Copyright (c) 2024 Kanti Ranjan Nath Bhowmik Kanti
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Structural Characterization, Reactivity and Bioactivity Studies of Some Binuclear Salen Type Schiff Base Complexes of Manganese(III)
Corresponding Author(s) : K.R. Nath Bhowmik Bhowmik
Asian Journal of Chemistry,
Vol. 36 No. 3 (2024): Vol 36 Issue 3, 2024
Abstract
Four new phenoxy bridged binuclear Salen type Schiff base complexes of manganese(III), [MnLX]2 with tetradentate Schiff base, H2L [H2L = N,N′-O-phenylene bis(salicylaldimine)] containing anionic co-ligands, X (X = benzoate, p-hydroxy benzoate, p-aminobenzoate, 3,5-dinitrobenzoate) have been synthesized from manganese(II) acetate, Schiff base (H2L) and the corresponding co-ligands in methanol medium. Schiff base ligand (H2L) was obtained in situ by condensation of salicylaldehyde and o-phenylenediamine in aqueous methanol. Elemental analyses, FT-IR, molar conductance, UV-visible spectroscopic studies and magnetic moment measurements at room temperature were used to characterize the binuclear Schiff base complexes. The IR spectra of [MnLX]2 (X = benzoate, p-hydroxy benzoate, p-aminobenzoate, 3,5-dinitrobenzoate) complexes showed the characteristic absorptions due to coordinated azomethine nitrogen and phenolic oxygen atoms of the Schiff base. In addition, IR spectra of the compounds also suggest coordination of the co-ligands namely benzoate, p-hydroxy benzoate, p-aminobenzoate, 3,5-dinitrobenzoate in the respective complexes. A consistent presence of a band at ca. 755 cm-1 in all the binuclear complexes arises due to (Mn-O-Mn) moiety originated from interactions of phenoxy oxygen and manganese atoms, resulted in dimeric structure of the compounds. The magnetic moment values ranging from 4.74-4.91 B.M. per manganese centre for the complexes suggest presence of Mn(III) ion in the complexes. The overall coordination geometry around the manganese centres is distorted octahedral. Redox behaviour of the synthesized complexes was ascertained from cyclic voltametric studies. The Schiff base complexes, [Mn(L)X]2 (X = p-aminobenzoate, 3,5-dinitrobenzoate) have demonstrated their catalytic potentials in oxidizing selective organic substrates namely cyclohexene and styrene by hydrogen peroxide as oxidant. The oxidized products were characterized as trans-cyclohexane 1,2-diol and styrene epoxide, respectively. Complex 4 demonstrated a considerable level of effectiveness against a wide variety of pathogenic microorganisms.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.G. Cozzi, Chem. Soc. Rev., 33, 410 (2004); https://doi.org/10.1039/B307853C
- M. Ohashi, T. Koshiyama, T. Ueno, M. Yanase, H. Fujii and Y. Watanabe, Angew. Chem. Int. Ed., 42, 1005 (2003); https://doi.org/10.1002/anie.200390256
- N. Yokoi, T. Ueno, M. Unno, T. Matsui, M. Ikeda-Saito and Y. Watanabe, Chem. Commun., 229 (2008); https://doi.org/10.1039/B713468A
- M. Marcos, J. L. Serrano, T. Sierra and M.J. Gimenez, Chem. Mater., 5, 1332 (1993); https://doi.org/10.1021/cm00033a025
- J.P. Costes, J.F. Lamère, C. Lepetit, P.G. Lacroix, F. Dahan and K. Nakatani, Inorg. Chem., 44, 1973 (2005); https://doi.org/10.1021/ic048578n
- N. Yoshida, K. Ichikawa and M. Shiro, J. Chem. Soc., Perkin Trans. 2, 17 (2000); https://doi.org/10.1039/A908041D
- M.S. Nair, D. Arish and R.S. Joseyphus, J. Saud. Chem. Soc., 16, 83 (2012); https://doi.org/10.1016/j.jscs.2010.11.002
- K.S. Kumar, S. Ganguly, R. Veerasamy and E. De Clercq, Eur. J. Med. Chem., 45, 5474 (2010); https://doi.org/10.1016/j.ejmech.2010.07.058
- N. Zhang, Y.-H. Fan, Z. Zhang, J. Zuo, P.-F. Zhang, Q. Wang, S.-B. Liu and C.-F. Bi, Inorg. Chem. Commun., 22, 68 (2012); https://doi.org/10.1016/j.inoche.2012.05.022
- S.J. Wezenberg and A.W. Kleij, Angew Chem., Int. Ed., 47, 2354 (2008); https://doi.org/10.1002/anie.200702468
- E.N. Jacobsen, in Eds.: I. Ojima, Catalytic Asymmetric Synthesis, VCH, Weinheim, p. 159 (1993).
- T. Katsuki, in Eds.: I. Ojima, Catalytic Asymmetric Synthesis, Wiley: New York, edn. 2, p. 287 (2000).
- S. Majumder, S. Hazra, S. Dutta, P. Biswas and S. Mohanta, Polyhedron, 28, 2473 (2009); https://doi.org/10.1016/j.poly.2009.04.034
- H. Miyasaka, R. Clérac, W. Wernsdorfer, L. Lecren, C. Bonhomme, K.-I. Sugiura and M. Yamashita, Angew. Chem., 116, 2861 (2004); https://doi.org/10.1002/anie.200353563
- H. Miyasaka, T. Nezu, K. Sugimoto, K.I. Sugiura, M. Yamashita and R. Clérac, Chem. Eur. J., 11, 1592 (2005); https://doi.org/10.1002/chem.200400946
- G. Bhargavi, M.V. Rajasekharan, J.P. Costes and J.P. Tuchagues, Polyhedron, 28, 1253 (2009); https://doi.org/10.1016/j.poly.2009.02.024
- G. Bhargavi, M.V. Rajasekharan and J.P. Tuchagues, Inorg. Chim. Acta, 362, 3247 (2009); https://doi.org/10.1016/j.ica.2009.02.032
- J. Nishijo, T. Yoshida and M. Enomoto, Polyhedron, 87, 233 (2015); https://doi.org/10.1016/j.poly.2014.11.015
- J.J.R. Frausto da Silva and R.J.P. Williams, The Biological Chemistry of the Elements. Oxford University Press (2001).
- V.L. Pecoraro, Manganese Radox Enzymes, VCH: New York (1992).
- M.S. Ray, R. Bhattacharya, L. Righi, G. Bocelli, G. Mukhopadhyay, S. Chaudhuri and A. Ghosh, Polyhedron, 22, 617 (2003); https://doi.org/10.1016/S0277-5387(02)01435-3
- S. Chattopadhyay, M. S. Ray, S. Chaudhuri, G. Mukhopadhyay, G. Bocelli, A. Cantoni and A. Ghosh, Inorg. Chim. Acta, 359, 1367 (2006); https://doi.org/10.1016/j.ica.2005.12.011
- M.S. Ray, A. Ghosh, R. Bhattacharya, G. Mukhopadhyay, M.G.B. Drew and J. Ribas, Dalton. Trans., 252 (2004); https://doi.org/10.1039/B311499F
- H.D. Bian, J.-Y. Xu, W. Gu, S.-P. Yan, P. Cheng, D.-Z. Liao and Z.-H. Jiang, Polyhedron, 22, 2927 (2003); https://doi.org/10.1016/S0277-5387(03)00395-4
- Q.-B. Li, Y.-J. Han, G.Q. Zhao and L.W. Xue, Acta. Chim. Slov., 64, 500 (2017); https://doi.org/10.17344/acsi.2017.3416
- C.T. Brewer and G. Brewer, J. Chem. Soc. Chem. Commun., 854 (1988); https://doi.org/10.1039/C39880000854
- M. Kwiatkowski, E. Kwiatkowski, A. Olechnowiez, D.M. Ho and E. Deutsch, J. Chem. Soc., Dalton Trans., 3063 (1990); https://doi.org/10.1039/DT9900003063
- R. Karmakar, C.R. Choudhury, G. Bravic, J.-P. Sutter and S. Mitra, Polyhedron, 23, 949 (2004); https://doi.org/10.1016/j.poly.2003.12.012
- L. Lecren, W. Wernsdorfer, Y. -G. Li, A. Vindigi, H. Miyasaka and R. Clerac, J. Am. Chem. Soc., 129, 5045 (2007); https://doi.org/10.1016/j.poly.2003.12.012
- S. Das, M. Das, S. Laha, K. Rajak, I. Choudhuri, N. Bhattacharjee, B. C. Samanta and T. Maity, J. Mol. Struct., 1263, 133214 (2022); https://doi.org/10.1016/j.molstruc.2022.133214
- P. Paul, K.R.N. Bhowmik, S. Roy, D. Deb, N. Das, M. Bhattacharjee, R.N.D. Purkayastha, L. Male, V. Mckee, R. Pallepogu, D. Maiti, A. Banza, A. Fontera and A.M. Kirillov, Polyhedron, 151, 407 (2018); https://doi.org/10.1016/j.poly.2018.05.043
- H. Miyasaka, A. Saitoh and S. Abe, Coord. Chem. Rev., 251, 2622 (2007); https://doi.org/10.1016/j.ccr.2007.07.028
- Z. Lu, M. Yuan, F. Pan, S. Gao, D. Zhang and D. Zhu, Inorg. Chem., 45, 3538 (2006); https://doi.org/10.1021/ic051648l
- Q. Wu, J.C.X. Zhou, J. R. Sun, M.F. Huang, X. Xu, T. Li and H. Tian, Crystals, 10, 334 (2020); https://doi.org/10.3390/cryst10040334
- H.H. Ko, J. H. Lim, H. C. Kim and C. S. Hong, Inorg. Chem., 45, 8847 (2006); https://doi.org/10.1021/ic061415+
- G. Bhargavi, M.V. Rajasekharan and J.-P. Tuchagues, Inorg. Chim. Acta, 362, 3247 (2009); https://doi.org/10.1016/j.ica.2009.02.032
- H. Miyasaka, K. Mizushima, S. Furukawa, K. Sugiura, T. Ishii and M. Yamashita, Mol. Cryst. Liq. Cryst., 379, 171 (2002); https://doi.org/10.1080/713738598
- H. Miyasaka, R. Clerac, R.T. Ishii, H. Chang, S. Kitagawa and M. Yamashita, J. Chem. Soc., Dalton Trans., 1528 (2002); https://doi.org/10.1039/B111094M
- H. Shyu, H. We and Y. Wang, Inorg. Chim. Acta., 290, 8 (1999); https://doi.org/10.1016/S0020-1693(99)00089-4
- L. Rigamonti, P. Zardi, S. Carlino, F. Demartin, C. Castellano, L. Pigani, A. Ponti, A. M. Ferretti and A. Pasini, Int. J. Mol. Sci., 21, 7882 (2020); https://doi.org/10.3390/ijms21217882
- A. Barry, in Eds: V. Lorian, Antibiotics in Laboratory Medicine, Williams and Wilkins, Baltimore, MD, USA, pp. 1–16 (1991).
- T. Rosu, M. Negoiu and S. Pasculescu, Eur. J. Med. Chem. 45, 774 (2010); https://doi.org/10.1016/j.ejmech.2009.10.034
- A.I. Vogel, A Textbook of Quantitative Inorganic Analysis, Longman Green and Co. Ltd., New York, edn. 3 (1964).
- S. Majumder, S. Hazra, S. Dutta, P. Biswas and S. Mohanta, Polyhedron, 28, 2473 (2009); https://doi.org/10.1016/j.poly.2009.04.034
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley Interscience: London, edn. 2 (1986).
- V. Gomez, M. Corbella and G. Aullon, Inorg. Chem., 49, 1471 (2010); https://doi.org/10.1021/ic901719t
- J.G. Grasselli and W.M. Ritchey, Atlas of Spectral Data and Physical Constants for Organic Compounds’, CRC Press: Ohio, USA, vol. 3, p. 119, 263 (1973).
- W. Kemp, Organic Spectroscopy, Palgrave Publishers: New York, edn. 3, p. 210 (1991).
References
P.G. Cozzi, Chem. Soc. Rev., 33, 410 (2004); https://doi.org/10.1039/B307853C
M. Ohashi, T. Koshiyama, T. Ueno, M. Yanase, H. Fujii and Y. Watanabe, Angew. Chem. Int. Ed., 42, 1005 (2003); https://doi.org/10.1002/anie.200390256
N. Yokoi, T. Ueno, M. Unno, T. Matsui, M. Ikeda-Saito and Y. Watanabe, Chem. Commun., 229 (2008); https://doi.org/10.1039/B713468A
M. Marcos, J. L. Serrano, T. Sierra and M.J. Gimenez, Chem. Mater., 5, 1332 (1993); https://doi.org/10.1021/cm00033a025
J.P. Costes, J.F. Lamère, C. Lepetit, P.G. Lacroix, F. Dahan and K. Nakatani, Inorg. Chem., 44, 1973 (2005); https://doi.org/10.1021/ic048578n
N. Yoshida, K. Ichikawa and M. Shiro, J. Chem. Soc., Perkin Trans. 2, 17 (2000); https://doi.org/10.1039/A908041D
M.S. Nair, D. Arish and R.S. Joseyphus, J. Saud. Chem. Soc., 16, 83 (2012); https://doi.org/10.1016/j.jscs.2010.11.002
K.S. Kumar, S. Ganguly, R. Veerasamy and E. De Clercq, Eur. J. Med. Chem., 45, 5474 (2010); https://doi.org/10.1016/j.ejmech.2010.07.058
N. Zhang, Y.-H. Fan, Z. Zhang, J. Zuo, P.-F. Zhang, Q. Wang, S.-B. Liu and C.-F. Bi, Inorg. Chem. Commun., 22, 68 (2012); https://doi.org/10.1016/j.inoche.2012.05.022
S.J. Wezenberg and A.W. Kleij, Angew Chem., Int. Ed., 47, 2354 (2008); https://doi.org/10.1002/anie.200702468
E.N. Jacobsen, in Eds.: I. Ojima, Catalytic Asymmetric Synthesis, VCH, Weinheim, p. 159 (1993).
T. Katsuki, in Eds.: I. Ojima, Catalytic Asymmetric Synthesis, Wiley: New York, edn. 2, p. 287 (2000).
S. Majumder, S. Hazra, S. Dutta, P. Biswas and S. Mohanta, Polyhedron, 28, 2473 (2009); https://doi.org/10.1016/j.poly.2009.04.034
H. Miyasaka, R. Clérac, W. Wernsdorfer, L. Lecren, C. Bonhomme, K.-I. Sugiura and M. Yamashita, Angew. Chem., 116, 2861 (2004); https://doi.org/10.1002/anie.200353563
H. Miyasaka, T. Nezu, K. Sugimoto, K.I. Sugiura, M. Yamashita and R. Clérac, Chem. Eur. J., 11, 1592 (2005); https://doi.org/10.1002/chem.200400946
G. Bhargavi, M.V. Rajasekharan, J.P. Costes and J.P. Tuchagues, Polyhedron, 28, 1253 (2009); https://doi.org/10.1016/j.poly.2009.02.024
G. Bhargavi, M.V. Rajasekharan and J.P. Tuchagues, Inorg. Chim. Acta, 362, 3247 (2009); https://doi.org/10.1016/j.ica.2009.02.032
J. Nishijo, T. Yoshida and M. Enomoto, Polyhedron, 87, 233 (2015); https://doi.org/10.1016/j.poly.2014.11.015
J.J.R. Frausto da Silva and R.J.P. Williams, The Biological Chemistry of the Elements. Oxford University Press (2001).
V.L. Pecoraro, Manganese Radox Enzymes, VCH: New York (1992).
M.S. Ray, R. Bhattacharya, L. Righi, G. Bocelli, G. Mukhopadhyay, S. Chaudhuri and A. Ghosh, Polyhedron, 22, 617 (2003); https://doi.org/10.1016/S0277-5387(02)01435-3
S. Chattopadhyay, M. S. Ray, S. Chaudhuri, G. Mukhopadhyay, G. Bocelli, A. Cantoni and A. Ghosh, Inorg. Chim. Acta, 359, 1367 (2006); https://doi.org/10.1016/j.ica.2005.12.011
M.S. Ray, A. Ghosh, R. Bhattacharya, G. Mukhopadhyay, M.G.B. Drew and J. Ribas, Dalton. Trans., 252 (2004); https://doi.org/10.1039/B311499F
H.D. Bian, J.-Y. Xu, W. Gu, S.-P. Yan, P. Cheng, D.-Z. Liao and Z.-H. Jiang, Polyhedron, 22, 2927 (2003); https://doi.org/10.1016/S0277-5387(03)00395-4
Q.-B. Li, Y.-J. Han, G.Q. Zhao and L.W. Xue, Acta. Chim. Slov., 64, 500 (2017); https://doi.org/10.17344/acsi.2017.3416
C.T. Brewer and G. Brewer, J. Chem. Soc. Chem. Commun., 854 (1988); https://doi.org/10.1039/C39880000854
M. Kwiatkowski, E. Kwiatkowski, A. Olechnowiez, D.M. Ho and E. Deutsch, J. Chem. Soc., Dalton Trans., 3063 (1990); https://doi.org/10.1039/DT9900003063
R. Karmakar, C.R. Choudhury, G. Bravic, J.-P. Sutter and S. Mitra, Polyhedron, 23, 949 (2004); https://doi.org/10.1016/j.poly.2003.12.012
L. Lecren, W. Wernsdorfer, Y. -G. Li, A. Vindigi, H. Miyasaka and R. Clerac, J. Am. Chem. Soc., 129, 5045 (2007); https://doi.org/10.1016/j.poly.2003.12.012
S. Das, M. Das, S. Laha, K. Rajak, I. Choudhuri, N. Bhattacharjee, B. C. Samanta and T. Maity, J. Mol. Struct., 1263, 133214 (2022); https://doi.org/10.1016/j.molstruc.2022.133214
P. Paul, K.R.N. Bhowmik, S. Roy, D. Deb, N. Das, M. Bhattacharjee, R.N.D. Purkayastha, L. Male, V. Mckee, R. Pallepogu, D. Maiti, A. Banza, A. Fontera and A.M. Kirillov, Polyhedron, 151, 407 (2018); https://doi.org/10.1016/j.poly.2018.05.043
H. Miyasaka, A. Saitoh and S. Abe, Coord. Chem. Rev., 251, 2622 (2007); https://doi.org/10.1016/j.ccr.2007.07.028
Z. Lu, M. Yuan, F. Pan, S. Gao, D. Zhang and D. Zhu, Inorg. Chem., 45, 3538 (2006); https://doi.org/10.1021/ic051648l
Q. Wu, J.C.X. Zhou, J. R. Sun, M.F. Huang, X. Xu, T. Li and H. Tian, Crystals, 10, 334 (2020); https://doi.org/10.3390/cryst10040334
H.H. Ko, J. H. Lim, H. C. Kim and C. S. Hong, Inorg. Chem., 45, 8847 (2006); https://doi.org/10.1021/ic061415+
G. Bhargavi, M.V. Rajasekharan and J.-P. Tuchagues, Inorg. Chim. Acta, 362, 3247 (2009); https://doi.org/10.1016/j.ica.2009.02.032
H. Miyasaka, K. Mizushima, S. Furukawa, K. Sugiura, T. Ishii and M. Yamashita, Mol. Cryst. Liq. Cryst., 379, 171 (2002); https://doi.org/10.1080/713738598
H. Miyasaka, R. Clerac, R.T. Ishii, H. Chang, S. Kitagawa and M. Yamashita, J. Chem. Soc., Dalton Trans., 1528 (2002); https://doi.org/10.1039/B111094M
H. Shyu, H. We and Y. Wang, Inorg. Chim. Acta., 290, 8 (1999); https://doi.org/10.1016/S0020-1693(99)00089-4
L. Rigamonti, P. Zardi, S. Carlino, F. Demartin, C. Castellano, L. Pigani, A. Ponti, A. M. Ferretti and A. Pasini, Int. J. Mol. Sci., 21, 7882 (2020); https://doi.org/10.3390/ijms21217882
A. Barry, in Eds: V. Lorian, Antibiotics in Laboratory Medicine, Williams and Wilkins, Baltimore, MD, USA, pp. 1–16 (1991).
T. Rosu, M. Negoiu and S. Pasculescu, Eur. J. Med. Chem. 45, 774 (2010); https://doi.org/10.1016/j.ejmech.2009.10.034
A.I. Vogel, A Textbook of Quantitative Inorganic Analysis, Longman Green and Co. Ltd., New York, edn. 3 (1964).
S. Majumder, S. Hazra, S. Dutta, P. Biswas and S. Mohanta, Polyhedron, 28, 2473 (2009); https://doi.org/10.1016/j.poly.2009.04.034
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley Interscience: London, edn. 2 (1986).
V. Gomez, M. Corbella and G. Aullon, Inorg. Chem., 49, 1471 (2010); https://doi.org/10.1021/ic901719t
J.G. Grasselli and W.M. Ritchey, Atlas of Spectral Data and Physical Constants for Organic Compounds’, CRC Press: Ohio, USA, vol. 3, p. 119, 263 (1973).
W. Kemp, Organic Spectroscopy, Palgrave Publishers: New York, edn. 3, p. 210 (1991).