Copyright (c) 2024 Jamunasri N., Aswetha Iyer, Murugan Sevanan, Lakshmi Prabha M., Reya Issac
This work is licensed under a Creative Commons Attribution 4.0 International License.
Metalloproteomics: Unraveling the Metal Binding Proteins of Diverse Metal-Resistant Bacteria
Corresponding Author(s) : Reya Issac
Asian Journal of Chemistry,
Vol. 36 No. 3 (2024): Vol 36 Issue 3, 2024
Abstract
The release of metals into the environment raises serious concerns about their harmful effects on both the wildlife and human health. The biosphere is experiencing with the pervasive presence of heavy metal pollutants such as arsenic (As), cadmium (Cd), mercury (Hg), lead (Pb), chromium (Cr), copper (Cu) and nickel (Ni), which pose significant environmental challenges. While certain metals are essential for regulating fundamental metabolic processes and upholding the overall physiology of microorganisms, excessive exposure to heavy metals can be detrimental to their survival and function. As a result of their remarkable adaptability, microorganisms, particularly bacteria such as Pseudomonas fluorescens, Escherichia coli, Serratia marcescens, Bacillus cereus and Alcaligenes sp., have evolved sophisticated defence mechanisms to combat the stress caused by heavy metals. One such process is the creation of metal-binding proteins (MBPs), which may bind and sequester metals, thus significantly lowering their toxicity in bacteria. Metalloproteomics, a subfield of metallomics, focuses on the discovery and characterization of such metal-binding proteins (MBPs) in metal-resistant bacteria, resulting in the opening of the doors for innovative bioremediation techniques and therapeutic treatments against bacterial diseases. This review explores the intriguing world of MBPs in metal-resistant bacteria and emphasizes their significant role in metal resistance, detoxification and homeostasis. Furthermore, metallochaperones in bacteria have been extensively studied using the metalloproteomic methodologies and techniques utilized in metal-binding proteins. This study also provides useful information on the interactions between these metallochaperones and different MBPs, which advances our understanding of how bacteria respond to exposure to such heavy metals.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Csuros and C. Csuros, Environmental Sampling and Analysis for Metals, Lewis Publishers, Boca Raton, FL, USA (2002).
- Kiran, R. Bharti and R. Sharma, Mater. Today Proc., 51, 880 (2022); https://doi.org/10.1016/j.matpr.2021.06.278
- C.M. Laureano-Anzaldo, M.E. González-López, A.A. Pérez-Fonseca, L.E. Cruz-Barba and J.R. Robledo-Ortíz, Carbohydr. Polym., 252, 117195 (2021); https://doi.org/10.1016/j.carbpol.2020.117195
- M. Balali-Mood, K. Naseri, Z. Tahergorabi, M.R. Khazdair and M. Sadeghi, Front. Pharmacol., 12, 643972 (2021); https://doi.org/10.3389/fphar.2021.643972
- X. Li, M. Sun, L. Zhang, R.D. Finlay, R. Liu and B. Lian, Ecotoxicol. Environ. Saf., 246, 114193 (2022); https://doi.org/10.1016/j.ecoenv.2022.114193
- T.D. Thai, W. Lim and D. Na, Front. Bioeng. Biotechnol., 11, 1178680 (2023); https://doi.org/10.3389/fbioe.2023.1178680
- S. González-Henao and T. Ghneim-Herrera, Front. Environ. Sci., 9, 604216 (2021); https://doi.org/10.3389/fenvs.2021.604216
- A. Adeyinka, P. Sunday Mike and S.S. Terseer, Int. J. Curr. Microbiol. Appl. Sci., 12, 138 (2023); https://doi.org/10.20546/ijcmas.2023.1203.018
- D.A. Bukhari and A. Rehman, Curr. Opin. Green Sustain. Chem., 40, 100785 (2023); https://doi.org/10.1016/j.cogsc.2023.100785
- R.K. Kushwaha, S.M. Joshi, R. Bajaj, A. Mastan, V. Kumar, H. Patel, S. Jayashree and S.P. Chaudhary, Funct. Plant Biol., 50, 482 (2023); https://doi.org/10.1071/FP22263
- H. Kinoshita, Methods Mol. Biol., 1887, 145 (2019); https://doi.org/10.1007/978-1-4939-8907-2_13
- P. Sharma, A.K. Pandey, A. Udayan and S. Kumar, Bioresour. Technol., 326, 124750 (2021); https://doi.org/10.1016/j.biortech.2021.124750
- S. Sun, M. Wang, J. Xiang, Y. Shao, L. Li, R.C.A.A. Sedjoah, G. Wu, J. Zhou and Z. Xin, Int. J. Biol. Macromol., 238, 124062 (2023); https://doi.org/10.1016/j.ijbiomac.2023.124062
- H. Yoshida, T. Shimada and A. Ishihama, Int. J. Mol. Sci., 24, 4717 (2023); https://doi.org/10.3390/ijms24054717
- A. Mikhaylina, A.Z. Ksibe, D.J. Scanlan and C.A. Blindauer, Biochem. Soc. Trans., 46, 983 (2018); https://doi.org/10.1042/BST20170228
- A.J. Guerra and D.P. Giedroc, 35 (2013); https://doi.org/10.1016/B978-0-08-097774-4.00305-3
- D. Osman and J.S. Cavet, Nat. Prod. Rep., 27, 668 (2010); https://doi.org/10.1039/B906682A
- K. Furukawa, A. Ramesh, Z. Zhou, Z. Weinberg, T. Vallery, W.C. Winkler and R.R. Breaker, Mol. Cell, 57, 1088 (2015); https://doi.org/10.1016/j.molcel.2015.02.009
- D. Gupta, S. Satpati, A. Dixit and R. Ranjan, Appl. Microbiol. Biotechnol., 103, 5411 (2019); https://doi.org/10.1007/s00253-019-09852-6
- P.L. Hagedoorn, Proteomes, 3, 424 (2015); https://doi.org/10.3390/proteomes3040424
- X. Sun, C. Xiao, R. Ge, X. Yin, H. Li, N. Li, X. Yang, Y. Zhu, X. He and Q.-Y. He, Proteomics, 11, 3288 (2011); https://doi.org/10.1002/pmic.201000396
- E. Goethe, A. Gieseke, K. Laarmann, J. Luhrs and R. Goethe, J. Bacteriol., 203, e00049-21 (2021); https://doi.org/10.1128/JB.00049-21
- J. Briffa, E. Sinagra and R. Blundell, Heliyon, 6, e04691 (2020); https://doi.org/10.1016/j.heliyon.2020.e04691
- S. Mitra, A.J. Chakraborty, A.M. Tareq, T. Emran, F. Bin, A. Nainu, A. Khusro, M. Idris, M.U. Khandaker, H. Osman, F.A. Alhumaydhi and J. Simal-Gandara, J. King Saud Univ. Sci., 34, 101865 (2022); https://doi.org/10.1016/j.jksus.2022.101865
- N. Akhtar, M.I. Syakir Ishak, S.A. Bhawani and K. Umar, Water, 13, 2660 (2021); https://doi.org/10.3390/w13192660
- J. Saha, S. Adhikary and A. Pal, Geomicrobiol. J., 39, 891 (2022); https://doi.org/10.1080/01490451.2022.2089781
- X. Hao, J. Zhu, C. Rensing, Y. Liu, S. Gao, W. Chen, Q. Huang and Y.-R. Liu, Comput. Struct. Biotechnol. J., 19, 94 (2021); https://doi.org/10.1016/j.csbj.2020.12.006
- R. Dixit, D. Wasiullah, D. Malaviya, K. Pandiyan, U. Singh, A. Sahu, R. Shukla, B. Singh, J. Rai, P. Sharma, H. Lade and D. Paul, Sustainability, 7, 2189 (2015); https://doi.org/10.3390/su7022189
- N. Thirumoorthy, K. T. M. Kumar, A. S. Sundar, L. Panayappan and M. Chatterjee, World J. Gastroenterol., 13, 993 (2007); https://doi.org/10.3748/wjg.v13.i7.993
- K. Mathivanan, J.U. Chandirika, A. Vinothkanna, H. Yin, X. Liu and D. Meng, Ecotoxicol. Environ. Saf., 226, 112863 (2021); https://doi.org/10.1016/j.ecoenv.2021.112863
- P. Vats, U.J. Kaur and P. Rishi, J. Appl. Microbiol., 132, 4058 (2022); https://doi.org/10.1111/jam.15492
- A.C. Carroll and A. Wong, Can. J. Microbiol., 64, 293 (2018); https://doi.org/10.1139/cjm-2017-0609
- A. Escamilla-Rodríguez, S. Carlos-Hernández and L. Díaz-Jiménez, Water, 13, 2766 (2021); https://doi.org/10.3390/w13192766
- W. Yin, Y. Wang, L. Liu and J. He, Int. J. Mol. Sci., 20, 3423 (2019); https://doi.org/10.3390/ijms20143423
- M. Medfu Tarekegn, F. Zewdu Salilih and A.I. Ishetu, Cogent Food Agric., 6, 1783174 (2020); https://doi.org/10.1080/23311932.2020.1783174
- P. Chandrangsu, C. Rensing and J.D. Helmann, Nat. Rev. Microbiol., 15, 338 (2017); https://doi.org/10.1038/nrmicro.2017.15
- P. Chandrangsu, C. Rensing and J.D. Helmann, Nat. Rev. Microbiol., 15, 379 (2017); https://doi.org/10.1038/nrmicro.2017.53
- C. Parsons, S. Lee and S. Kathariou, Mol. Microbiol., 113, 560 (2020); https://doi.org/10.1111/mmi.14470
- B.M. Staehlin, J.G. Gibbons, A. Rokas, T.V. O’Halloran and J.C. Slot, Genome Biol. Evol., 8, 811 (2016); https://doi.org/10.1093/gbe/evw031
- L. Banci, I. Bertini, K.S. McGreevy and A. Rosato, Nat. Prod. Rep., 27, 695 (2010); https://doi.org/10.1039/b906678k
- U.O. Edet, I.U. Bassey and A.P. Joseph, Heliyon, 9, e13457 (2023); https://doi.org/10.1016/j.heliyon.2023.e13457
- V. Kumar, A. Kumari, M. Pandey and M. Sharma, Molecular Mechanism of Radio-Resistance and Heavy Metal Tolerance Adaptation In Microbes, In: Microbial Extremozymes Novel Sources and Industrial Applications, Academic Press, Chap. 21, pp. 275-293 (2022); https://doi.org/10.1016/B978-0-12-822945-3.00003-8
- G. Porcheron, A. Garénaux, J. Proulx, M. Sabri and C.M. Dozois, Front. Cell. Infect. Microbiol., 3, 1 (2013); https://doi.org/10.3389/fcimb.2013.00090
- C.J. Murray, K.S. Ikuta, F. Sharara, L. Swetschinski, G. Robles Aguilar, A. Gray, C. Han, C. Bisignano, P. Rao, E. Wool, S.C. Johnson, A.J. Browne, M.G. Chipeta, F. Fell, S. Hackett, G. Haines-Woodhouse, B.H. Kashef Hamadani, E.A.P. Kumaran, B. McManigal, S. Achalapong, R. Agarwal, S. Akech, S. Albertson, J. Amuasi, J. Andrews, A. Aravkin, E. Ashley, F.-X. Babin, F. Bailey, S. Baker, B. Basnyat, A. Bekker, R. Bender, J.A. Berkley, A. Bethou, J. Bielicki, S. Boonkasidecha, J. Bukosia, C. Carvalheiro, C. Castañeda-Orjuela, V. Chansamouth, S. Chaurasia, S. Chiurchiù, F. Chowdhury, R. Clotaire Donatien, A.J. Cook, B. Cooper, T.R. Cressey, E. Criollo-Mora, M. Cunningham, S. Darboe, N.P.J. Day, M. De Luca, K. Dokova, A. Dramowski, S.J. Dunachie, T. Duong Bich, T. Eckmanns, D. Eibach, A. Emami, N. Feasey, N. Fisher-Pearson, K. Forrest, C. Garcia, D. Garrett, P. Gastmeier, A.Z. Giref, R.C. Greer, V. Gupta, S. Haller, A. Haselbeck, S.I. Hay, M. Holm, S. Hopkins, Y. Hsia, K.C. Iregbu, J. Jacobs, D. Jarovsky, F. Javanmardi, A.W.J. Jenney, M. Khorana, S. Khusuwan, N. Kissoon, E. Kobeissi, T. Kostyanev, F. Krapp, R. Krumkamp, A. Kumar, H.H. Kyu, C. Lim, K. Lim, D. Limmathurotsakul, M.J. Loftus, M. Lunn, J. Ma, A. Manoharan, F. Marks, J. May, M. Mayxay, N. Mturi, T. Munera-Huertas, P. Musicha, L.A. Musila, M.M. Mussi-Pinhata, R.N. Naidu, T. Nakamura, R. Nanavati, S. Nangia, P. Newton, C. Ngoun, A. Novotney, D. Nwakanma, C.W. Obiero, T.J. Ochoa, A. Olivas-Martinez, P. Olliaro, E. Ooko, E. Ortiz-Brizuela, P. Ounchanum, G.D. Pak, J.L. Paredes, A.Y. Peleg, C. Perrone, T. Phe, K. Phommasone, N. Plakkal, A. Ponce-de-Leon, M. Raad, T. Ramdin, S. Rattanavong, A. Riddell, T. Roberts, J.V. Robotham, A. Roca, V.D. Rosenthal, K.E. Rudd, N. Russell, H.S. Sader, W. Saengchan, J. Schnall, J.A.G. Scott, S. Seekaew, M. Sharland, M. Shivamallappa, J. Sifuentes-Osornio, A.J. Simpson, N. Steenkeste, A.J. Stewardson, T. Stoeva, N. Tasak, A. Thaiprakong, G. Thwaites, C. Tigoi, C. Turner, P. Turner, H.R. van Doorn, S. Velaphi, A. Vongpradith, M. Vongsouvath, H. Vu, T. Walsh, J.L. Walson, S. Waner, T. Wangrangsimakul, P. Wannapinij, T. Wozniak, T.E.M.W. Young Sharma, K.C. Yu, P. Zheng, B. Sartorius, A.D. Lopez, A. Stergachis, C. Moore, C. Dolecek and M. Naghavi, Lancet, 399, 629 (2022); https://doi.org/10.1016/S0140-6736(21)02724-0
- J.L. Hobman and L.C. Crossman, J. Med. Microbiol., 64, 471 (2015); https://doi.org/10.1099/jmm.0.023036-0
- M.-R. Meini, L.J. González and A.J. Vila, Future Microbiol., 8, 947 (2013); https://doi.org/10.2217/fmb.13.34
- M. Ellerman and J.C. Arthur, Free Rad. Biol. Med., 105, 68 (2017); https://doi.org/10.1016/j.freeradbiomed.2016.10.489
- I.J. Schalk, C. Rigouin and J. Godet, Environ. Microbiol., 22, 1447 (2020); https://doi.org/10.1111/1462-2920.14937
- M. Remenár, A. Kamlárova, J. Harichova, M. Zámocky and P. Ferianc, Pol. J. Microbiol., 67, 191 (2018); https://doi.org/10.21307/pjm-2018-022
- C. Yuan, P. Li, C. Qing, Z. Kou and H. Wang, Front. Microbiol., 13, 817891 (2022); https://doi.org/10.3389/fmicb.2022.817891
- J. Daniels and E. Spencer, in eds.: M.E. and M.A. Peterson, Bacterial Infections, In: Small Animal Pediatrics. Elsevier; Saint Louis, MO, USA, edn. 1, pp. 113–118 (2011).
- S.Z. Abbas, M. Rafatullah, K. Hossain, N. Ismail, H.A. Tajarudin and H.P.S. Abdul Khalil, Int. J. Environ. Sci. Technol., 2017, 243 (2017); https://doi.org/10.1007/s13762-017-1400-5
- P.K. Singh, M. Tang, S. Kumar and A.K. Shrivastava, Arch. Microbiol., 200, 463 (2018); https://doi.org/10.1007/s00203-017-1462-2
- G. Din, A. Farooqi, W. Sajjad, M. Irfan, S. Gul and A. Ali Shah, J. Basic Microbiol., 61, 230 (2021); https://doi.org/10.1002/jobm.202000538
- Y. Sheng, X. Yang, Y. Lian, B. Zhang, X. He, W. Xu and K. Huang, Environ. Toxicol. Pharmacol., 46, 286 (2016); https://doi.org/10.1016/j.etap.2016.08.008
- S.M. Damo, T.E. Kehl-Fie, N. Sugitani, M.E. Holt, S. Rathi, W.J. Murphy, Y. Zhang, C. Betz, L. Hench, G. Fritz, E.P. Skaar and W.J. Chazin, Proc. Natl. Acad. Sci. USA, 110, 3841 (2013); https://doi.org/10.1073/pnas.1220341110.
- T.G. Nakashige, E.M. Zygiel, C.L. Drennan and E.M. Nolan, J. Am. Chem. Soc., 139, 8828 (2017); https://doi.org/10.1021/jacs.7b01212
- C.A. Navarro, D. Von Bernath, C. Martínez-Bussenius, R.A. Castillo and C.A. Jerez, Appl. Environ. Microbiol., 82, 1015 (2016); https://doi.org/10.1128/AEM.02810-15
- K. Peters, M. Pazos, Z. Edoo, J. Hugonnet, A.M. Martorana, A. Polissi, M.S. VanNieuwenhze, M. Arthur and W. Vollmer, Proc. Natl. Acad. Sci. USA, 115, 10786 (2018); https://doi.org/10.1073/pnas.1809285115
- V. Cappello, L. Marchetti, P. Parlanti, S. Landi, I. Tonazzini, M. Cecchini, V. Piazza and M. Gemmi, Sci. Rep., 6, 1 (2016); https://doi.org/10.1038/s41598-016-0001-8
- Z. Guo, J. Han, X.Y. Yang, K. Cao, K. He, G. Du, G. Zeng, L. Zhang, G. Yu, Z. Sun, Q.-Y. He and X. Sun, Metallomics, 7, 448 (2015); https://doi.org/10.1039/C4MT00276H
- K.Y. Djoko, Z. Xiao, D.L. Huffman and A.G. Wedd, Inorg. Chem., 46, 4560 (2007); https://doi.org/10.1021/ic070107o
- J.M. Parks and J.C. Smith, Methods Enzymol., 578, 103 (2016); https://doi.org/10.1016/bs.mie.2016.05.041
- M. Priyadarshanee, S. Chatterjee, S. Rath, H.R. Dash and S. Das, J. Hazard. Mater., 423, 126985 (2022); https://doi.org/10.1016/j.jhazmat.2021.126985
- V. Keshav, I. Achilonu, H.W. Dirr and K. Kondiah, Protein Expr. Purif., 158, 27 (2019); https://doi.org/10.1016/j.pep.2019.02.008
- H. Chen, J. Xu, W. Tan and L. Fang, Environ. Pollut., 250, 118 (2019); https://doi.org/10.1016/j.envpol.2019.03.123
- Q. Nong, K. Yuan, Z. Li, P. Chen, Y. Huang, L. Hu, J. Jiang, T. Luan and B. Chen, J. Environ. Sci. (China), 85, 46 (2019); https://doi.org/10.1016/j.jes.2019.04.022
- S. Liu, Y. Zheng, Y. Ma, A. Sarwar, X. Zhao, T. Luo and Z. Yang, Int. J. Mol. Sci., 20, 5540 (2019); https://doi.org/10.3390/ijms20225540
- T. Rosen, R.C. Hadley, A.T. Bozzi, D. Ocampo, J. Shearer and E.M. Nolan, Metallomics, 14, mfac001 (2022); https://doi.org/10.1093/mtomcs/mfac001
- H.G. Colaço, P.E. Santo, P.M. Matias, T.M. Bandeiras and J.B. Vicente, Metallomics, 8, 327 (2016); https://doi.org/10.1039/C5MT00291E
- R. Shirakawa, K. Ishikawa, K. Furuta and C. Kaito, PLoS One, 18, e0277162 (2023); https://doi.org/10.1371/journal.pone.0277162
- Y. Li, M.R. Sharma, R.K. Koripella, Y. Yang, P.S. Kaushal, Q. Lin, J.T. Wade, T.A. Gray, K.M. Derbyshire, R.K. Agrawal and A.K. Ojha, Proc. Natl. Acad. Sci. USA, 115, 8191 (2018); https://doi.org/10.1073/pnas.1804555115
- D.P. Neupane, D. Avalos, S. Fullam, H. Roychowdhury and E.T. Yukl, J. Biol. Chem., 292, 17496 (2017); https://doi.org/10.1074/jbc.M117.804799
- E. Parameswari, T. Ilakiya, V. Davamani, P. Kalaiselvi and S.P. Sebastian, in eds.: M.K. Nazal and H. Zhao, Metallothioneins: Diverse Protein Family to Bind Metallic Ions, In: Heavy Metals - Their Environmental Impacts and Mitigation, IntechOpen (2021); https://doi.org/10.5772/intechopen.97658
- S. Chatterjee, S. Kumari, S. Rath, M. Priyadarshanee and S. Das, Metallomics, 12, 1637 (2020); https://doi.org/10.1039/d0mt00140f
- F. Lehembre, D. Doillon, E. David, S. Perrotto, J. Baude, J. Foulon, L. Harfouche, L. Vallon, J. Poulain, C. Da Silva, P. Wincker, C. Oger-Desfeux, P. Richaud, J.V. Colpaert, M. Chalot, L. Fraissinet-Tachet, D. Blaudez and R. Marmeisse, Environ. Microbiol., 15, 2829 (2013); https://doi.org/10.1111/1462-2920.12143
- S. Murthy, G. Bali and S.K. Sarangi, Afr. J. Biotechnol., 10, 15966 (2011); https://doi.org/10.5897/AJB11.1645
- S.A. Loutet, A.C.K. Chan, M.J. Kobylarz, M.M. Verstraete, S. Pfaffen, B. Ye, A.L. Arrieta and M.E.P. Murphy, in eds.: J.O. Nriagu and E.P. Skaar, The Fate of Intracellular Metal Ions in Microbes, In: Trace Metals and Infectious Diseases, MIT Press, pp. 39–56 (2015).
- F.A. Vaccaro and C.L. Drennan, Metallomics, 14, mfac030 (2022); https://doi.org/10.1093/mtomcs/mfac030
- D.A. Capdevila, K.A. Edmonds and D.P. Giedroc, Essays Biochem., 61, 177 (2017); https://doi.org/10.1042/EBC20160076
- S. Ammendola, P. Pasquali, C. Pistoia, P. Petrucci, P. Petrarca, G. Rotilio and A. Battistoni, Infect. Immun., 75, 5867 (2007); https://doi.org/10.1128/IAI.00559-07
- E.V. Anyaogu, C.N. Umeaku, A.M. Isirue, O. S. Esiobu and N.U. Onuoha, GSC Biol. Pharm. Sci., 21, 88 (2022); https://doi.org/10.30574/gscbps.2022.21.2.0415
- H. Johnson, H. Cho, M. Choudhary, H. Johnson, H. Cho and M. Choudhary, Comput. Mol. Biosci., 9, 1 (2019); https://doi.org/10.4236/cmb.2019.91001
- Z. Guo, J. Han, X.Y. Yang, K. Cao, K. He, G. Du, G. Zeng, L. Zhang, G. Yu, Z. Sun, Q.Y. He and X. Sun, Metallomics, 7, 1613 (2015); https://doi.org/10.1039/C5MT90043C
- S. Nath, I. Sharma, B. Deb and V. Singh, Int. J. Bio-resource Stress Manag., 4, 266 (2013).
- M.A. Da Silva, A. Sussulini and M.A. Arruda, Expert Rev. Proteomics, 7, 387 (2010); https://doi.org/10.1586/epr.10.16
- P.L. Hagedoorn, in eds.: J.O. Nriagu and E.P. Skaar, Emerging Strategies in Metalloproteomics, In: Trace Metals and Infectious Diseases, Cambridge, MA, Chap. 18, pp. 311-322 (2015).
- X. Xu, H. Wang, H. Li and H. Sun, Chem. Lett., 49, 697 (2020); https://doi.org/10.1246/cl.200155
- M.-L. Chen and M. Wang, At., 43, 255 (2022); https://doi.org/10.46770/AS.2022.108
- M. Ouyang, J. Wu, Y. Yan and C.F. Ding, Anal. Lett., 56, 1016 (2023); https://doi.org/10.1080/00032719.2022.2116644
- R. Irankunda, J.A. Camaño Echavarría, C. Paris, L. Stefan, S. Desobry, K. Selmeczi, L. Muhr and L. Canabady-Rochelle, Separations, 9, 11 (2022); https://doi.org/10.3390/separations9110370
- P.L. Jiang, C. Wang, A. Diehl, R. Viner, C. Etienne, P. Nandhikonda, L. Foster, R.D. Bomgarden and F. Liu, Angew. Chem. Int. Ed., 61, e202113937 (2022); https://doi.org/10.1002/anie.202113937
- B. Steigenberger, R.J. Pieters, A.J.R. Heck and R.A. Scheltema, ACS Cent. Sci., 5, 1514 (2019); https://doi.org/10.1021/acscentsci.9b00416
- M. Montes-Bayón and J. Bettmer, Adv. Exp. Med. Biol., 1055, 111 (2018); https://doi.org/10.1007/978-3-319-90143-5_6
- P. Iadarola, Molecules, 24, 1133 (2019); https://doi.org/10.3390/molecules24061133
- I. Tolbatov, N. Re, C. Coletti and A. Marrone, Inorg. Chem., 59, 790 (2020); https://doi.org/10.1021/acs.inorgchem.9b03059
- M.A. Hough and R.L. Owen, Curr. Opin. Struct. Biol., 71, 232 (2021); https://doi.org/10.1016/j.sbi.2021.07.007
- A. Volbeda, Methods Mol. Biol., 1122, 189 (2014); https://doi.org/10.1007/978-1-62703-794-5_13
- T. Huxford, X-Ray Crystallography, In: Brenner’s Encyclopedia of Genetics, Elsevier Reference Collection in Life Sciences, pp. 366-368 (2013); https://doi.org/10.1016/B978-0-12-374984-0.01657-0
- H. Li and H. Sun, Top. Curr. Chem., 326, 69 (2011); https://doi.org/10.1007/128_2011_214
- M. Piccioli, Magnetochemistry, 6, 46 (2020); https://doi.org/10.3390/magnetochemistry6040046
- M.T. Stiebritz and Y. Hu, Methods Mol. Biol., 1876, 245 (2019); https://doi.org/10.1007/978-1-4939-8864-8_16
- J. Li, X. He, S. Gao, Y. Liang, Z. Qi, Q. Xi, Y. Zuo and Y. Xing, J. Mol. Biol., 435, 168117 (2023); https://doi.org/10.1016/j.jmb.2023.168117
- L.A. Kelley, S. Mezulis, C.M. Yates, M.N. Wass and M.J. Sternberg, Nat. Protoc., 10, 845 (2015); https://doi.org/10.1038/nprot.2015.053
- C.H. Lu, Y.F. Lin, J.J. Lin and C.S. Yu, PLoS One, 7, e39252 (2012); https://doi.org/10.1371/journal.pone.0039252
- M. Kapahi and S. Sachdeva, J. Health Pollut., 9, 1 (2019); https://doi.org/10.5696/2156-9614-9.24.191203
- B. Mariáh da Silva e Silva and C. Rodrigues e Silva, Rev. Virtual Quim., 12, 1097 (2020); https://doi.org/10.21577/1984-6835.20200090
- R.A. Hauser-Davis, R.M. Lopes, F.B. Mota and J.C. Moreira, Ecotoxicol. Environ. Saf., 140, 279 (2017); https://doi.org/10.1016/j.ecoenv.2017.02.024
- P.R. Sreedevi, K. Suresh and G. Jiang, J. Water Process Eng., 48, 102884 (2022); https://doi.org/10.1016/j.jwpe.2022.102884
- Y. Ma, Y. Wang, X.J. Shi, X.P. Chen and Z.L. Li, Environ. Sci., 43, 4911 (2022); https://doi.org/10.13227/J.HJKX.202112007
- Y. Zhou, H. Li and H. Sun, Annu. Rev. Biochem., 91, 449 (2022); https://doi.org/10.1146/annurev-biochem-040320-104628
- G. Wallace, I. Eisenberg, B. Robustelli, N. Dankner, L. Kenworthy, J. Giedd and A. Martin, J. Am. Acad. Child Adolesc. Psychiatry, 54, 464 (2015); https://doi.org/10.1016/j.jaac.2015.03.007
- S. Sher, S. Sultan and A. Rehman, Appl. Water Sci., 11, 69 (2021); https://doi.org/10.1007/s13201-021-01407-3
- S.Z. Abbas, M. Riaz, N. Ramzan, M.T. Zahid, F.R. Shakoori and M. Rafatullah, 45, 1309 (2014); https://doi.org/10.1590/S1517-83822014000400022
- A. Ali, M. Li, J. Su, Y. Li, Z. Wang, Y. Bai, E.F. Ali and S.M. Shaheen, Sci. Total Environ., 813, 152668 (2022); https://doi.org/10.1016/j.scitotenv.2021.152668
- H. Kumar, S. Ishtiyaq, P.J.C. Favas, M. Varun and M.S. Paul, J. Plant Growth Regul., 42, 3868 (2023); https://doi.org/10.1007/s00344-022-10853-5
- W.M.N.H. Kumari, S. Thiruchittampalam, M.S.S. Weerasinghe, N.V. Chandrasekharan and C.D. Wijayarathna, Appl. Microbiol. Biotechnol., 105, 2573 (2021); https://doi.org/10.1007/s00253-021-11193-2
- K. Yamamoto and Y. Tamaru, AMB Express, 6, 1 (2016); https://doi.org/10.1186/s13568-015-0169-5
- K. Gopi, H.N. Jinal, P. Prittesh, V.P. Kartik and N. Amaresan, Int. J. Phytoremediation, 22, 662 (2020); https://doi.org/10.1080/15226514.2019.1707161
- M. Noman, T. Ahmed, S. Hussain, M.B.K. Niazi, M. Shahid and F. Song, J. Hazard. Mater., 398, 123175 (2020); https://doi.org/10.1016/j.jhazmat.2020.123175
- T.M. Palanivel, N. Sivakumar, A. Al-Ansari and R. Victor, J. Environ. Manage., 253, 109706 (2020); https://doi.org/10.1016/j.jenvman.2019.109706
- F. Altimira, C. Yáñez, G. Bravo, M. González, L.A. Rojas and M. Seeger, BMC Microbiol., 12, 193 (2012); https://doi.org/10.1186/1471-2180-12-193
- H. Yao, H. Wang, J. Ji, A. Tan, Y. Song and Z. Chen, Toxics, 11, 261 (2023); https://doi.org/10.3390/toxics11030261
- J.P. Bourdineaud, G. Durn, B. Režun, A. Manceau and J. Hrenoviæ, Chemosphere, 248, 126002 (2020); https://doi.org/10.1016/j.chemosphere.2020.126002
- M. Agarwal, R.S. Rathore, C. Jagoe and A. Chauhan, Cells, 8, 309 (2019); https://doi.org/10.3390/cells8040309
- S.Z. Abbas, C.J. Yee, K. Hossain, A. Ahmad and M. Rafatullah, Desalination Water Treat., 138, 128 (2019); https://doi.org/10.5004/dwt.2019.23279
- T. Mo, D. Jiang, D. Shi, S. Xu, X. Huang and Z. Huang, Ecol. Process., 11, 20 (2022); https://doi.org/10.1186/s13717-021-00347-9
- A.S. Ayangbenro and O.O. Babalola, Sci. Rep., 10, 19660 (2020); https://doi.org/10.1038/s41598-020-75170-x
- R.K. Mohapatra, P.K. Parhi, S. Pandey, B.K. Bindhani, H. Thatoi and C.R. Panda, J. Environ. Manage., 247, 121 (2019); https://doi.org/10.1016/j.jenvman.2019.06.073
- Z. Teng, W. Shao, K. Zhang, Y. Huo and M. Li, J. Environ. Manage., 231, 189 (2019); https://doi.org/10.1016/j.jenvman.2018.10.012
- T. von Rozycki and D.H. Nies, Antonie van Leeuwenhoek, 96, 115 (2009); https://doi.org/10.1007/s10482-008-9284-5
References
M. Csuros and C. Csuros, Environmental Sampling and Analysis for Metals, Lewis Publishers, Boca Raton, FL, USA (2002).
Kiran, R. Bharti and R. Sharma, Mater. Today Proc., 51, 880 (2022); https://doi.org/10.1016/j.matpr.2021.06.278
C.M. Laureano-Anzaldo, M.E. González-López, A.A. Pérez-Fonseca, L.E. Cruz-Barba and J.R. Robledo-Ortíz, Carbohydr. Polym., 252, 117195 (2021); https://doi.org/10.1016/j.carbpol.2020.117195
M. Balali-Mood, K. Naseri, Z. Tahergorabi, M.R. Khazdair and M. Sadeghi, Front. Pharmacol., 12, 643972 (2021); https://doi.org/10.3389/fphar.2021.643972
X. Li, M. Sun, L. Zhang, R.D. Finlay, R. Liu and B. Lian, Ecotoxicol. Environ. Saf., 246, 114193 (2022); https://doi.org/10.1016/j.ecoenv.2022.114193
T.D. Thai, W. Lim and D. Na, Front. Bioeng. Biotechnol., 11, 1178680 (2023); https://doi.org/10.3389/fbioe.2023.1178680
S. González-Henao and T. Ghneim-Herrera, Front. Environ. Sci., 9, 604216 (2021); https://doi.org/10.3389/fenvs.2021.604216
A. Adeyinka, P. Sunday Mike and S.S. Terseer, Int. J. Curr. Microbiol. Appl. Sci., 12, 138 (2023); https://doi.org/10.20546/ijcmas.2023.1203.018
D.A. Bukhari and A. Rehman, Curr. Opin. Green Sustain. Chem., 40, 100785 (2023); https://doi.org/10.1016/j.cogsc.2023.100785
R.K. Kushwaha, S.M. Joshi, R. Bajaj, A. Mastan, V. Kumar, H. Patel, S. Jayashree and S.P. Chaudhary, Funct. Plant Biol., 50, 482 (2023); https://doi.org/10.1071/FP22263
H. Kinoshita, Methods Mol. Biol., 1887, 145 (2019); https://doi.org/10.1007/978-1-4939-8907-2_13
P. Sharma, A.K. Pandey, A. Udayan and S. Kumar, Bioresour. Technol., 326, 124750 (2021); https://doi.org/10.1016/j.biortech.2021.124750
S. Sun, M. Wang, J. Xiang, Y. Shao, L. Li, R.C.A.A. Sedjoah, G. Wu, J. Zhou and Z. Xin, Int. J. Biol. Macromol., 238, 124062 (2023); https://doi.org/10.1016/j.ijbiomac.2023.124062
H. Yoshida, T. Shimada and A. Ishihama, Int. J. Mol. Sci., 24, 4717 (2023); https://doi.org/10.3390/ijms24054717
A. Mikhaylina, A.Z. Ksibe, D.J. Scanlan and C.A. Blindauer, Biochem. Soc. Trans., 46, 983 (2018); https://doi.org/10.1042/BST20170228
A.J. Guerra and D.P. Giedroc, 35 (2013); https://doi.org/10.1016/B978-0-08-097774-4.00305-3
D. Osman and J.S. Cavet, Nat. Prod. Rep., 27, 668 (2010); https://doi.org/10.1039/B906682A
K. Furukawa, A. Ramesh, Z. Zhou, Z. Weinberg, T. Vallery, W.C. Winkler and R.R. Breaker, Mol. Cell, 57, 1088 (2015); https://doi.org/10.1016/j.molcel.2015.02.009
D. Gupta, S. Satpati, A. Dixit and R. Ranjan, Appl. Microbiol. Biotechnol., 103, 5411 (2019); https://doi.org/10.1007/s00253-019-09852-6
P.L. Hagedoorn, Proteomes, 3, 424 (2015); https://doi.org/10.3390/proteomes3040424
X. Sun, C. Xiao, R. Ge, X. Yin, H. Li, N. Li, X. Yang, Y. Zhu, X. He and Q.-Y. He, Proteomics, 11, 3288 (2011); https://doi.org/10.1002/pmic.201000396
E. Goethe, A. Gieseke, K. Laarmann, J. Luhrs and R. Goethe, J. Bacteriol., 203, e00049-21 (2021); https://doi.org/10.1128/JB.00049-21
J. Briffa, E. Sinagra and R. Blundell, Heliyon, 6, e04691 (2020); https://doi.org/10.1016/j.heliyon.2020.e04691
S. Mitra, A.J. Chakraborty, A.M. Tareq, T. Emran, F. Bin, A. Nainu, A. Khusro, M. Idris, M.U. Khandaker, H. Osman, F.A. Alhumaydhi and J. Simal-Gandara, J. King Saud Univ. Sci., 34, 101865 (2022); https://doi.org/10.1016/j.jksus.2022.101865
N. Akhtar, M.I. Syakir Ishak, S.A. Bhawani and K. Umar, Water, 13, 2660 (2021); https://doi.org/10.3390/w13192660
J. Saha, S. Adhikary and A. Pal, Geomicrobiol. J., 39, 891 (2022); https://doi.org/10.1080/01490451.2022.2089781
X. Hao, J. Zhu, C. Rensing, Y. Liu, S. Gao, W. Chen, Q. Huang and Y.-R. Liu, Comput. Struct. Biotechnol. J., 19, 94 (2021); https://doi.org/10.1016/j.csbj.2020.12.006
R. Dixit, D. Wasiullah, D. Malaviya, K. Pandiyan, U. Singh, A. Sahu, R. Shukla, B. Singh, J. Rai, P. Sharma, H. Lade and D. Paul, Sustainability, 7, 2189 (2015); https://doi.org/10.3390/su7022189
N. Thirumoorthy, K. T. M. Kumar, A. S. Sundar, L. Panayappan and M. Chatterjee, World J. Gastroenterol., 13, 993 (2007); https://doi.org/10.3748/wjg.v13.i7.993
K. Mathivanan, J.U. Chandirika, A. Vinothkanna, H. Yin, X. Liu and D. Meng, Ecotoxicol. Environ. Saf., 226, 112863 (2021); https://doi.org/10.1016/j.ecoenv.2021.112863
P. Vats, U.J. Kaur and P. Rishi, J. Appl. Microbiol., 132, 4058 (2022); https://doi.org/10.1111/jam.15492
A.C. Carroll and A. Wong, Can. J. Microbiol., 64, 293 (2018); https://doi.org/10.1139/cjm-2017-0609
A. Escamilla-Rodríguez, S. Carlos-Hernández and L. Díaz-Jiménez, Water, 13, 2766 (2021); https://doi.org/10.3390/w13192766
W. Yin, Y. Wang, L. Liu and J. He, Int. J. Mol. Sci., 20, 3423 (2019); https://doi.org/10.3390/ijms20143423
M. Medfu Tarekegn, F. Zewdu Salilih and A.I. Ishetu, Cogent Food Agric., 6, 1783174 (2020); https://doi.org/10.1080/23311932.2020.1783174
P. Chandrangsu, C. Rensing and J.D. Helmann, Nat. Rev. Microbiol., 15, 338 (2017); https://doi.org/10.1038/nrmicro.2017.15
P. Chandrangsu, C. Rensing and J.D. Helmann, Nat. Rev. Microbiol., 15, 379 (2017); https://doi.org/10.1038/nrmicro.2017.53
C. Parsons, S. Lee and S. Kathariou, Mol. Microbiol., 113, 560 (2020); https://doi.org/10.1111/mmi.14470
B.M. Staehlin, J.G. Gibbons, A. Rokas, T.V. O’Halloran and J.C. Slot, Genome Biol. Evol., 8, 811 (2016); https://doi.org/10.1093/gbe/evw031
L. Banci, I. Bertini, K.S. McGreevy and A. Rosato, Nat. Prod. Rep., 27, 695 (2010); https://doi.org/10.1039/b906678k
U.O. Edet, I.U. Bassey and A.P. Joseph, Heliyon, 9, e13457 (2023); https://doi.org/10.1016/j.heliyon.2023.e13457
V. Kumar, A. Kumari, M. Pandey and M. Sharma, Molecular Mechanism of Radio-Resistance and Heavy Metal Tolerance Adaptation In Microbes, In: Microbial Extremozymes Novel Sources and Industrial Applications, Academic Press, Chap. 21, pp. 275-293 (2022); https://doi.org/10.1016/B978-0-12-822945-3.00003-8
G. Porcheron, A. Garénaux, J. Proulx, M. Sabri and C.M. Dozois, Front. Cell. Infect. Microbiol., 3, 1 (2013); https://doi.org/10.3389/fcimb.2013.00090
C.J. Murray, K.S. Ikuta, F. Sharara, L. Swetschinski, G. Robles Aguilar, A. Gray, C. Han, C. Bisignano, P. Rao, E. Wool, S.C. Johnson, A.J. Browne, M.G. Chipeta, F. Fell, S. Hackett, G. Haines-Woodhouse, B.H. Kashef Hamadani, E.A.P. Kumaran, B. McManigal, S. Achalapong, R. Agarwal, S. Akech, S. Albertson, J. Amuasi, J. Andrews, A. Aravkin, E. Ashley, F.-X. Babin, F. Bailey, S. Baker, B. Basnyat, A. Bekker, R. Bender, J.A. Berkley, A. Bethou, J. Bielicki, S. Boonkasidecha, J. Bukosia, C. Carvalheiro, C. Castañeda-Orjuela, V. Chansamouth, S. Chaurasia, S. Chiurchiù, F. Chowdhury, R. Clotaire Donatien, A.J. Cook, B. Cooper, T.R. Cressey, E. Criollo-Mora, M. Cunningham, S. Darboe, N.P.J. Day, M. De Luca, K. Dokova, A. Dramowski, S.J. Dunachie, T. Duong Bich, T. Eckmanns, D. Eibach, A. Emami, N. Feasey, N. Fisher-Pearson, K. Forrest, C. Garcia, D. Garrett, P. Gastmeier, A.Z. Giref, R.C. Greer, V. Gupta, S. Haller, A. Haselbeck, S.I. Hay, M. Holm, S. Hopkins, Y. Hsia, K.C. Iregbu, J. Jacobs, D. Jarovsky, F. Javanmardi, A.W.J. Jenney, M. Khorana, S. Khusuwan, N. Kissoon, E. Kobeissi, T. Kostyanev, F. Krapp, R. Krumkamp, A. Kumar, H.H. Kyu, C. Lim, K. Lim, D. Limmathurotsakul, M.J. Loftus, M. Lunn, J. Ma, A. Manoharan, F. Marks, J. May, M. Mayxay, N. Mturi, T. Munera-Huertas, P. Musicha, L.A. Musila, M.M. Mussi-Pinhata, R.N. Naidu, T. Nakamura, R. Nanavati, S. Nangia, P. Newton, C. Ngoun, A. Novotney, D. Nwakanma, C.W. Obiero, T.J. Ochoa, A. Olivas-Martinez, P. Olliaro, E. Ooko, E. Ortiz-Brizuela, P. Ounchanum, G.D. Pak, J.L. Paredes, A.Y. Peleg, C. Perrone, T. Phe, K. Phommasone, N. Plakkal, A. Ponce-de-Leon, M. Raad, T. Ramdin, S. Rattanavong, A. Riddell, T. Roberts, J.V. Robotham, A. Roca, V.D. Rosenthal, K.E. Rudd, N. Russell, H.S. Sader, W. Saengchan, J. Schnall, J.A.G. Scott, S. Seekaew, M. Sharland, M. Shivamallappa, J. Sifuentes-Osornio, A.J. Simpson, N. Steenkeste, A.J. Stewardson, T. Stoeva, N. Tasak, A. Thaiprakong, G. Thwaites, C. Tigoi, C. Turner, P. Turner, H.R. van Doorn, S. Velaphi, A. Vongpradith, M. Vongsouvath, H. Vu, T. Walsh, J.L. Walson, S. Waner, T. Wangrangsimakul, P. Wannapinij, T. Wozniak, T.E.M.W. Young Sharma, K.C. Yu, P. Zheng, B. Sartorius, A.D. Lopez, A. Stergachis, C. Moore, C. Dolecek and M. Naghavi, Lancet, 399, 629 (2022); https://doi.org/10.1016/S0140-6736(21)02724-0
J.L. Hobman and L.C. Crossman, J. Med. Microbiol., 64, 471 (2015); https://doi.org/10.1099/jmm.0.023036-0
M.-R. Meini, L.J. González and A.J. Vila, Future Microbiol., 8, 947 (2013); https://doi.org/10.2217/fmb.13.34
M. Ellerman and J.C. Arthur, Free Rad. Biol. Med., 105, 68 (2017); https://doi.org/10.1016/j.freeradbiomed.2016.10.489
I.J. Schalk, C. Rigouin and J. Godet, Environ. Microbiol., 22, 1447 (2020); https://doi.org/10.1111/1462-2920.14937
M. Remenár, A. Kamlárova, J. Harichova, M. Zámocky and P. Ferianc, Pol. J. Microbiol., 67, 191 (2018); https://doi.org/10.21307/pjm-2018-022
C. Yuan, P. Li, C. Qing, Z. Kou and H. Wang, Front. Microbiol., 13, 817891 (2022); https://doi.org/10.3389/fmicb.2022.817891
J. Daniels and E. Spencer, in eds.: M.E. and M.A. Peterson, Bacterial Infections, In: Small Animal Pediatrics. Elsevier; Saint Louis, MO, USA, edn. 1, pp. 113–118 (2011).
S.Z. Abbas, M. Rafatullah, K. Hossain, N. Ismail, H.A. Tajarudin and H.P.S. Abdul Khalil, Int. J. Environ. Sci. Technol., 2017, 243 (2017); https://doi.org/10.1007/s13762-017-1400-5
P.K. Singh, M. Tang, S. Kumar and A.K. Shrivastava, Arch. Microbiol., 200, 463 (2018); https://doi.org/10.1007/s00203-017-1462-2
G. Din, A. Farooqi, W. Sajjad, M. Irfan, S. Gul and A. Ali Shah, J. Basic Microbiol., 61, 230 (2021); https://doi.org/10.1002/jobm.202000538
Y. Sheng, X. Yang, Y. Lian, B. Zhang, X. He, W. Xu and K. Huang, Environ. Toxicol. Pharmacol., 46, 286 (2016); https://doi.org/10.1016/j.etap.2016.08.008
S.M. Damo, T.E. Kehl-Fie, N. Sugitani, M.E. Holt, S. Rathi, W.J. Murphy, Y. Zhang, C. Betz, L. Hench, G. Fritz, E.P. Skaar and W.J. Chazin, Proc. Natl. Acad. Sci. USA, 110, 3841 (2013); https://doi.org/10.1073/pnas.1220341110.
T.G. Nakashige, E.M. Zygiel, C.L. Drennan and E.M. Nolan, J. Am. Chem. Soc., 139, 8828 (2017); https://doi.org/10.1021/jacs.7b01212
C.A. Navarro, D. Von Bernath, C. Martínez-Bussenius, R.A. Castillo and C.A. Jerez, Appl. Environ. Microbiol., 82, 1015 (2016); https://doi.org/10.1128/AEM.02810-15
K. Peters, M. Pazos, Z. Edoo, J. Hugonnet, A.M. Martorana, A. Polissi, M.S. VanNieuwenhze, M. Arthur and W. Vollmer, Proc. Natl. Acad. Sci. USA, 115, 10786 (2018); https://doi.org/10.1073/pnas.1809285115
V. Cappello, L. Marchetti, P. Parlanti, S. Landi, I. Tonazzini, M. Cecchini, V. Piazza and M. Gemmi, Sci. Rep., 6, 1 (2016); https://doi.org/10.1038/s41598-016-0001-8
Z. Guo, J. Han, X.Y. Yang, K. Cao, K. He, G. Du, G. Zeng, L. Zhang, G. Yu, Z. Sun, Q.-Y. He and X. Sun, Metallomics, 7, 448 (2015); https://doi.org/10.1039/C4MT00276H
K.Y. Djoko, Z. Xiao, D.L. Huffman and A.G. Wedd, Inorg. Chem., 46, 4560 (2007); https://doi.org/10.1021/ic070107o
J.M. Parks and J.C. Smith, Methods Enzymol., 578, 103 (2016); https://doi.org/10.1016/bs.mie.2016.05.041
M. Priyadarshanee, S. Chatterjee, S. Rath, H.R. Dash and S. Das, J. Hazard. Mater., 423, 126985 (2022); https://doi.org/10.1016/j.jhazmat.2021.126985
V. Keshav, I. Achilonu, H.W. Dirr and K. Kondiah, Protein Expr. Purif., 158, 27 (2019); https://doi.org/10.1016/j.pep.2019.02.008
H. Chen, J. Xu, W. Tan and L. Fang, Environ. Pollut., 250, 118 (2019); https://doi.org/10.1016/j.envpol.2019.03.123
Q. Nong, K. Yuan, Z. Li, P. Chen, Y. Huang, L. Hu, J. Jiang, T. Luan and B. Chen, J. Environ. Sci. (China), 85, 46 (2019); https://doi.org/10.1016/j.jes.2019.04.022
S. Liu, Y. Zheng, Y. Ma, A. Sarwar, X. Zhao, T. Luo and Z. Yang, Int. J. Mol. Sci., 20, 5540 (2019); https://doi.org/10.3390/ijms20225540
T. Rosen, R.C. Hadley, A.T. Bozzi, D. Ocampo, J. Shearer and E.M. Nolan, Metallomics, 14, mfac001 (2022); https://doi.org/10.1093/mtomcs/mfac001
H.G. Colaço, P.E. Santo, P.M. Matias, T.M. Bandeiras and J.B. Vicente, Metallomics, 8, 327 (2016); https://doi.org/10.1039/C5MT00291E
R. Shirakawa, K. Ishikawa, K. Furuta and C. Kaito, PLoS One, 18, e0277162 (2023); https://doi.org/10.1371/journal.pone.0277162
Y. Li, M.R. Sharma, R.K. Koripella, Y. Yang, P.S. Kaushal, Q. Lin, J.T. Wade, T.A. Gray, K.M. Derbyshire, R.K. Agrawal and A.K. Ojha, Proc. Natl. Acad. Sci. USA, 115, 8191 (2018); https://doi.org/10.1073/pnas.1804555115
D.P. Neupane, D. Avalos, S. Fullam, H. Roychowdhury and E.T. Yukl, J. Biol. Chem., 292, 17496 (2017); https://doi.org/10.1074/jbc.M117.804799
E. Parameswari, T. Ilakiya, V. Davamani, P. Kalaiselvi and S.P. Sebastian, in eds.: M.K. Nazal and H. Zhao, Metallothioneins: Diverse Protein Family to Bind Metallic Ions, In: Heavy Metals - Their Environmental Impacts and Mitigation, IntechOpen (2021); https://doi.org/10.5772/intechopen.97658
S. Chatterjee, S. Kumari, S. Rath, M. Priyadarshanee and S. Das, Metallomics, 12, 1637 (2020); https://doi.org/10.1039/d0mt00140f
F. Lehembre, D. Doillon, E. David, S. Perrotto, J. Baude, J. Foulon, L. Harfouche, L. Vallon, J. Poulain, C. Da Silva, P. Wincker, C. Oger-Desfeux, P. Richaud, J.V. Colpaert, M. Chalot, L. Fraissinet-Tachet, D. Blaudez and R. Marmeisse, Environ. Microbiol., 15, 2829 (2013); https://doi.org/10.1111/1462-2920.12143
S. Murthy, G. Bali and S.K. Sarangi, Afr. J. Biotechnol., 10, 15966 (2011); https://doi.org/10.5897/AJB11.1645
S.A. Loutet, A.C.K. Chan, M.J. Kobylarz, M.M. Verstraete, S. Pfaffen, B. Ye, A.L. Arrieta and M.E.P. Murphy, in eds.: J.O. Nriagu and E.P. Skaar, The Fate of Intracellular Metal Ions in Microbes, In: Trace Metals and Infectious Diseases, MIT Press, pp. 39–56 (2015).
F.A. Vaccaro and C.L. Drennan, Metallomics, 14, mfac030 (2022); https://doi.org/10.1093/mtomcs/mfac030
D.A. Capdevila, K.A. Edmonds and D.P. Giedroc, Essays Biochem., 61, 177 (2017); https://doi.org/10.1042/EBC20160076
S. Ammendola, P. Pasquali, C. Pistoia, P. Petrucci, P. Petrarca, G. Rotilio and A. Battistoni, Infect. Immun., 75, 5867 (2007); https://doi.org/10.1128/IAI.00559-07
E.V. Anyaogu, C.N. Umeaku, A.M. Isirue, O. S. Esiobu and N.U. Onuoha, GSC Biol. Pharm. Sci., 21, 88 (2022); https://doi.org/10.30574/gscbps.2022.21.2.0415
H. Johnson, H. Cho, M. Choudhary, H. Johnson, H. Cho and M. Choudhary, Comput. Mol. Biosci., 9, 1 (2019); https://doi.org/10.4236/cmb.2019.91001
Z. Guo, J. Han, X.Y. Yang, K. Cao, K. He, G. Du, G. Zeng, L. Zhang, G. Yu, Z. Sun, Q.Y. He and X. Sun, Metallomics, 7, 1613 (2015); https://doi.org/10.1039/C5MT90043C
S. Nath, I. Sharma, B. Deb and V. Singh, Int. J. Bio-resource Stress Manag., 4, 266 (2013).
M.A. Da Silva, A. Sussulini and M.A. Arruda, Expert Rev. Proteomics, 7, 387 (2010); https://doi.org/10.1586/epr.10.16
P.L. Hagedoorn, in eds.: J.O. Nriagu and E.P. Skaar, Emerging Strategies in Metalloproteomics, In: Trace Metals and Infectious Diseases, Cambridge, MA, Chap. 18, pp. 311-322 (2015).
X. Xu, H. Wang, H. Li and H. Sun, Chem. Lett., 49, 697 (2020); https://doi.org/10.1246/cl.200155
M.-L. Chen and M. Wang, At., 43, 255 (2022); https://doi.org/10.46770/AS.2022.108
M. Ouyang, J. Wu, Y. Yan and C.F. Ding, Anal. Lett., 56, 1016 (2023); https://doi.org/10.1080/00032719.2022.2116644
R. Irankunda, J.A. Camaño Echavarría, C. Paris, L. Stefan, S. Desobry, K. Selmeczi, L. Muhr and L. Canabady-Rochelle, Separations, 9, 11 (2022); https://doi.org/10.3390/separations9110370
P.L. Jiang, C. Wang, A. Diehl, R. Viner, C. Etienne, P. Nandhikonda, L. Foster, R.D. Bomgarden and F. Liu, Angew. Chem. Int. Ed., 61, e202113937 (2022); https://doi.org/10.1002/anie.202113937
B. Steigenberger, R.J. Pieters, A.J.R. Heck and R.A. Scheltema, ACS Cent. Sci., 5, 1514 (2019); https://doi.org/10.1021/acscentsci.9b00416
M. Montes-Bayón and J. Bettmer, Adv. Exp. Med. Biol., 1055, 111 (2018); https://doi.org/10.1007/978-3-319-90143-5_6
P. Iadarola, Molecules, 24, 1133 (2019); https://doi.org/10.3390/molecules24061133
I. Tolbatov, N. Re, C. Coletti and A. Marrone, Inorg. Chem., 59, 790 (2020); https://doi.org/10.1021/acs.inorgchem.9b03059
M.A. Hough and R.L. Owen, Curr. Opin. Struct. Biol., 71, 232 (2021); https://doi.org/10.1016/j.sbi.2021.07.007
A. Volbeda, Methods Mol. Biol., 1122, 189 (2014); https://doi.org/10.1007/978-1-62703-794-5_13
T. Huxford, X-Ray Crystallography, In: Brenner’s Encyclopedia of Genetics, Elsevier Reference Collection in Life Sciences, pp. 366-368 (2013); https://doi.org/10.1016/B978-0-12-374984-0.01657-0
H. Li and H. Sun, Top. Curr. Chem., 326, 69 (2011); https://doi.org/10.1007/128_2011_214
M. Piccioli, Magnetochemistry, 6, 46 (2020); https://doi.org/10.3390/magnetochemistry6040046
M.T. Stiebritz and Y. Hu, Methods Mol. Biol., 1876, 245 (2019); https://doi.org/10.1007/978-1-4939-8864-8_16
J. Li, X. He, S. Gao, Y. Liang, Z. Qi, Q. Xi, Y. Zuo and Y. Xing, J. Mol. Biol., 435, 168117 (2023); https://doi.org/10.1016/j.jmb.2023.168117
L.A. Kelley, S. Mezulis, C.M. Yates, M.N. Wass and M.J. Sternberg, Nat. Protoc., 10, 845 (2015); https://doi.org/10.1038/nprot.2015.053
C.H. Lu, Y.F. Lin, J.J. Lin and C.S. Yu, PLoS One, 7, e39252 (2012); https://doi.org/10.1371/journal.pone.0039252
M. Kapahi and S. Sachdeva, J. Health Pollut., 9, 1 (2019); https://doi.org/10.5696/2156-9614-9.24.191203
B. Mariáh da Silva e Silva and C. Rodrigues e Silva, Rev. Virtual Quim., 12, 1097 (2020); https://doi.org/10.21577/1984-6835.20200090
R.A. Hauser-Davis, R.M. Lopes, F.B. Mota and J.C. Moreira, Ecotoxicol. Environ. Saf., 140, 279 (2017); https://doi.org/10.1016/j.ecoenv.2017.02.024
P.R. Sreedevi, K. Suresh and G. Jiang, J. Water Process Eng., 48, 102884 (2022); https://doi.org/10.1016/j.jwpe.2022.102884
Y. Ma, Y. Wang, X.J. Shi, X.P. Chen and Z.L. Li, Environ. Sci., 43, 4911 (2022); https://doi.org/10.13227/J.HJKX.202112007
Y. Zhou, H. Li and H. Sun, Annu. Rev. Biochem., 91, 449 (2022); https://doi.org/10.1146/annurev-biochem-040320-104628
G. Wallace, I. Eisenberg, B. Robustelli, N. Dankner, L. Kenworthy, J. Giedd and A. Martin, J. Am. Acad. Child Adolesc. Psychiatry, 54, 464 (2015); https://doi.org/10.1016/j.jaac.2015.03.007
S. Sher, S. Sultan and A. Rehman, Appl. Water Sci., 11, 69 (2021); https://doi.org/10.1007/s13201-021-01407-3
S.Z. Abbas, M. Riaz, N. Ramzan, M.T. Zahid, F.R. Shakoori and M. Rafatullah, 45, 1309 (2014); https://doi.org/10.1590/S1517-83822014000400022
A. Ali, M. Li, J. Su, Y. Li, Z. Wang, Y. Bai, E.F. Ali and S.M. Shaheen, Sci. Total Environ., 813, 152668 (2022); https://doi.org/10.1016/j.scitotenv.2021.152668
H. Kumar, S. Ishtiyaq, P.J.C. Favas, M. Varun and M.S. Paul, J. Plant Growth Regul., 42, 3868 (2023); https://doi.org/10.1007/s00344-022-10853-5
W.M.N.H. Kumari, S. Thiruchittampalam, M.S.S. Weerasinghe, N.V. Chandrasekharan and C.D. Wijayarathna, Appl. Microbiol. Biotechnol., 105, 2573 (2021); https://doi.org/10.1007/s00253-021-11193-2
K. Yamamoto and Y. Tamaru, AMB Express, 6, 1 (2016); https://doi.org/10.1186/s13568-015-0169-5
K. Gopi, H.N. Jinal, P. Prittesh, V.P. Kartik and N. Amaresan, Int. J. Phytoremediation, 22, 662 (2020); https://doi.org/10.1080/15226514.2019.1707161
M. Noman, T. Ahmed, S. Hussain, M.B.K. Niazi, M. Shahid and F. Song, J. Hazard. Mater., 398, 123175 (2020); https://doi.org/10.1016/j.jhazmat.2020.123175
T.M. Palanivel, N. Sivakumar, A. Al-Ansari and R. Victor, J. Environ. Manage., 253, 109706 (2020); https://doi.org/10.1016/j.jenvman.2019.109706
F. Altimira, C. Yáñez, G. Bravo, M. González, L.A. Rojas and M. Seeger, BMC Microbiol., 12, 193 (2012); https://doi.org/10.1186/1471-2180-12-193
H. Yao, H. Wang, J. Ji, A. Tan, Y. Song and Z. Chen, Toxics, 11, 261 (2023); https://doi.org/10.3390/toxics11030261
J.P. Bourdineaud, G. Durn, B. Režun, A. Manceau and J. Hrenoviæ, Chemosphere, 248, 126002 (2020); https://doi.org/10.1016/j.chemosphere.2020.126002
M. Agarwal, R.S. Rathore, C. Jagoe and A. Chauhan, Cells, 8, 309 (2019); https://doi.org/10.3390/cells8040309
S.Z. Abbas, C.J. Yee, K. Hossain, A. Ahmad and M. Rafatullah, Desalination Water Treat., 138, 128 (2019); https://doi.org/10.5004/dwt.2019.23279
T. Mo, D. Jiang, D. Shi, S. Xu, X. Huang and Z. Huang, Ecol. Process., 11, 20 (2022); https://doi.org/10.1186/s13717-021-00347-9
A.S. Ayangbenro and O.O. Babalola, Sci. Rep., 10, 19660 (2020); https://doi.org/10.1038/s41598-020-75170-x
R.K. Mohapatra, P.K. Parhi, S. Pandey, B.K. Bindhani, H. Thatoi and C.R. Panda, J. Environ. Manage., 247, 121 (2019); https://doi.org/10.1016/j.jenvman.2019.06.073
Z. Teng, W. Shao, K. Zhang, Y. Huo and M. Li, J. Environ. Manage., 231, 189 (2019); https://doi.org/10.1016/j.jenvman.2018.10.012
T. von Rozycki and D.H. Nies, Antonie van Leeuwenhoek, 96, 115 (2009); https://doi.org/10.1007/s10482-008-9284-5