.10.003
- J.L. Segura, M.J. Mancheno and F. Zamora, Chem. Soc. Rev., 45, 5635 (2016); https://doi.org/10.1039/C5CS00878F
- L.M. Lanni, R.W. Tilford, M. Bharathy and J.J. Lavigne, J. Am. Chem. Soc., 133, 13975 (2011); https://doi.org/10.1021/ja203807h
- D. Wang, Z. Zhang, L. Lin, F. Liu, Y. Wang, Z. Guo, Y. Li, H. Tian and X. Chen, Biomaterials, 223, 119459 (2019); https://doi.org/10.1016/j.biomaterials.2019.119459
- S.N.A. Bukhari, N. Ahmed, M.W. Amjad, M.A. Hussain, M.A. Elsherif, H. Ejaz and N.H. Alotaibi, Polymers, 15, 267 (2023); https://doi.org/10.3390/polym15020267
- L. Akyuz, Micropor. Mesopor. Mater., 294, 109850 (2020); https://doi.org/10.1016/j.micromeso.2019.109850
- T.F. Machado, M.E. Silva-Serra, D. Murtinho, A.J.M. Valente and M. Naushad, Polymers, 13, 970 (2021); https://doi.org/10.3390/polym13060970
- S.Y. Ding and W. Wang, Chem. Soc. Rev., 42, 548 (2013); https://doi.org/10.1039/C2CS35072F
- R.-R. Liang and X. Zhao, Org. Chem. Front., 5, 3341 (2018); https://doi.org/10.1039/C8QO00830B
- X. Feng, X. Ding and D. Jiang, Chem. Soc. Rev., 41, 6010 (2012); https://doi.org/10.1039/c2cs35157a
- G. Kaur, D. Kumar, S. Sundarrajan, S. Ramakrishna and P. Kumar, Polymers, 15, 139 (2022); https://doi.org/10.3390/polym15010139
- M.X. Wu and Y.W. Yang, Chin. Chem. Lett., 28, 1135 (2017); https://doi.org/10.1016/j.cclet.2017.03.026
- X. Guan, Q. Fang, Y. Yan and S. Qiu, Acc. Chem. Res., 55, 1912 (2022); https://doi.org/10.1021/acs.accounts.2c00200
- B. Díaz de Greñu, J. Torres, J. García-González, S. Muñoz-Pina, R. de los Reyes, A.M. Costero, P. Amorós and J.V. Ros-Lis, ChemSusChem, 14, 208 (2021); https://doi.org/10.1002/cssc.202001865
- O.M. Yaghi, J. Am. Chem. Soc., 138, 15507 (2016); https://doi.org/10.1021/jacs.6b11821
- Q. Guan, D.D. Fu, Y.A. Li, X.M. Kong, Z.Y. Wei, W.Y. Li, S.J. Zhang and Y.B. Dong, iScience, 14, 180 (2019); https://doi.org/10.1016/j.isci.2019.03.028
- Z. Chen, K.O. Kirlikovali, P. Li and O.K. Farha, Acc. Chem. Res., 55, 579 (2022); https://doi.org/10.1021/acs.accounts.1c00707
- C. Du, X. Zhu, C. Yang and M. Liu, Angew. Chem. Int. Ed., 61, 202113979 (2022); https://doi.org/10.1002/anie.202113979
- J. Hu, S.K. Gupta, J. Ozdemir and M.H. Beyzavi, ACS Appl. Nano Mater., 3, 6239 (2020); https://doi.org/10.1021/acsanm.0c01327
- L. Deng, J. Zhang and Y. Gao, Synthesis, Properties, and Their Potential Application of Covalent Organic Frameworks (COFs); In: Mesoporous Materials-Properties and Applications; Intech Open: London, U.K., pp. 1-27 (2018).
- A.P. Côté, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger and O.M. Yaghi, Science, 310, 1166 (2005); https://doi.org/10.1126/science.1120411
- X.S. Ding, J. Guo, X. Feng, Y. Honsho, J.D. Guo, S. Seki, P. Maitarad, A. Saeki, S. Nagase and D. Jiang, Angew. Chem. Int. Ed., 50, 1289 (2011); https://doi.org/10.1002/anie.201005919
- R.W. Tilford, W.R. Gemmill, H.C. zur Loye and J.J. Lavigne, Chem. Mater., 18, 5296 (2006); https://doi.org/10.1021/cm061177g
- F.J. Uribe-Romo, J.R. Hunt, H. Furukawa, C. Klock, M. O’Keeffe and O.M. Yaghi, J. Am. Chem. Soc., 131, 4570 (2009); https://doi.org/10.1021/ja8096256
- F.J. Uribe-Romo, C.J. Doonan, H. Furukawa, K. Oisaki and O.M. Yaghi, J. Am. Chem. Soc., 133, 11478 (2011); https://doi.org/10.1021/ja204728y
- X. Feng, L. Chen, Y.P. Dong and D. Jiang, Chem. Commun., 47, 1979 (2011); https://doi.org/10.1039/c0cc04386a
- N.L. Campbell, R. Clowes, L.K. Ritchie and A.I. Cooper, Chem. Mater., 21, 204 (2009); https://doi.org/10.1021/cm802981m
- M. Dogru, A. Sonnauer, A. Gavryushin, P. Knochel and T. Bein, Chem. Commun., 47, 1707 (2011); https://doi.org/10.1039/c0cc03792c
- B. Bai, D. Wang and L.J. Wan, Bull. Chem. Soc. Jpn., 94, 1090 (2021); https://doi.org/10.1246/bcsj.20200391
- P. Kuhn, M. Antonietti and A. Thomas, Angew. Chem. Int. Ed., 47, 3450 (2008); https://doi.org/10.1002/anie.200705710
- M.J. Bojdys, J. Jeromenok, A. Thomas and M. Antonietti, Adv. Mater., 22, 2202 (2010); https://doi.org/10.1002/adma.200903436
- M.S. Lohse and T. Bein, Adv. Funct. Mater., 28, 1705553 (2018); https://doi.org/10.1002/adfm.201705553
- P.J. Waller, F. Gándara and O.M. Yaghi, Acc. Chem. Res., 48, 3053 (2015); https://doi.org/10.1021/acs.accounts.5b00369
- B. Gui, G. Lin, H. Ding, C. Gao, A. Mal and C. Wang, Acc. Chem. Res., 53, 2225 (2020); https://doi.org/10.1021/acs.accounts.0c00357
- Q. Guan, L.L. Zhou, Y.A. Li, W.Y. Li, S. Wang, C. Song and Y.B. Dong, ACS Nano, 13, 13304 (2019); https://doi.org/10.1021/acsnano.9b06467
- N.A.A. Zwaneveld, R. Pawlak, M. Abel, D. Catalin, D. Gigmes, D. Bertin and L. Porte, J. Am. Chem. Soc., 130, 6678 (2008); https://doi.org/10.1021/ja800906f
- C.Z. Guan, D. Wang and L.J. Wan, Chem. Commun., 48, 2943 (2012); https://doi.org/10.1039/c2cc16892h
- J.W. Colson, A.R. Woll, A. Mukherjee, M.P. Levendorf, E.L. Spitler, V.B. Shields, M.G. Spencer, J. Park and W.R. Dichtel, Science, 332, 228 (2011); https://doi.org/10.1126/science.1202747
- E.L. Spitler, J.W. Colson, F.J. Uribe-Romo, A.R. Woll, M.R. Giovino, A. Saldivar and W.R. Dichtel, Angew. Chem. Int. Ed., 51, 2623 (2012); https://doi.org/10.1002/anie.201107070
- E.L. Spitler, B.T. Koo, J.L. Novotney, J.W. Colson, F.J. Uribe-Romo, G.D. Gutierrez, P. Clancy and W.R. Dichtel, J. Am. Chem. Soc., 133, 19416 (2011); https://doi.org/10.1021/ja206242v
- R. Oun, Y.E. Moussa and N.J. Wheate, Dalton Trans., 47, 6645 (2018); https://doi.org/10.1039/C8DT00838H
- J.W. Nichols and Y.H. Bae, J. Control. Release, 190, 451 (2014); https://doi.org/10.1016/j.jconrel.2014.03.057
- G. Zhang, X. Li, Q. Liao, Y. Liu, K. Xi, W. Huang and X. Jia, Nat. Commun., 9, 2785 (2018); https://doi.org/10.1038/s41467-018-04910-5
- S. Liu, C. Hu, Y. Liu, X. Zhao, M. Pang and J. Lin, Chem. Eur. J., 25, 4315 (2019); https://doi.org/10.1002/chem.201806242
- S. Liu, J. Yang, R. Guo, L. Deng, A. Dong and J. Zhang, Macromol. Rapid Commun., 41, 1900570 (2020); https://doi.org/10.1002/marc.201900570
- H. Wang, W. Zhu, J. Liu, Z. Dong and Z. Liu, ACS Appl. Mater. Interfaces, 10, 14475 (2018); https://doi.org/10.1021/acsami.8b02080
- P. Gao, X. Shen, X. Liu, Y. Chen, W. Pan, N. Li and B. Tang, Anal. Chem., 93, 11751 (2021); https://doi.org/10.1021/acs.analchem.1c02105
- X. Zheng, L. Wang, Q. Pei, S. He, S. Liu and Z. Xie, Chem. Mater., 29, 2374 (2017); https://doi.org/10.1021/acs.chemmater.7b00228.
- V.S. Vyas, M. Vishwakarma, I. Moudrakovski, F. Haase, G. Savasci, C. Ochsenfeld, J.P. Spatz and B.V. Lotsch, Adv. Mater., 28, 8749 (2016); https://doi.org/10.1002/adma.201603006
- G. Lin, H. Ding, R. Chen, Z. Peng, B. Wang and C. Wang, J. Am. Chem. Soc., 139, 8705 (2017); https://doi.org/10.1021/jacs.7b04141
- P. Bhanja, S. Mishra, K. Manna, A. Mallick, K. Das Saha and A. Bhaumik, ACS Appl. Mater. Interfaces, 9, 31411 (2017); https://doi.org/10.1021/acsami.7b07343
- Y. Zhang, L. Zhang, Z. Wang, F. Wang, L. Kang, F. Cao, K. Dong, J. Ren and X. Qu, Biomaterials, 223, 119462 (2019); https://doi.org/10.1016/j.biomaterials.2019.119462
- D. Tao, L. Feng, Y. Chao, C. Liang, X. Song, H. Wang, K. Yang and Z. Liu, Adv. Funct. Mater., 28, 1804901 (2018); https://doi.org/10.1002/adfm.201804901
- S. Yao, Z. Liu and L. Li, Nano-Micro Lett., 13, 176 (2021); https://doi.org/10.1007/s40820-021-00696-2
- C.M. Hessel, V.P. Pattani, M. Rasch, M.G. Panthani, B. Koo, J.W. Tunnell and B.A. Korgel, Nano Lett., 11, 2560 (2011); https://doi.org/10.1021/nl201400z
- K. Yang, H. Xu, L. Cheng, C.Y. Sun, J. Wang and Z. Liu, Adv. Mater., 24, 5586 (2012); https://doi.org/10.1002/adma.201202625
- Q. Chen, L.G. Xu, C. Liang, C. Wang, R. Peng and Z. Liu, Nat. Commun., 7, 13193 (2016); https://doi.org/10.1038/ncomms13193
- Y. Chen, C.L. Tan, H. Zhang and L.Z. Wang, Chem. Soc. Rev., 44, 2681 (2015); https://doi.org/10.1039/C4CS00300D
- J.T. Robinson, S.M. Tabakman, Y. Liang, H. Wang, H. Sanchez Casalongue, D. Vinh and H. Dai, J. Am. Chem. Soc., 133, 6825 (2011); https://doi.org/10.1021/ja2010175
- K. Yang, L.L. Hu, X.X. Ma, S.Q. Ye, L. Cheng, X.Z. Shi, C.H. Li, Y.G. Li and Z. Liu, Adv. Mater., 24, 1868 (2012); https://doi.org/10.1002/adma.201104964
- J. Tan, J. Wan, J. Guo and C. Wang, Chem. Commun., 51, 17394 (2015); https://doi.org/10.1039/C5CC05478H
- J. Tan, S. Namuangruk, W. Kong, N. Kungwan, J. Guo and C. Wang, Angew. Chem., 128, 14185 (2016); https://doi.org/10.1002/ange.201606155
- Y. Liu, Y. Zhang, X. Li, X. Gao, X. Niu, W. Wang, Q. Wu and Z. Yuan, Nanoscale, 11, 10429 (2019); https://doi.org/10.1039/C9NR02140J
- Z. Mi, P. Yang, R. Wang, J. Unruangsri, W. Yang, C. Wang and J. Guo, J. Am. Chem. Soc., 141, 14433 (2019); https://doi.org/10.1021/jacs.9b07695
- Z. Xiao, Q. Chen, Y. Yang, S. Tu, B. Wang, Y. Qiu, Y. Jiang, Q. Huang and K. Ai, Chem. Eng. J., 449, 137889 (2022); https://doi.org/10.1016/j.cej.2022.137889
- S. Zhang, S. Xia, L. Chen, Y. Chen and J. Zhou, Adv. Sci., 10, 2206009 (2023); https://doi.org/10.1002/advs.202206009
- S. Liu, Y. Zhou, C. Hu, L. Cai, Z. Liu and M. Pang, Chem. Commun., 57, 8178 (2021); https://doi.org/10.1039/D1CC02902A
- K. Wang, Z. Zhang, L. Lin, K. Hao, J. Chen, H. Tian and X. Chen, ACS Appl. Mater. Interfaces, 11, 39503 (2019); https://doi.org/10.1021/acsami.9b13544
- D. Wang, Z. Zhang, L. Lin, F. Liu, Y. Wang, Z. Guo, Y. Li, H. Tian and X. Chen, Biomaterials, 223, 119459 (2019); https://doi.org/10.1016/j.biomaterials.2019.119459
- C. Hu, L. Cai, S. Liu and M. Pang, Chem. Commun., 55, 9164 (2019); https://doi.org/10.1039/C9CC04668B
References
M.-X. Wu and Y.-W. Yang, Adv. Mater., 29, 1606134 (2017); https://doi.org/10.1002/adma.201606134
Y. Wang, Q. Zhao, N. Han, L. Bai, J. Li, J. Liu, E. Che, L. Hu, Q. Zhang, T. Jiang and S. Wang, Nanomedicine, 11, 313 (2015); https://doi.org/10.1016/j.nano.2014.09.014
H. Liu, D. Chen, L. Li, T. Liu, L. Tan, X. Wu and F. Tang, Angew. Chem. Int. Ed., 50, 891 (2011); https://doi.org/10.1002/anie.201002820
H. Liu, T. Liu, X. Wu, L. Li, L. Tan, D. Chen and F. Tang, Adv. Mater., 24, 755 (2012); https://doi.org/10.1002/adma.201103343
A. Zebibula, N. Alifu, L. Xia, C. Sun, X. Yu, D. Xue, L. Liu, G. Li and J. Qian, Adv. Funct. Mater., 28, 1703451 (2018); https://doi.org/10.1002/adfm.201703451
T. Guo, Y. Wu, Y. Lin, X. Xu, H. Lian, G. Huang, J.Z. Liu, X. Wu and H.H. Yang, Small, 14, 1702815 (2018); https://doi.org/10.1002/smll.201702815
S. Das, P. Heasman, T. Ben and S. Qiu, Chem. Rev., 117, 1515 (2017); https://doi.org/10.1021/acs.chemrev.6b00439
P. Yadav, H. Yadav, V.G. Shah, G. Shah and G. Dhaka, J. Clin. Diagn. Res., 9, ZE21 (2015); https://doi.org/10.7860/JCDR/2015/13907.6565
G. Ahuja and K. Pathak, Indian J. Pharm. Sci., 71, 599 (2009); https://doi.org/10.4103/0250-474X.59540
H. Ma, J. Hu and P.X. Ma, Adv. Funct. Mater., 20, 2833 (2010); https://doi.org/10.1002/adfm.201000922
Z. Li and Y.W. Yang, J. Mater. Chem. B Mater. Biol. Med., 5, 9728 (2017); https://doi.org/10.1039/C7TB02647A
P. Shivanand and O.L. Sprockel, Int. J. Pharm., 167, 83 (1998); https://doi.org/10.1016/S0378-5173(98)00047-7
P. Gunatillake, R. Mayadunne and R. Adhikari, Biotechnol. Annu. Rev., 12, 301 (2006); https://doi.org/10.1016/S1387-2656(06)12009-8
A.P. Acharya, J.S. Lewis and B.G. Keselowsky, Biomaterials, 34, 3422 (2013); https://doi.org/10.1016/j.biomaterials.2013.01.032
M.L. Ratay, A.J. Glowacki, S.C. Balmert, A.P. Acharya, J. Polat, L.P. Andrews, M.V. Fedorchak, J.S. Schuman, D.A.A. Vignali and S.R. Little, J. Control. Release, 258, 208 (2017); https://doi.org/10.1016/j.jconrel.2017.05.007
A.P. Acharya, M.R. Carstens, J.S. Lewis, N. Dolgova, C.Q. Xia, M.J. Clare-Salzler and B.G. Keselowsky, J. Mater. Chem. B Mater. Biol. Med., 4, 1672 (2016); https://doi.org/10.1039/C5TB01754H
O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi and J. Kim, Nature, 423, 705 (2003); https://doi.org/10.1038/nature01650
A.Y. Al-Maharma, S.P. Patil and B. Markert, Mater. Res. Expr., 7, 122001 (2020); https://doi.org/10.1088/2053-1591/abcc5d
H. Furukawa, K.E. Cordova, M. O’Keeffe and O.M. Yaghi, Science, 341, 1230444 (2013); https://doi.org/10.1126/science.1230444
Y. Zhao, Chem. Mater., 28, 8079 (2016); https://doi.org/10.1021/acs.chemmater.6b04677
M.H. Sun, S.Z. Huang, L.H. Chen, Y. Li, X.Y. Yang, Z.Y. Yuan and B.L. Su, Chem. Soc. Rev., 45, 3479 (2016); https://doi.org/10.1039/C6CS00135A
C. Wang, Y.V. Kaneti, Y. Bando, J. Lin, C. Liu, J. Li and Y. Yamauchi, Mater. Horiz., 5, 394 (2018); https://doi.org/10.1039/C8MH00133B
G. Xu, P. Nie, H. Dou, B. Ding, L. Li and X. Zhang, Mater. Today, 20, 191 (2017); https://doi.org/10.1016/j.mattod.2016.10.003
J.L. Segura, M.J. Mancheno and F. Zamora, Chem. Soc. Rev., 45, 5635 (2016); https://doi.org/10.1039/C5CS00878F
L.M. Lanni, R.W. Tilford, M. Bharathy and J.J. Lavigne, J. Am. Chem. Soc., 133, 13975 (2011); https://doi.org/10.1021/ja203807h
D. Wang, Z. Zhang, L. Lin, F. Liu, Y. Wang, Z. Guo, Y. Li, H. Tian and X. Chen, Biomaterials, 223, 119459 (2019); https://doi.org/10.1016/j.biomaterials.2019.119459
S.N.A. Bukhari, N. Ahmed, M.W. Amjad, M.A. Hussain, M.A. Elsherif, H. Ejaz and N.H. Alotaibi, Polymers, 15, 267 (2023); https://doi.org/10.3390/polym15020267
L. Akyuz, Micropor. Mesopor. Mater., 294, 109850 (2020); https://doi.org/10.1016/j.micromeso.2019.109850
T.F. Machado, M.E. Silva-Serra, D. Murtinho, A.J.M. Valente and M. Naushad, Polymers, 13, 970 (2021); https://doi.org/10.3390/polym13060970
S.Y. Ding and W. Wang, Chem. Soc. Rev., 42, 548 (2013); https://doi.org/10.1039/C2CS35072F
R.-R. Liang and X. Zhao, Org. Chem. Front., 5, 3341 (2018); https://doi.org/10.1039/C8QO00830B
X. Feng, X. Ding and D. Jiang, Chem. Soc. Rev., 41, 6010 (2012); https://doi.org/10.1039/c2cs35157a
G. Kaur, D. Kumar, S. Sundarrajan, S. Ramakrishna and P. Kumar, Polymers, 15, 139 (2022); https://doi.org/10.3390/polym15010139
M.X. Wu and Y.W. Yang, Chin. Chem. Lett., 28, 1135 (2017); https://doi.org/10.1016/j.cclet.2017.03.026
X. Guan, Q. Fang, Y. Yan and S. Qiu, Acc. Chem. Res., 55, 1912 (2022); https://doi.org/10.1021/acs.accounts.2c00200
B. Díaz de Greñu, J. Torres, J. García-González, S. Muñoz-Pina, R. de los Reyes, A.M. Costero, P. Amorós and J.V. Ros-Lis, ChemSusChem, 14, 208 (2021); https://doi.org/10.1002/cssc.202001865
O.M. Yaghi, J. Am. Chem. Soc., 138, 15507 (2016); https://doi.org/10.1021/jacs.6b11821
Q. Guan, D.D. Fu, Y.A. Li, X.M. Kong, Z.Y. Wei, W.Y. Li, S.J. Zhang and Y.B. Dong, iScience, 14, 180 (2019); https://doi.org/10.1016/j.isci.2019.03.028
Z. Chen, K.O. Kirlikovali, P. Li and O.K. Farha, Acc. Chem. Res., 55, 579 (2022); https://doi.org/10.1021/acs.accounts.1c00707
C. Du, X. Zhu, C. Yang and M. Liu, Angew. Chem. Int. Ed., 61, 202113979 (2022); https://doi.org/10.1002/anie.202113979
J. Hu, S.K. Gupta, J. Ozdemir and M.H. Beyzavi, ACS Appl. Nano Mater., 3, 6239 (2020); https://doi.org/10.1021/acsanm.0c01327
L. Deng, J. Zhang and Y. Gao, Synthesis, Properties, and Their Potential Application of Covalent Organic Frameworks (COFs); In: Mesoporous Materials-Properties and Applications; Intech Open: London, U.K., pp. 1-27 (2018).
A.P. Côté, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger and O.M. Yaghi, Science, 310, 1166 (2005); https://doi.org/10.1126/science.1120411
X.S. Ding, J. Guo, X. Feng, Y. Honsho, J.D. Guo, S. Seki, P. Maitarad, A. Saeki, S. Nagase and D. Jiang, Angew. Chem. Int. Ed., 50, 1289 (2011); https://doi.org/10.1002/anie.201005919
R.W. Tilford, W.R. Gemmill, H.C. zur Loye and J.J. Lavigne, Chem. Mater., 18, 5296 (2006); https://doi.org/10.1021/cm061177g
F.J. Uribe-Romo, J.R. Hunt, H. Furukawa, C. Klock, M. O’Keeffe and O.M. Yaghi, J. Am. Chem. Soc., 131, 4570 (2009); https://doi.org/10.1021/ja8096256
F.J. Uribe-Romo, C.J. Doonan, H. Furukawa, K. Oisaki and O.M. Yaghi, J. Am. Chem. Soc., 133, 11478 (2011); https://doi.org/10.1021/ja204728y
X. Feng, L. Chen, Y.P. Dong and D. Jiang, Chem. Commun., 47, 1979 (2011); https://doi.org/10.1039/c0cc04386a
N.L. Campbell, R. Clowes, L.K. Ritchie and A.I. Cooper, Chem. Mater., 21, 204 (2009); https://doi.org/10.1021/cm802981m
M. Dogru, A. Sonnauer, A. Gavryushin, P. Knochel and T. Bein, Chem. Commun., 47, 1707 (2011); https://doi.org/10.1039/c0cc03792c
B. Bai, D. Wang and L.J. Wan, Bull. Chem. Soc. Jpn., 94, 1090 (2021); https://doi.org/10.1246/bcsj.20200391
P. Kuhn, M. Antonietti and A. Thomas, Angew. Chem. Int. Ed., 47, 3450 (2008); https://doi.org/10.1002/anie.200705710
M.J. Bojdys, J. Jeromenok, A. Thomas and M. Antonietti, Adv. Mater., 22, 2202 (2010); https://doi.org/10.1002/adma.200903436
M.S. Lohse and T. Bein, Adv. Funct. Mater., 28, 1705553 (2018); https://doi.org/10.1002/adfm.201705553
P.J. Waller, F. Gándara and O.M. Yaghi, Acc. Chem. Res., 48, 3053 (2015); https://doi.org/10.1021/acs.accounts.5b00369
B. Gui, G. Lin, H. Ding, C. Gao, A. Mal and C. Wang, Acc. Chem. Res., 53, 2225 (2020); https://doi.org/10.1021/acs.accounts.0c00357
Q. Guan, L.L. Zhou, Y.A. Li, W.Y. Li, S. Wang, C. Song and Y.B. Dong, ACS Nano, 13, 13304 (2019); https://doi.org/10.1021/acsnano.9b06467
N.A.A. Zwaneveld, R. Pawlak, M. Abel, D. Catalin, D. Gigmes, D. Bertin and L. Porte, J. Am. Chem. Soc., 130, 6678 (2008); https://doi.org/10.1021/ja800906f
C.Z. Guan, D. Wang and L.J. Wan, Chem. Commun., 48, 2943 (2012); https://doi.org/10.1039/c2cc16892h
J.W. Colson, A.R. Woll, A. Mukherjee, M.P. Levendorf, E.L. Spitler, V.B. Shields, M.G. Spencer, J. Park and W.R. Dichtel, Science, 332, 228 (2011); https://doi.org/10.1126/science.1202747
E.L. Spitler, J.W. Colson, F.J. Uribe-Romo, A.R. Woll, M.R. Giovino, A. Saldivar and W.R. Dichtel, Angew. Chem. Int. Ed., 51, 2623 (2012); https://doi.org/10.1002/anie.201107070
E.L. Spitler, B.T. Koo, J.L. Novotney, J.W. Colson, F.J. Uribe-Romo, G.D. Gutierrez, P. Clancy and W.R. Dichtel, J. Am. Chem. Soc., 133, 19416 (2011); https://doi.org/10.1021/ja206242v
R. Oun, Y.E. Moussa and N.J. Wheate, Dalton Trans., 47, 6645 (2018); https://doi.org/10.1039/C8DT00838H
J.W. Nichols and Y.H. Bae, J. Control. Release, 190, 451 (2014); https://doi.org/10.1016/j.jconrel.2014.03.057
G. Zhang, X. Li, Q. Liao, Y. Liu, K. Xi, W. Huang and X. Jia, Nat. Commun., 9, 2785 (2018); https://doi.org/10.1038/s41467-018-04910-5
S. Liu, C. Hu, Y. Liu, X. Zhao, M. Pang and J. Lin, Chem. Eur. J., 25, 4315 (2019); https://doi.org/10.1002/chem.201806242
S. Liu, J. Yang, R. Guo, L. Deng, A. Dong and J. Zhang, Macromol. Rapid Commun., 41, 1900570 (2020); https://doi.org/10.1002/marc.201900570
H. Wang, W. Zhu, J. Liu, Z. Dong and Z. Liu, ACS Appl. Mater. Interfaces, 10, 14475 (2018); https://doi.org/10.1021/acsami.8b02080
P. Gao, X. Shen, X. Liu, Y. Chen, W. Pan, N. Li and B. Tang, Anal. Chem., 93, 11751 (2021); https://doi.org/10.1021/acs.analchem.1c02105
X. Zheng, L. Wang, Q. Pei, S. He, S. Liu and Z. Xie, Chem. Mater., 29, 2374 (2017); https://doi.org/10.1021/acs.chemmater.7b00228.
V.S. Vyas, M. Vishwakarma, I. Moudrakovski, F. Haase, G. Savasci, C. Ochsenfeld, J.P. Spatz and B.V. Lotsch, Adv. Mater., 28, 8749 (2016); https://doi.org/10.1002/adma.201603006
G. Lin, H. Ding, R. Chen, Z. Peng, B. Wang and C. Wang, J. Am. Chem. Soc., 139, 8705 (2017); https://doi.org/10.1021/jacs.7b04141
P. Bhanja, S. Mishra, K. Manna, A. Mallick, K. Das Saha and A. Bhaumik, ACS Appl. Mater. Interfaces, 9, 31411 (2017); https://doi.org/10.1021/acsami.7b07343
Y. Zhang, L. Zhang, Z. Wang, F. Wang, L. Kang, F. Cao, K. Dong, J. Ren and X. Qu, Biomaterials, 223, 119462 (2019); https://doi.org/10.1016/j.biomaterials.2019.119462
D. Tao, L. Feng, Y. Chao, C. Liang, X. Song, H. Wang, K. Yang and Z. Liu, Adv. Funct. Mater., 28, 1804901 (2018); https://doi.org/10.1002/adfm.201804901
S. Yao, Z. Liu and L. Li, Nano-Micro Lett., 13, 176 (2021); https://doi.org/10.1007/s40820-021-00696-2
C.M. Hessel, V.P. Pattani, M. Rasch, M.G. Panthani, B. Koo, J.W. Tunnell and B.A. Korgel, Nano Lett., 11, 2560 (2011); https://doi.org/10.1021/nl201400z
K. Yang, H. Xu, L. Cheng, C.Y. Sun, J. Wang and Z. Liu, Adv. Mater., 24, 5586 (2012); https://doi.org/10.1002/adma.201202625
Q. Chen, L.G. Xu, C. Liang, C. Wang, R. Peng and Z. Liu, Nat. Commun., 7, 13193 (2016); https://doi.org/10.1038/ncomms13193
Y. Chen, C.L. Tan, H. Zhang and L.Z. Wang, Chem. Soc. Rev., 44, 2681 (2015); https://doi.org/10.1039/C4CS00300D
J.T. Robinson, S.M. Tabakman, Y. Liang, H. Wang, H. Sanchez Casalongue, D. Vinh and H. Dai, J. Am. Chem. Soc., 133, 6825 (2011); https://doi.org/10.1021/ja2010175
K. Yang, L.L. Hu, X.X. Ma, S.Q. Ye, L. Cheng, X.Z. Shi, C.H. Li, Y.G. Li and Z. Liu, Adv. Mater., 24, 1868 (2012); https://doi.org/10.1002/adma.201104964
J. Tan, J. Wan, J. Guo and C. Wang, Chem. Commun., 51, 17394 (2015); https://doi.org/10.1039/C5CC05478H
J. Tan, S. Namuangruk, W. Kong, N. Kungwan, J. Guo and C. Wang, Angew. Chem., 128, 14185 (2016); https://doi.org/10.1002/ange.201606155
Y. Liu, Y. Zhang, X. Li, X. Gao, X. Niu, W. Wang, Q. Wu and Z. Yuan, Nanoscale, 11, 10429 (2019); https://doi.org/10.1039/C9NR02140J
Z. Mi, P. Yang, R. Wang, J. Unruangsri, W. Yang, C. Wang and J. Guo, J. Am. Chem. Soc., 141, 14433 (2019); https://doi.org/10.1021/jacs.9b07695
Z. Xiao, Q. Chen, Y. Yang, S. Tu, B. Wang, Y. Qiu, Y. Jiang, Q. Huang and K. Ai, Chem. Eng. J., 449, 137889 (2022); https://doi.org/10.1016/j.cej.2022.137889
S. Zhang, S. Xia, L. Chen, Y. Chen and J. Zhou, Adv. Sci., 10, 2206009 (2023); https://doi.org/10.1002/advs.202206009
S. Liu, Y. Zhou, C. Hu, L. Cai, Z. Liu and M. Pang, Chem. Commun., 57, 8178 (2021); https://doi.org/10.1039/D1CC02902A
K. Wang, Z. Zhang, L. Lin, K. Hao, J. Chen, H. Tian and X. Chen, ACS Appl. Mater. Interfaces, 11, 39503 (2019); https://doi.org/10.1021/acsami.9b13544
D. Wang, Z. Zhang, L. Lin, F. Liu, Y. Wang, Z. Guo, Y. Li, H. Tian and X. Chen, Biomaterials, 223, 119459 (2019); https://doi.org/10.1016/j.biomaterials.2019.119459
C. Hu, L. Cai, S. Liu and M. Pang, Chem. Commun., 55, 9164 (2019); https://doi.org/10.1039/C9CC04668B