Copyright (c) 2024 K.K.Rajasekhar Komarla
This work is licensed under a Creative Commons Attribution 4.0 International License.
Oxacyanopyridine-Benzofuran Hybrids: Synthesis, in silico Toxicity Assessment, in vitro Antimicrobial Activity and Dual Target Docking Studies
Corresponding Author(s) : Rajasekhar Komarla Kumarachari
Asian Journal of Chemistry,
Vol. 36 No. 3 (2024): Vol 36 Issue 3, 2024
Abstract
This study emphasizes the synthesis and characterization of a novel series of oxa cyano pyridine heterocyclic molecular hybrids (OCP 1-6), integrating pyridine and benzofuran motifs. Meticulously designed from 5-chlorosalicylaldehyde in a multistep process, the synthesized compounds were structurally confirmed through IR spectroscopy, 1H NMR spectroscopy, and mass spectrometry. Computational predictions highlighted diverse properties, including antitubercular and antibacterial attributes, bioactivity scores, toxicity profiles and potential molecular targets. In vitro assessments and Schrödinger docking simulations revealed binding affinities to enzymes viz. Mycobacterium tuberculosis enoyl-ACP reductase and Escherichia coli Topoisomerase IV. Compounds, particularly OCP 2, 3, 4 and 5, exhibited significant antitubercular and antibacterial activities in both in vitro assessments and docking simulations. This study underscores the substantial potential of the synthesized hybrids as promising candidates for further lead optimization, positioning them as valuable contributors to the development of pharmaceutical agents with heightened potency and enhanced safety profiles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.U. Sadek, R.A. Mekheimer, M. Abd-Elmonem, F.A. Abo-Elsoud, A.M. Hayallah, S.M. Mostafa, M.H. Abdellattif, M.A.S. Abourehab, T.A. Farghaly and A. Elkamhawy, J. Mol. Struct., 1286, 135616 (2023); https://doi.org/10.1016/j.molstruc.2023.135616
- M.I. Ali and M.M. Naseer, RSC Adv., 13, 30462 (2023); https://doi.org/10.1039/D3RA05953G
- K. Vaithegi, S. Yi, J.H. Lee, B.V. Varun and S.B. Park, Commun. Chem., 6, 112 (2023); https://doi.org/10.1038/s42004-023-00914-5
- M.B. Islam, M.I. Islam, N. Nath, T.B. Emran, M.R. Rahman, R. Sharma and M.M. Matin, Biomed Res Int., 2023, 9967591 (2023); https://doi.org/10.1155/2023/9967591
- A.F. Villamizar-Mogotocoro, L.Y. Vargas-Méndez and V.V. Kouznetsov, Eur. J. Pharm. Sci., 151, 105374 (2020); https://doi.org/10.1016/j.ejps.2020.105374
- W. Jiang, W. Cheng, T. Zhang, T. Lu, J. Wang, Y. Yan, X. Tang and X. Wang, J. Mol. Struct., 1270, 133901 (2022); https://doi.org/10.1016/j.molstruc.2022.133901
- M. Alrooqi, S. Khan, F.A. Alhumaydhi, S.A. Asiri, M. Alshamrani, M.M. Mashraqi, A. Alzamami, A.M. Alshahrani and A.A. Aldahish, Anticancer. Agents Med. Chem., 22, 2775 (2022); https://doi.org/10.2174/1871520622666220324102849
- V. Kamat, R. Santosh, B. Poojary, S.P. Nayak, M. Sankaranarayanan, B.K. Kumar, Faheem, S. Khanapure, D.A. Barretto and S.K. Vootla, ACS Omega, 5, 25228 (2020); https://doi.org/10.1021/acsomega.0c03386
- M. Marinescu and C.V. Popa, Int. J. Mol. Sci., 23, 5659 (2022); https://doi.org/10.3390/ijms23105659
- F. Manna, F. Chimenti, A. Bolasco, A. Filippelli, A. Palla, W. Filippelli, E. Lampa and R. Mercantini, Eur. J. Med. Chem., 27, 627 (1992); https://doi.org/10.1016/0223-5234(92)90141-M
- Z. Xu, S. Zhao, Z. Lv, L. Feng, Y. Wang, F. Zhang, L. Bai and J. Deng, Eur. J. Med. Chem., 162, 266 (2019); https://doi.org/10.1016/j.ejmech.2018.11.025
- Z. Xu, S. Zhao, Z. Lv, L. Feng, Y. Wang, F. Zhang, L. Bai and J. Deng, Eur. J. Med. Chem., 162, 266 (2019); https://doi.org/10.1016/j.ejmech.2018.11.025
- B.V. Lichitsky, V.G. Melekhina, A.N. Komogortsev, V.A. Migulin, Y.V. Nelyubina, A.N. Fakhrutdinov, E.D. Daeva and A.A. Dudinov, Tetrahedron, 83, 131980 (2021); https://doi.org/10.1016/j.tet.2021.131980
- B.V. Lichitsky, T.T. Karibov, A.N. Komogortsev and V.G. Melekhina, Tetrahedron, 132, 133244 (2023); https://doi.org/10.1016/j.tet.2022.133244
- D. Dwarakanath and S.L. Gaonkar, Asian J. Org. Chem., 11, e202200282 (2022); https://doi.org/10.1002/ajoc.202200282
- Z. Xu, D. Xu, W. Zhou and X. Zhang, Curr. Top. Med. Chem., 22, 64 (2022); https://doi.org/10.2174/1568026621666211122162439
- A.M. Srour, S.S. Abd El-Karim, D.O. Saleh, W.I. El-Eraky and Z.M. Nofal, Bioorg. Med. Chem. Lett., 26, 2557 (2016); https://doi.org/10.1016/j.bmcl.2016.03.054
- E.M. Keshk, Heteroatom Chem., 15, 85 (2004); https://doi.org/10.1002/hc.10219
- T. Zawadowski and C. Wierciñska-Radzio, Acta Pol. Pharm., 43, 207 (1986).
- P. Martins, J. Jesus, S. Santos, L.R. Raposo, C. Roma-Rodrigues, P.V. Baptista and A.R. Fernandes, Molecules, 20, 16852 (2015); https://doi.org/10.3390/molecules200916852
- S.S.A. El-Karim, A.H. Mahmoud, A.K. Al-Mokaddem, N.E. Ibrahim, H.M. Alkahtani, A.A. Zen and M.M. Anwar, Molecules, 28, 6814 (2023); https://doi.org/10.3390/molecules28196814
- K. Vaithegi, S. Yi, J.H. Lee, B.V. Varun and S.B. Park, Commun. Chem., 6, 112 (2023); https://doi.org/10.1038/s42004-023-00914-5
- TB/COVID-19 Global Study Group, Eur. Respir. J., 59, 2102538 (2022); https://doi.org/10.1183/13993003.02538-2021
- T. Shah, Z. Shah, N. Yasmeen, Z. Baloch and X. Xia, Front. Immunol., 13, 909011 (2022); https://doi.org/10.3389/fimmu.2022.909011
- P. Daneshvar, B. Hajikhani, F. Sameni, N. Noorisepehr, N. Bostanshirin, F. Zare, S. Yazdani, M. Goudarzi, S. Sayyari and M. Dadashi, Heliyon, 9, e13637 (2023); https://doi.org/10.1016/j.heliyon.2023.e13637
- A.V. Sadybekov and V. Katritch, Nature, 616, 673 (2023); https://doi.org/10.1038/s41586-023-05905-z
- D.A. Filimonov, A.A. Lagunin, T.A. Gloriozova, D.S. Druzhilovskii, A.V. Rudik, P.V. Pogodin and V.V. Poroikov, Chem. Heterocycl. Compd., 50, 444 (2014); https://doi.org/10.1007/s10593-014-1496-1
- L. Krasnov, I. Khokhlov, M.V. Fedorov and S. Sosnin, Sci. Rep., 11, 14798 (2021); https://doi.org/10.1038/s41598-021-94082-y
- F. Ciriaco, N. Gambacorta, D. Trisciuzzi and O. Nicolotti, Int. J. Mol. Sci., 23, 5245 (2022); https://doi.org/10.3390/ijms23095245
- R.A. Friesner, R.B. Murphy, M.P. Repasky, L.L. Frye, J.R. Greenwood, T.A. Halgren, P.C. Sanschagrin and D.T. Mainz, J. Med. Chem., 49, 6177 (2006); https://doi.org/10.1021/jm051256o
- D. Eisenberg, R. Luthy and J.U. Bowie, Methods Enzymol., 277, 396 (1997); https://doi.org/10.1016/S0076-6879(97)77022-8
- C. Colovos and T.O. Yeates, Protein Sci., 2, 1511 (1993); https://doi.org/10.1002/pro.5560020916
- Structural Analysis, Verification Server; 2011. Available from: http://nihserver.mbi.ucla.edu/SAVES/
- S.C. Lovell, I.W. Davis, W.B. Arendall 3rd, P.I. de Bakker, J.M. Word, M.G. Prisant, J.S. Richardson and D.C. Richardson, Proteins, 50, 437 (2003); https://doi.org/10.1002/prot.10286
- Chem DrawUltra version 8.0.3 for Windows, Cambridge Soft Corporation, a subsidiary of PerkinElmer, Inc. (2014).
- https://sourceforge.net/projects/openbabel/files/openbabel/2.4.0/. License: GNU GPL v2.
- N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch and G.R. Hutchison, J. Cheminform., 3, 33 (2011); https://doi.org/10.1186/1758-2946-3-33
- E. Harder, W. Damm, J. Maple, C. Wu, M. Reboul, J.Y. Xiang, L. Wang, D. Lupyan, M.K. Dahlgren, J.L. Knight, J.W. Kaus, D.S. Cerutti, G. Krilov, W.L. Jorgensen, R. Abel and R.A. Friesner, J. Chem. Theory Comput., 12, 281 (2016); https://doi.org/10.1021/acs.jctc.5b00864
- S.G. Franzblau, R.S. Witzig, J.C. McLaughlin, P. Torres, G. Madico, A. Hernandez, M.T. Degnan, M.B. Cook, V.K. Quenzer, R.M. Ferguson and R.H. Gilman, J. Clin. Microbiol., 36, 362 (1998); https://doi.org/10.1128/JCM.36.2.362-366.1998
- B. Aneja, M. Azam, S. Alam, A. Perwez, R. Maguire, U. Yadava, K. Kavanagh, C.G. Daniliuc, M.M.A. Rizvi, Q.M.R. Haq and M. Abid, ACS Omega, 3, 6912 (2018); https://doi.org/10.1021/acsomega.8b00582
- CLSI, M100 Performance Standards for Antimicrobial Susceptibility Testing, CLSI; Wayne, PA, USA, edn. 29 (2019).
- A. Bass, E. Abdelhafez, M. El-Zoghbi, M. Mohamed, M. Badr and G.E.D. Abuo-Rahma, J. Adv. Biomed. Pharm. Sci., 4, 81 (2021); https://doi.org/10.21608/jabps.2020.52641.1113
- E.M. Flefel, H.-A. S. Abbas, R.E. Abdel Mageid and W.A. Zaghary, Molecules, 21, 30 (2016); https://doi.org/10.3390/molecules21010030
- B. Sharma, V. Chenthamarakshan, A. Dhurandhar, S. Pereira, J.A. Hendler, J.S. Dordick and P. Das, Sci. Rep., 13, 4908 (2023); https://doi.org/10.1038/s41598-023-31169-8
- F. Ciriaco, N. Gambacorta, D. Alberga and O. Nicolotti, J. Chem. Inf. Model., 61, 4868 (2021); https://doi.org/10.1021/acs.jcim.1c00498
- N.M. Raghavendra, D. Pingili, S. Kadasi, A. Mettu and S.V.U.M. Prasad, Eur. J. Med. Chem., 143, 1277 (2018); https://doi.org/10.1016/j.ejmech.2017.10.021
- M. Jaiteh, A. Zeifman, M. Saarinen, P. Svenningsson, J. Bréa, M.I. Loza and J. Carlsson, J. Med. Chem., 61, 5269 (2018); https://doi.org/10.1021/acs.jmedchem.8b00204
- S.W. Park, B.H. Lee, S.H. Song and M.K. Kim, J. Struct. Biol., 215, 107939 (2023); https://doi.org/10.1016/j.jsb.2023.107939
- S.A. Hollingsworth and P.A. Karplus, Biomol. Concepts, 1, 271 (2010); https://doi.org/10.1515/bmc.2010.022
- S. Agnihotry, R.K. Pathak, D.B. Singh, A. Tiwari and I. Hussain, Eds.: D.B. Singh and R.K. Pathak, Protein Structure Prediction, In: Bioinformatics Methods and Applications Academic Press, pp. 177-188 (2022); https://doi.org/10.1016/B978-0-323-89775-4.00023-7
- N.S. Pagadala, K. Syed and J. Tuszynski, Biophys. Rev., 9, 91 (2017); https://doi.org/10.1007/s12551-016-0247-1
References
K.U. Sadek, R.A. Mekheimer, M. Abd-Elmonem, F.A. Abo-Elsoud, A.M. Hayallah, S.M. Mostafa, M.H. Abdellattif, M.A.S. Abourehab, T.A. Farghaly and A. Elkamhawy, J. Mol. Struct., 1286, 135616 (2023); https://doi.org/10.1016/j.molstruc.2023.135616
M.I. Ali and M.M. Naseer, RSC Adv., 13, 30462 (2023); https://doi.org/10.1039/D3RA05953G
K. Vaithegi, S. Yi, J.H. Lee, B.V. Varun and S.B. Park, Commun. Chem., 6, 112 (2023); https://doi.org/10.1038/s42004-023-00914-5
M.B. Islam, M.I. Islam, N. Nath, T.B. Emran, M.R. Rahman, R. Sharma and M.M. Matin, Biomed Res Int., 2023, 9967591 (2023); https://doi.org/10.1155/2023/9967591
A.F. Villamizar-Mogotocoro, L.Y. Vargas-Méndez and V.V. Kouznetsov, Eur. J. Pharm. Sci., 151, 105374 (2020); https://doi.org/10.1016/j.ejps.2020.105374
W. Jiang, W. Cheng, T. Zhang, T. Lu, J. Wang, Y. Yan, X. Tang and X. Wang, J. Mol. Struct., 1270, 133901 (2022); https://doi.org/10.1016/j.molstruc.2022.133901
M. Alrooqi, S. Khan, F.A. Alhumaydhi, S.A. Asiri, M. Alshamrani, M.M. Mashraqi, A. Alzamami, A.M. Alshahrani and A.A. Aldahish, Anticancer. Agents Med. Chem., 22, 2775 (2022); https://doi.org/10.2174/1871520622666220324102849
V. Kamat, R. Santosh, B. Poojary, S.P. Nayak, M. Sankaranarayanan, B.K. Kumar, Faheem, S. Khanapure, D.A. Barretto and S.K. Vootla, ACS Omega, 5, 25228 (2020); https://doi.org/10.1021/acsomega.0c03386
M. Marinescu and C.V. Popa, Int. J. Mol. Sci., 23, 5659 (2022); https://doi.org/10.3390/ijms23105659
F. Manna, F. Chimenti, A. Bolasco, A. Filippelli, A. Palla, W. Filippelli, E. Lampa and R. Mercantini, Eur. J. Med. Chem., 27, 627 (1992); https://doi.org/10.1016/0223-5234(92)90141-M
Z. Xu, S. Zhao, Z. Lv, L. Feng, Y. Wang, F. Zhang, L. Bai and J. Deng, Eur. J. Med. Chem., 162, 266 (2019); https://doi.org/10.1016/j.ejmech.2018.11.025
Z. Xu, S. Zhao, Z. Lv, L. Feng, Y. Wang, F. Zhang, L. Bai and J. Deng, Eur. J. Med. Chem., 162, 266 (2019); https://doi.org/10.1016/j.ejmech.2018.11.025
B.V. Lichitsky, V.G. Melekhina, A.N. Komogortsev, V.A. Migulin, Y.V. Nelyubina, A.N. Fakhrutdinov, E.D. Daeva and A.A. Dudinov, Tetrahedron, 83, 131980 (2021); https://doi.org/10.1016/j.tet.2021.131980
B.V. Lichitsky, T.T. Karibov, A.N. Komogortsev and V.G. Melekhina, Tetrahedron, 132, 133244 (2023); https://doi.org/10.1016/j.tet.2022.133244
D. Dwarakanath and S.L. Gaonkar, Asian J. Org. Chem., 11, e202200282 (2022); https://doi.org/10.1002/ajoc.202200282
Z. Xu, D. Xu, W. Zhou and X. Zhang, Curr. Top. Med. Chem., 22, 64 (2022); https://doi.org/10.2174/1568026621666211122162439
A.M. Srour, S.S. Abd El-Karim, D.O. Saleh, W.I. El-Eraky and Z.M. Nofal, Bioorg. Med. Chem. Lett., 26, 2557 (2016); https://doi.org/10.1016/j.bmcl.2016.03.054
E.M. Keshk, Heteroatom Chem., 15, 85 (2004); https://doi.org/10.1002/hc.10219
T. Zawadowski and C. Wierciñska-Radzio, Acta Pol. Pharm., 43, 207 (1986).
P. Martins, J. Jesus, S. Santos, L.R. Raposo, C. Roma-Rodrigues, P.V. Baptista and A.R. Fernandes, Molecules, 20, 16852 (2015); https://doi.org/10.3390/molecules200916852
S.S.A. El-Karim, A.H. Mahmoud, A.K. Al-Mokaddem, N.E. Ibrahim, H.M. Alkahtani, A.A. Zen and M.M. Anwar, Molecules, 28, 6814 (2023); https://doi.org/10.3390/molecules28196814
K. Vaithegi, S. Yi, J.H. Lee, B.V. Varun and S.B. Park, Commun. Chem., 6, 112 (2023); https://doi.org/10.1038/s42004-023-00914-5
TB/COVID-19 Global Study Group, Eur. Respir. J., 59, 2102538 (2022); https://doi.org/10.1183/13993003.02538-2021
T. Shah, Z. Shah, N. Yasmeen, Z. Baloch and X. Xia, Front. Immunol., 13, 909011 (2022); https://doi.org/10.3389/fimmu.2022.909011
P. Daneshvar, B. Hajikhani, F. Sameni, N. Noorisepehr, N. Bostanshirin, F. Zare, S. Yazdani, M. Goudarzi, S. Sayyari and M. Dadashi, Heliyon, 9, e13637 (2023); https://doi.org/10.1016/j.heliyon.2023.e13637
A.V. Sadybekov and V. Katritch, Nature, 616, 673 (2023); https://doi.org/10.1038/s41586-023-05905-z
D.A. Filimonov, A.A. Lagunin, T.A. Gloriozova, D.S. Druzhilovskii, A.V. Rudik, P.V. Pogodin and V.V. Poroikov, Chem. Heterocycl. Compd., 50, 444 (2014); https://doi.org/10.1007/s10593-014-1496-1
L. Krasnov, I. Khokhlov, M.V. Fedorov and S. Sosnin, Sci. Rep., 11, 14798 (2021); https://doi.org/10.1038/s41598-021-94082-y
F. Ciriaco, N. Gambacorta, D. Trisciuzzi and O. Nicolotti, Int. J. Mol. Sci., 23, 5245 (2022); https://doi.org/10.3390/ijms23095245
R.A. Friesner, R.B. Murphy, M.P. Repasky, L.L. Frye, J.R. Greenwood, T.A. Halgren, P.C. Sanschagrin and D.T. Mainz, J. Med. Chem., 49, 6177 (2006); https://doi.org/10.1021/jm051256o
D. Eisenberg, R. Luthy and J.U. Bowie, Methods Enzymol., 277, 396 (1997); https://doi.org/10.1016/S0076-6879(97)77022-8
C. Colovos and T.O. Yeates, Protein Sci., 2, 1511 (1993); https://doi.org/10.1002/pro.5560020916
Structural Analysis, Verification Server; 2011. Available from: http://nihserver.mbi.ucla.edu/SAVES/
S.C. Lovell, I.W. Davis, W.B. Arendall 3rd, P.I. de Bakker, J.M. Word, M.G. Prisant, J.S. Richardson and D.C. Richardson, Proteins, 50, 437 (2003); https://doi.org/10.1002/prot.10286
Chem DrawUltra version 8.0.3 for Windows, Cambridge Soft Corporation, a subsidiary of PerkinElmer, Inc. (2014).
https://sourceforge.net/projects/openbabel/files/openbabel/2.4.0/. License: GNU GPL v2.
N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch and G.R. Hutchison, J. Cheminform., 3, 33 (2011); https://doi.org/10.1186/1758-2946-3-33
E. Harder, W. Damm, J. Maple, C. Wu, M. Reboul, J.Y. Xiang, L. Wang, D. Lupyan, M.K. Dahlgren, J.L. Knight, J.W. Kaus, D.S. Cerutti, G. Krilov, W.L. Jorgensen, R. Abel and R.A. Friesner, J. Chem. Theory Comput., 12, 281 (2016); https://doi.org/10.1021/acs.jctc.5b00864
S.G. Franzblau, R.S. Witzig, J.C. McLaughlin, P. Torres, G. Madico, A. Hernandez, M.T. Degnan, M.B. Cook, V.K. Quenzer, R.M. Ferguson and R.H. Gilman, J. Clin. Microbiol., 36, 362 (1998); https://doi.org/10.1128/JCM.36.2.362-366.1998
B. Aneja, M. Azam, S. Alam, A. Perwez, R. Maguire, U. Yadava, K. Kavanagh, C.G. Daniliuc, M.M.A. Rizvi, Q.M.R. Haq and M. Abid, ACS Omega, 3, 6912 (2018); https://doi.org/10.1021/acsomega.8b00582
CLSI, M100 Performance Standards for Antimicrobial Susceptibility Testing, CLSI; Wayne, PA, USA, edn. 29 (2019).
A. Bass, E. Abdelhafez, M. El-Zoghbi, M. Mohamed, M. Badr and G.E.D. Abuo-Rahma, J. Adv. Biomed. Pharm. Sci., 4, 81 (2021); https://doi.org/10.21608/jabps.2020.52641.1113
E.M. Flefel, H.-A. S. Abbas, R.E. Abdel Mageid and W.A. Zaghary, Molecules, 21, 30 (2016); https://doi.org/10.3390/molecules21010030
B. Sharma, V. Chenthamarakshan, A. Dhurandhar, S. Pereira, J.A. Hendler, J.S. Dordick and P. Das, Sci. Rep., 13, 4908 (2023); https://doi.org/10.1038/s41598-023-31169-8
F. Ciriaco, N. Gambacorta, D. Alberga and O. Nicolotti, J. Chem. Inf. Model., 61, 4868 (2021); https://doi.org/10.1021/acs.jcim.1c00498
N.M. Raghavendra, D. Pingili, S. Kadasi, A. Mettu and S.V.U.M. Prasad, Eur. J. Med. Chem., 143, 1277 (2018); https://doi.org/10.1016/j.ejmech.2017.10.021
M. Jaiteh, A. Zeifman, M. Saarinen, P. Svenningsson, J. Bréa, M.I. Loza and J. Carlsson, J. Med. Chem., 61, 5269 (2018); https://doi.org/10.1021/acs.jmedchem.8b00204
S.W. Park, B.H. Lee, S.H. Song and M.K. Kim, J. Struct. Biol., 215, 107939 (2023); https://doi.org/10.1016/j.jsb.2023.107939
S.A. Hollingsworth and P.A. Karplus, Biomol. Concepts, 1, 271 (2010); https://doi.org/10.1515/bmc.2010.022
S. Agnihotry, R.K. Pathak, D.B. Singh, A. Tiwari and I. Hussain, Eds.: D.B. Singh and R.K. Pathak, Protein Structure Prediction, In: Bioinformatics Methods and Applications Academic Press, pp. 177-188 (2022); https://doi.org/10.1016/B978-0-323-89775-4.00023-7
N.S. Pagadala, K. Syed and J. Tuszynski, Biophys. Rev., 9, 91 (2017); https://doi.org/10.1007/s12551-016-0247-1