Copyright (c) 2024 Miss, Dr, Dr, Miss
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Novel ZrO2/g-C3N4/CuFe2O4 Nanocomposite and Its Efficient Photocatalytic Degradation of Amoxicillin, Chlorpyrifos and Methylene Blue
Corresponding Author(s) : Poovan Shanmugavelan
Asian Journal of Chemistry,
Vol. 36 No. 3 (2024): Vol 36 Issue 3, 2024
Abstract
A novel ZrO2/g-C3N4/CuFe2O4 nanocomposite was synthesized by wet impregnation method and its photocatalytic degradation efficacy is studied on the organic pollutants viz. antibiotic drug (amoxicillin), pesticide (chlorpyrifos) and dye (methylene blue) under both dark and visible light conditions in liquid medium. The synthesized nanocomposite and its photocatalytic degradation studies were well characterized using XRD, TEM, EDS, XPS, UV-Vis DRS, PL, BET and EIS analytical techniques. Among three organic pollutants, the photocatalytic degradation of methylene blue pollutant is higher (99.5%, k = 0.0533 min-1) than that of chlorpyrifos (97.3% k = 0.0367 min-1) and amoxicillin (64.6%, k = 0.0109 min-1) under visible light exposure for 90 min using ZrO2/g-C3N4/CuFe2O4 nanocomposite as a photocatalyst. The nanocomposite showed excellent degradation efficiency under the irradiation of visible light while the degradation under dark condition is highly limited. As a control experiment the individual g-C3N4, ZrO2 and CuFe2O4 components of the nanocomposite under the same conditions possess limited degradation efficiency than that of ZrO2/g-C3N4/CuFe2O4 nanocomposite. A possible photo-degradation mechanism is also proposed. Efficient treatment of wastewater could be possible with this novel nanocomposite ZrO2/g-C3N4/CuFe2O4 due to its high stability and reusability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Verma and A.K. Haritash, Environ. Technol. Innov., 20, 101072 (2020); https://doi.org/10.1016/j.eti.2020.101072
- D. Huang, X. Sun, Y. Liu, H. Ji, W. Liu, C.-C. Wang, W. Ma and Z. Cai, Chin. Chem. Lett., 32, 2787 (2021); https://doi.org/10.1016/j.cclet.2021.01.012
- A. Mirzaei, Z. Chen, F. Haghighat and L. Yerushalmi, Appl. Catal. B, (2018); https://doi.org/10.1016/j.apcatb.2018.10.009
- T.S. Anirudhan, F. Shainy, V.C. Sekhar and V.S. Athira, J. Photochem. Photobiol. Chem., 418, 113333 (2021); https://doi.org/10.1016/j.jphotochem.2021.113333
- Z. Liu, W. Zhang, Q. Liang, J. Huang, B. Shao, Y. Liu, Y. Liu, Q. He, T. Wu, J. Gong, M. Yan and W. Tang, Environ. Sci. Pollut. Res. Int., 28, 42683 (2021); https://doi.org/10.1007/s11356-021-13694-z
- A.E. Hassan, M.H. Elsayed, M.S.A. Hussien, M.G. Mohamed, S.-W. Kuo, H.-H. Chou, I.S. Yahia, T.A. Mohamed and Z. Wen, Int. J. Hydrogen Energy, 48, 9620 (2023); https://doi.org/10.1016/j.ijhydene.2022.12.009
- I. Ali and J.-O. Kim, Mater. Chem. Phys., 261, 124246 (2021); https://doi.org/10.1016/j.matchemphys.2021.124246
- S. Khan, J.S. Park and T. Ishihara, Catalysts, 13, 196 (2023); https://doi.org/10.3390/catal13010196
- Yu. Lin, X. Liu, Z. Liu and Y. Xu, Small, 17, 2103348 (2021); https://doi.org/10.1002/smll.202103348
- A.M. Ismael, A.N. El-Shazly, S.E. Gaber, M.M. Rashad, A.H. Kamel and S.S.M. Hassan, RSC Adv., 10, 34806 (2020); https://doi.org/10.1039/D0RA02874F
- S. Munir, A. Rasheed, S. Zulfiqar, M. Aadil, P.O. Agboola, I. Shakir and M.F. Warsi, Ceram. Int., 46, 29182 (2020); https://doi.org/10.1016/j.ceramint.2020.08.091
- M. Sayadi, H. Ahmadpour and S. Homaeigohar, Nanomaterials, 11, 298 (2021); https://doi.org/10.3390/nano11020298
- T. Dou, L. Zang, Y. Zhang, Z. Sun, L. Sun and C. Wang, Mater. Lett., 244, 151 (2019); https://doi.org/10.1016/j.matlet.2019.02.066
- R. Rajendran, S. Vignesh, V. Raj, B. Palanivel, A.M. Ali, M.A. Sayed and M. Shkir, J. Alloys Compd., 894, 162498 (2021); https://doi.org/10.1016/j.jallcom.2021.162498
- B.M.B. Ensano, L. Borea, V. Naddeo, V. Belgiorno, M.D.G. de Luna, M. Balakrishnan and F.C. Ballesteros Jr., J. Hazard. Mater., 361, 367 (2019); https://doi.org/10.1016/j.jhazmat.2018.07.093
- E.A. Serna-Galvis, J. Silva-Agredo, A.M. Botero-Coy, A. Moncayo-Lasso, F. Hernández and R.A. Torres-Palma, Sci. Total Environ., 670, 623 (2019); https://doi.org/10.1016/j.scitotenv.2019.03.153
- H. Nadais, X. Li, N. Alves, C. Couras, H.R. Andersen, I. Angelidaki and Y. Zhang, Chem. Eng. J., 338, 401 (2018); https://doi.org/10.1016/j.cej.2018.01.014
- F. Martínez, R. Molina, I. Rodríguez, M.I. Pariente, Y. Segura and J.A. Melero, J. Environ. Chem. Eng., 6, 485 (2018); https://doi.org/10.1016/j.jece.2017.12.008
- Y. Ouarda, B. Tiwari, A. Azaïs, M.-A. Vaudreuil, S.D. Ndiaye, P. Drogui, R.D. Tyagi, S. Sauvé, M. Desrosiers, G. Buelna and R. Dubé, Chemosphere, 193, 160 (2018); https://doi.org/10.1016/j.chemosphere.2017.11.010
- A.G. Trovó, R.F. Pupo Nogueira, A. Agüera, A.R. Fernandez-Alba and S. Malato, Water Res., 45, 1394 (2011); https://doi.org/10.1016/j.watres.2010.10.029
- J.Y. Shen, Z.S. Cui, Z.W. Wu, J.X. Wang, Q. Ning and X.M. Lü, Mater. Res. Innov., 19, 187 (2014); https://doi.org/10.1179/1433075X14Y.0000000240
- G. Palanisamy, K. Bhuvaneswari, A. Chinnadurai, G. Bharathi and T. Pazhanivel, J. Phys. Chem. Solids, (2019); https://doi.org/10.1016/j.jpcs.2019.109231
- P. Deng, M. Gan, X. Zhang, Z. Li and Y. Hou, Int. J. Hydrogen Energy, 44, 30084 (2019); https://doi.org/10.1016/j.ijhydene.2019.09.129
- D. Zhu and Q. Zhou, Appl. Catal. B, 281, 119474 (2021); https://doi.org/10.1016/j.apcatb.2020.119474
- S. Zinatloo-Ajabshir and M. Salavati-Niasari, J. Mol. Liq., 216, 545 (2016); https://doi.org/10.1016/j.molliq.2016.01.062
- K. Prasad, D.V. Pinjari, A.B. Pandit and S.T. Mhaske, Ultrason. Sonochem., 18, 1128 (2011); https://doi.org/10.1016/j.ultsonch.2011.03.001
- S.A. Soomro, I.H. Gul, H. Naseer, S. Marwat and M. Mujahid, Curr. Nanosci., 15, 420 (2018); https://doi.org/10.2174/1573413714666181115122016
- Z. Zhu, X. Li, Q. Zhao, Y. Li, C. Sun and Y. Cao, Mater. Res. Bull., 48, 2927 (2013); https://doi.org/10.1016/j.materresbull.2013.04.042
- D.P. Ojha, H.P. Karki and H.J. Kim, J. Ind. Eng. Chem., 61, 87 (2018); https://doi.org/10.1016/j.jiec.2017.12.004
- V.B. Shevale, A.G. Dhodamani and S.D. Delekar, ACS Omega, 5, 1098 (2020); https://doi.org/10.1021/acsomega.9b03260
- M. Khan, H. Farah, N. Iqbal, T. Noor, M.Z.B. Amjad and S.S. Ejaz Bukhari, RSC Adv., 11, 37575 (2021); https://doi.org/10.1039/D1RA07796A
- M.B. Tahir, M. Sagir and K. Shahzad, J. Hazard. Mater., 363, 205 (2019); https://doi.org/10.1016/j.jhazmat.2018.09.055
- E.V. Siddhardhan, S. Surender and T. Arumanayagam, Inorg. Chem. Commun., 147, 110244 (2023); https://doi.org/10.1016/j.inoche.2022.110244
- R. Li, M. Cai, Z. Xie, Q. Zhang, Y. Zeng, H. Liu, G. Liu and W. Lv, Appl. Catal. B, 244, 974 (2018); https://doi.org/10.1016/j.apcatb.2018.12.043
- X. Cao, X. Yang, T. Wu, B. Tang and P. Guo, J. Mater. Civ. Eng., 31, 04019031 (2019); https://doi.org/10.1061/(ASCE)MT.1943-5533.0002580
- Y. Yao, F. Lu, Y. Zhu, F. Wei, X. Liu, C. Lian and S. Wang, J. Hazard. Mater., 297, 224 (2015); https://doi.org/10.1016/j.jhazmat.2015.04.046
- M. Zarei, Water-Energy Nexus, 3, 135 (2020); https://doi.org/10.1016/j.wen.2020.08.002
- L. Kong, J. Wang, X. Mu, R. Li, X. Li, X. Fan, P. Song, F. Ma and M. Sun, Mater. Today Energy, 13, 11 (2019); https://doi.org/10.1016/j.mtener.2019.04.011
- H. Liu, J. Liang, S. Fu, L. Li, J. Cui, P. Gao, F. Zhao and J. Zhou, Colloids Surf. A Physicochem. Eng. Asp., 591, 124552 (2020); https://doi.org/10.1016/j.colsurfa.2020.124552
- D. Gao, Y. Liu, P. Liu, M. Si and D. Xue, Sci. Rep., 6, 35768 (2016); https://doi.org/10.1038/srep35768
- D. Rathore, S. Mitra, R. Kurchania and R.K. Pandey, J. Mater. Sci. Mater. Electron., 29, 1925 (2017); https://doi.org/10.1007/s10854-017-8102-0
- K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina and B. Al-Najar, J. Phys. Chem. Solids, 115, 162 (2017); https://doi.org/10.1016/j.jpcs.2017.12.024
- J. Jin, H. Yan, Q. Bie, G. Wang and G. Su, IOP Conf. Ser. Earth Environ. Sci., 825, 012034 (2021); https://doi.org/10.1088/1755-1315/825/1/012034
- J. Huang, D. Li, R. Li, P. Chen, Q. Zhang, H. Liu, W. Lv, G. Liu and Y. Feng, J. Hazard. Mater., 386, 121634 (2019); https://doi.org/10.1016/j.jhazmat.2019.121634
- L. Zheng, X. Xiao, Y. Li and W. Zhang, Trans. Nonferrous Met. Soc. China, 27, 1117 (2017); https://doi.org/10.1016/S1003-6326(17)60130-4
- X. Guo, Y. Xu, K. Wang, F. Zha, X. Tang and H. Tian, Res. Chem. Intermed., 46, 853 (2019); https://doi.org/10.1007/s11164-019-03994-y
- O. Alduhaish, M. Ubaidullah, A.M. Al-Enizi, N. Alhokbany, S.M. Alshehri and J. Ahmed, Sci. Rep., 9, 14139 (2019); https://doi.org/10.1038/s41598-019-50780-2
- S. Keerthana, R. Yuvakkumar, G. Ravi, S. Pavithra, M. Thambidurai, C. Dang and D. Velauthapillai, Environ. Res., 200, 111528 (2021); https://doi.org/10.1016/j.envres.2021.111528
- D. Balarak, N. Mengelizadeh, P. Rajiv and K. Chandrika, Environ. Sci. Pollut. Res. Int., 28, 49743 (2021); https://doi.org/10.1007/s11356-021-13525-1
- M.N. Arifin, K.M.R. Karim, H. Abdullah and M.R. Khan, Bull. Chem. React. Eng. Catal., 14, 219 (2019); https://doi.org/10.9767/bcrec.14.1.3616.219-227
- R. Zhao, X. Sun, Y. Jin, J. Han, L. Wang and F. Liu, J. Mater. Sci., 54, 5445 (2019); https://doi.org/10.1007/s10853-018-03278-7
- J. Zhao, X. Chen, Y. Zhou, H. Tian, Q. Guo and X. Hu, Res. Chem. Intermed., 46, 1805 (2020); https://doi.org/10.1007/s11164-019-04064-z
- I.F. Silva, I.F. Teixeira, R.D.F. Rios, G.M. do Nascimento, I. Binatti, H.F.V. Victória, K. Krambrock, L.A. Cury, A.P.C. Teixeira and H.O. Stumpf, J. Hazard. Mater., 401, 123713 (2021); https://doi.org/10.1016/j.jhazmat.2020.123713
- J. Farner Budarz, E.M. Cooper, C. Gardner, E. Hodzic, P.L. Ferguson, C.K. Gunsch and M.R. Wiesner, J. Hazard. Mater., 372, 61 (2019); https://doi.org/10.1016/j.jhazmat.2017.12.028
- R. Rajendran, K. Varadharajan, V. Jayaraman, B. Singaram and J. Jeyaram, Appl. Nanosci., 8, 61 (2018); https://doi.org/10.1007/s13204-018-0652-9
- D. Balarak, T.J. Al-Musawi, I.A. Mohammed and H. Abasizadeh, SN Appl. Sci., 2, 1015 (2020); https://doi.org/10.1007/s42452-020-2841-x
- K. Vignesh, A. Suganthi, B.-K. Min and M. Kang, J. Mol. Catal. Chem., 395, 373 (2014); https://doi.org/10.1016/j.molcata.2014.08.040
- D. Zhang, S. Cui and J. Yang, J. Alloys Compd., 708, 1141 (2017); https://doi.org/10.1016/j.jallcom.2017.03.095
- S. Narzary, K. Alamelu, V. Raja and B.M. Jaffar Ali, J. Environ. Chem. Eng., 8, 104373 (2020); https://doi.org/10.1016/j.jece.2020.104373
References
M. Verma and A.K. Haritash, Environ. Technol. Innov., 20, 101072 (2020); https://doi.org/10.1016/j.eti.2020.101072
D. Huang, X. Sun, Y. Liu, H. Ji, W. Liu, C.-C. Wang, W. Ma and Z. Cai, Chin. Chem. Lett., 32, 2787 (2021); https://doi.org/10.1016/j.cclet.2021.01.012
A. Mirzaei, Z. Chen, F. Haghighat and L. Yerushalmi, Appl. Catal. B, (2018); https://doi.org/10.1016/j.apcatb.2018.10.009
T.S. Anirudhan, F. Shainy, V.C. Sekhar and V.S. Athira, J. Photochem. Photobiol. Chem., 418, 113333 (2021); https://doi.org/10.1016/j.jphotochem.2021.113333
Z. Liu, W. Zhang, Q. Liang, J. Huang, B. Shao, Y. Liu, Y. Liu, Q. He, T. Wu, J. Gong, M. Yan and W. Tang, Environ. Sci. Pollut. Res. Int., 28, 42683 (2021); https://doi.org/10.1007/s11356-021-13694-z
A.E. Hassan, M.H. Elsayed, M.S.A. Hussien, M.G. Mohamed, S.-W. Kuo, H.-H. Chou, I.S. Yahia, T.A. Mohamed and Z. Wen, Int. J. Hydrogen Energy, 48, 9620 (2023); https://doi.org/10.1016/j.ijhydene.2022.12.009
I. Ali and J.-O. Kim, Mater. Chem. Phys., 261, 124246 (2021); https://doi.org/10.1016/j.matchemphys.2021.124246
S. Khan, J.S. Park and T. Ishihara, Catalysts, 13, 196 (2023); https://doi.org/10.3390/catal13010196
Yu. Lin, X. Liu, Z. Liu and Y. Xu, Small, 17, 2103348 (2021); https://doi.org/10.1002/smll.202103348
A.M. Ismael, A.N. El-Shazly, S.E. Gaber, M.M. Rashad, A.H. Kamel and S.S.M. Hassan, RSC Adv., 10, 34806 (2020); https://doi.org/10.1039/D0RA02874F
S. Munir, A. Rasheed, S. Zulfiqar, M. Aadil, P.O. Agboola, I. Shakir and M.F. Warsi, Ceram. Int., 46, 29182 (2020); https://doi.org/10.1016/j.ceramint.2020.08.091
M. Sayadi, H. Ahmadpour and S. Homaeigohar, Nanomaterials, 11, 298 (2021); https://doi.org/10.3390/nano11020298
T. Dou, L. Zang, Y. Zhang, Z. Sun, L. Sun and C. Wang, Mater. Lett., 244, 151 (2019); https://doi.org/10.1016/j.matlet.2019.02.066
R. Rajendran, S. Vignesh, V. Raj, B. Palanivel, A.M. Ali, M.A. Sayed and M. Shkir, J. Alloys Compd., 894, 162498 (2021); https://doi.org/10.1016/j.jallcom.2021.162498
B.M.B. Ensano, L. Borea, V. Naddeo, V. Belgiorno, M.D.G. de Luna, M. Balakrishnan and F.C. Ballesteros Jr., J. Hazard. Mater., 361, 367 (2019); https://doi.org/10.1016/j.jhazmat.2018.07.093
E.A. Serna-Galvis, J. Silva-Agredo, A.M. Botero-Coy, A. Moncayo-Lasso, F. Hernández and R.A. Torres-Palma, Sci. Total Environ., 670, 623 (2019); https://doi.org/10.1016/j.scitotenv.2019.03.153
H. Nadais, X. Li, N. Alves, C. Couras, H.R. Andersen, I. Angelidaki and Y. Zhang, Chem. Eng. J., 338, 401 (2018); https://doi.org/10.1016/j.cej.2018.01.014
F. Martínez, R. Molina, I. Rodríguez, M.I. Pariente, Y. Segura and J.A. Melero, J. Environ. Chem. Eng., 6, 485 (2018); https://doi.org/10.1016/j.jece.2017.12.008
Y. Ouarda, B. Tiwari, A. Azaïs, M.-A. Vaudreuil, S.D. Ndiaye, P. Drogui, R.D. Tyagi, S. Sauvé, M. Desrosiers, G. Buelna and R. Dubé, Chemosphere, 193, 160 (2018); https://doi.org/10.1016/j.chemosphere.2017.11.010
A.G. Trovó, R.F. Pupo Nogueira, A. Agüera, A.R. Fernandez-Alba and S. Malato, Water Res., 45, 1394 (2011); https://doi.org/10.1016/j.watres.2010.10.029
J.Y. Shen, Z.S. Cui, Z.W. Wu, J.X. Wang, Q. Ning and X.M. Lü, Mater. Res. Innov., 19, 187 (2014); https://doi.org/10.1179/1433075X14Y.0000000240
G. Palanisamy, K. Bhuvaneswari, A. Chinnadurai, G. Bharathi and T. Pazhanivel, J. Phys. Chem. Solids, (2019); https://doi.org/10.1016/j.jpcs.2019.109231
P. Deng, M. Gan, X. Zhang, Z. Li and Y. Hou, Int. J. Hydrogen Energy, 44, 30084 (2019); https://doi.org/10.1016/j.ijhydene.2019.09.129
D. Zhu and Q. Zhou, Appl. Catal. B, 281, 119474 (2021); https://doi.org/10.1016/j.apcatb.2020.119474
S. Zinatloo-Ajabshir and M. Salavati-Niasari, J. Mol. Liq., 216, 545 (2016); https://doi.org/10.1016/j.molliq.2016.01.062
K. Prasad, D.V. Pinjari, A.B. Pandit and S.T. Mhaske, Ultrason. Sonochem., 18, 1128 (2011); https://doi.org/10.1016/j.ultsonch.2011.03.001
S.A. Soomro, I.H. Gul, H. Naseer, S. Marwat and M. Mujahid, Curr. Nanosci., 15, 420 (2018); https://doi.org/10.2174/1573413714666181115122016
Z. Zhu, X. Li, Q. Zhao, Y. Li, C. Sun and Y. Cao, Mater. Res. Bull., 48, 2927 (2013); https://doi.org/10.1016/j.materresbull.2013.04.042
D.P. Ojha, H.P. Karki and H.J. Kim, J. Ind. Eng. Chem., 61, 87 (2018); https://doi.org/10.1016/j.jiec.2017.12.004
V.B. Shevale, A.G. Dhodamani and S.D. Delekar, ACS Omega, 5, 1098 (2020); https://doi.org/10.1021/acsomega.9b03260
M. Khan, H. Farah, N. Iqbal, T. Noor, M.Z.B. Amjad and S.S. Ejaz Bukhari, RSC Adv., 11, 37575 (2021); https://doi.org/10.1039/D1RA07796A
M.B. Tahir, M. Sagir and K. Shahzad, J. Hazard. Mater., 363, 205 (2019); https://doi.org/10.1016/j.jhazmat.2018.09.055
E.V. Siddhardhan, S. Surender and T. Arumanayagam, Inorg. Chem. Commun., 147, 110244 (2023); https://doi.org/10.1016/j.inoche.2022.110244
R. Li, M. Cai, Z. Xie, Q. Zhang, Y. Zeng, H. Liu, G. Liu and W. Lv, Appl. Catal. B, 244, 974 (2018); https://doi.org/10.1016/j.apcatb.2018.12.043
X. Cao, X. Yang, T. Wu, B. Tang and P. Guo, J. Mater. Civ. Eng., 31, 04019031 (2019); https://doi.org/10.1061/(ASCE)MT.1943-5533.0002580
Y. Yao, F. Lu, Y. Zhu, F. Wei, X. Liu, C. Lian and S. Wang, J. Hazard. Mater., 297, 224 (2015); https://doi.org/10.1016/j.jhazmat.2015.04.046
M. Zarei, Water-Energy Nexus, 3, 135 (2020); https://doi.org/10.1016/j.wen.2020.08.002
L. Kong, J. Wang, X. Mu, R. Li, X. Li, X. Fan, P. Song, F. Ma and M. Sun, Mater. Today Energy, 13, 11 (2019); https://doi.org/10.1016/j.mtener.2019.04.011
H. Liu, J. Liang, S. Fu, L. Li, J. Cui, P. Gao, F. Zhao and J. Zhou, Colloids Surf. A Physicochem. Eng. Asp., 591, 124552 (2020); https://doi.org/10.1016/j.colsurfa.2020.124552
D. Gao, Y. Liu, P. Liu, M. Si and D. Xue, Sci. Rep., 6, 35768 (2016); https://doi.org/10.1038/srep35768
D. Rathore, S. Mitra, R. Kurchania and R.K. Pandey, J. Mater. Sci. Mater. Electron., 29, 1925 (2017); https://doi.org/10.1007/s10854-017-8102-0
K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina and B. Al-Najar, J. Phys. Chem. Solids, 115, 162 (2017); https://doi.org/10.1016/j.jpcs.2017.12.024
J. Jin, H. Yan, Q. Bie, G. Wang and G. Su, IOP Conf. Ser. Earth Environ. Sci., 825, 012034 (2021); https://doi.org/10.1088/1755-1315/825/1/012034
J. Huang, D. Li, R. Li, P. Chen, Q. Zhang, H. Liu, W. Lv, G. Liu and Y. Feng, J. Hazard. Mater., 386, 121634 (2019); https://doi.org/10.1016/j.jhazmat.2019.121634
L. Zheng, X. Xiao, Y. Li and W. Zhang, Trans. Nonferrous Met. Soc. China, 27, 1117 (2017); https://doi.org/10.1016/S1003-6326(17)60130-4
X. Guo, Y. Xu, K. Wang, F. Zha, X. Tang and H. Tian, Res. Chem. Intermed., 46, 853 (2019); https://doi.org/10.1007/s11164-019-03994-y
O. Alduhaish, M. Ubaidullah, A.M. Al-Enizi, N. Alhokbany, S.M. Alshehri and J. Ahmed, Sci. Rep., 9, 14139 (2019); https://doi.org/10.1038/s41598-019-50780-2
S. Keerthana, R. Yuvakkumar, G. Ravi, S. Pavithra, M. Thambidurai, C. Dang and D. Velauthapillai, Environ. Res., 200, 111528 (2021); https://doi.org/10.1016/j.envres.2021.111528
D. Balarak, N. Mengelizadeh, P. Rajiv and K. Chandrika, Environ. Sci. Pollut. Res. Int., 28, 49743 (2021); https://doi.org/10.1007/s11356-021-13525-1
M.N. Arifin, K.M.R. Karim, H. Abdullah and M.R. Khan, Bull. Chem. React. Eng. Catal., 14, 219 (2019); https://doi.org/10.9767/bcrec.14.1.3616.219-227
R. Zhao, X. Sun, Y. Jin, J. Han, L. Wang and F. Liu, J. Mater. Sci., 54, 5445 (2019); https://doi.org/10.1007/s10853-018-03278-7
J. Zhao, X. Chen, Y. Zhou, H. Tian, Q. Guo and X. Hu, Res. Chem. Intermed., 46, 1805 (2020); https://doi.org/10.1007/s11164-019-04064-z
I.F. Silva, I.F. Teixeira, R.D.F. Rios, G.M. do Nascimento, I. Binatti, H.F.V. Victória, K. Krambrock, L.A. Cury, A.P.C. Teixeira and H.O. Stumpf, J. Hazard. Mater., 401, 123713 (2021); https://doi.org/10.1016/j.jhazmat.2020.123713
J. Farner Budarz, E.M. Cooper, C. Gardner, E. Hodzic, P.L. Ferguson, C.K. Gunsch and M.R. Wiesner, J. Hazard. Mater., 372, 61 (2019); https://doi.org/10.1016/j.jhazmat.2017.12.028
R. Rajendran, K. Varadharajan, V. Jayaraman, B. Singaram and J. Jeyaram, Appl. Nanosci., 8, 61 (2018); https://doi.org/10.1007/s13204-018-0652-9
D. Balarak, T.J. Al-Musawi, I.A. Mohammed and H. Abasizadeh, SN Appl. Sci., 2, 1015 (2020); https://doi.org/10.1007/s42452-020-2841-x
K. Vignesh, A. Suganthi, B.-K. Min and M. Kang, J. Mol. Catal. Chem., 395, 373 (2014); https://doi.org/10.1016/j.molcata.2014.08.040
D. Zhang, S. Cui and J. Yang, J. Alloys Compd., 708, 1141 (2017); https://doi.org/10.1016/j.jallcom.2017.03.095
S. Narzary, K. Alamelu, V. Raja and B.M. Jaffar Ali, J. Environ. Chem. Eng., 8, 104373 (2020); https://doi.org/10.1016/j.jece.2020.104373