Copyright (c) 2024 Dr. Lekshmi S, Anjima P V, Anagha K V, Dhanasree K, Dr. Abraham A
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of CuO/SnO2 Nanocomposite for Catalytic Reduction of p-Nitrophenol
Corresponding Author(s) : S. Lekshmi
Asian Journal of Chemistry,
Vol. 36 No. 3 (2024): Vol 36 Issue 3, 2024
Abstract
A simple room temperature synthesis of CuO nanostructures was developed over SnO2 for the catalytic reduction of p-nitrophenol. The prepared nanocomposite shows remarkable efficiency in reducing p-nitrophenol displaying an apparent rate constant of 0.3026 and 1.4763 min-1, which was approximately 1.3 and 7.3 times higher than that achieved by the CuO and SnO2 counterparts, respectively. This study paves the way for exploring the potential of metal oxide composite materials as highly effective catalysts for p-nitrophenol reduction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.I. Din, R. Khalid, Z. Hussain, T. Hussain, A. Mujahid, J. Najeeb and F. Izhar, Crit. Rev. Anal. Chem., 50, 322 (2020); https://doi.org/10.1080/10408347.2019.1637241
- E. Johnson, R.R. Krishnan, S.R. Chandran and K.H. Prema, J. Sol-Gel Sci. Technol., 107, 697 (2023); https://doi.org/10.1007/s10971-023-06172-0
- J. Ding, L. Chen, R. Shao, J. Wu and W. Dong, React. Kinet. Mech. Catal., 106, 225 (2012); https://doi.org/10.1007/s11144-011-0417-x
- K. Sahu, B. Satpati, R. Singhal and S. Mohapatra, J. Phys. Chem. Solids, 136, 109143 (2020); https://doi.org/10.1016/j.jpcs.2019.109143
- A.K. Patra, A. Dutta and A. Bhaumik, Catal. Commun., 11, 651 (2010); https://doi.org/10.1016/j.catcom.2010.01.015
- H. Letifi, D. Dridi, Y. Litaiem, S. Ammar, W. Dimassi and R. Chtourou, Catalysts, 11, 803 (2021); https://doi.org/10.3390/catal11070803
- A.S. Ethiraj and D.J. Kang, Nanoscale Res. Lett., 7, 70 (2012); https://doi.org/10.1186/1556-276X-7-70
- M. Akram, A.T. Saleh, W.A.W. Ibrahim, A.S. Awan and R. Hussain, Ceram. Int., 42, 8613 (2016); https://doi.org/10.1016/j.ceramint.2016.02.092
- V. Manju, R. Rohith, A.T. Prasannakumar, B.V. Bhavija and S.J. Varma, New J. Chem., 46, 19874 (2022); https://doi.org/10.1039/D2NJ04213D
- R.R. Krishnan, S.R. Chandran, E. Johnson, R. Raveendrakurup and P.K. Hariharan, ChemistrySelect, 7, e202201554 (2022); https://doi.org/10.1002/slct.202201554
References
M.I. Din, R. Khalid, Z. Hussain, T. Hussain, A. Mujahid, J. Najeeb and F. Izhar, Crit. Rev. Anal. Chem., 50, 322 (2020); https://doi.org/10.1080/10408347.2019.1637241
E. Johnson, R.R. Krishnan, S.R. Chandran and K.H. Prema, J. Sol-Gel Sci. Technol., 107, 697 (2023); https://doi.org/10.1007/s10971-023-06172-0
J. Ding, L. Chen, R. Shao, J. Wu and W. Dong, React. Kinet. Mech. Catal., 106, 225 (2012); https://doi.org/10.1007/s11144-011-0417-x
K. Sahu, B. Satpati, R. Singhal and S. Mohapatra, J. Phys. Chem. Solids, 136, 109143 (2020); https://doi.org/10.1016/j.jpcs.2019.109143
A.K. Patra, A. Dutta and A. Bhaumik, Catal. Commun., 11, 651 (2010); https://doi.org/10.1016/j.catcom.2010.01.015
H. Letifi, D. Dridi, Y. Litaiem, S. Ammar, W. Dimassi and R. Chtourou, Catalysts, 11, 803 (2021); https://doi.org/10.3390/catal11070803
A.S. Ethiraj and D.J. Kang, Nanoscale Res. Lett., 7, 70 (2012); https://doi.org/10.1186/1556-276X-7-70
M. Akram, A.T. Saleh, W.A.W. Ibrahim, A.S. Awan and R. Hussain, Ceram. Int., 42, 8613 (2016); https://doi.org/10.1016/j.ceramint.2016.02.092
V. Manju, R. Rohith, A.T. Prasannakumar, B.V. Bhavija and S.J. Varma, New J. Chem., 46, 19874 (2022); https://doi.org/10.1039/D2NJ04213D
R.R. Krishnan, S.R. Chandran, E. Johnson, R. Raveendrakurup and P.K. Hariharan, ChemistrySelect, 7, e202201554 (2022); https://doi.org/10.1002/slct.202201554