Copyright (c) 2024 Zubair Hasan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Metal Organic Framework Derived Cu-Carbon Composite for the Effective Reduction of p-Nitrophenol
Corresponding Author(s) : Zubair Hasan
Asian Journal of Chemistry,
Vol. 36 No. 2 (2024): Vol 36 Issue 2, 2024
Abstract
A Cu-carbon composite (Cu-C) was prepared via single-step carbonization of a metal-organic framework (MOF) composed of Cu2+ and 1,4-benzene dicarboxylate (BDC) and applied as a catalyst to degrade p-nitrophenol. The composite was characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM)/energy-dispersive X-ray (EDS), Fourier-transform infrared (FTIR) and X-ray photoelectron (XPS) spectroscopies. The characterization affirmed the preservation of MOF-originated CuO and metallic Cu in the carbon network. In presence of NaBH4, the Cu-C composite resulted in a complete reduction of p-nitrophenol within a few min and exhibited much higher removal rate than commercial CuO. The role of NaBH4 concentration in p-nitrophenol reduction was highlighted in the context of relevant catalytic mechanisms. The composite displayed good reusability during four consecutive cycles of p-nitrophenol reduction with only a small loss of its reactivity, signifying its potential as an alternative to noble-metal catalysts.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Xia, G. He, L. Zhang, X. Sun and X. Wang, Appl. Catal. B, 180, 408 (2016); https://doi.org/10.1016/j.apcatb.2015.06.043
- Z. Hasan, D.W. Cho, C.M. Chon, K. Yoon and H. Song, Chem. Eng. J., 298, 183 (2016); https://doi.org/10.1016/j.cej.2016.04.029
- N. Sahiner, S. Yildiz and H. Al-Lohedan, Appl. Catal. B, 166–167, 145 (2015); https://doi.org/10.1016/j.apcatb.2014.11.027
- V. Uberoi and S.K. Bhattacharya, Water Environ. Res., 69, 146 (1997); https://doi.org/10.2175/106143097X125290
- Y. Zheng, J. Shu and Z. Wang, Mater. Lett., 158, 339 (2015); https://doi.org/10.1016/j.matlet.2015.06.033
- J. Xing, Q. Peng, W. Zhong, Y. Zhang, X. Wang and K. Liu, J. Water Process Eng., 51, 103403 (2023); https://doi.org/10.1016/j.jwpe.2022.103403
- J. Feng, L. Fang, Y. Zhang and H. Zhao, Mater. Sci. Semicond. Process., 163, 107537 (2023); https://doi.org/10.1016/j.mssp.2023.107537
- H. Zheng, W. Guo, S. Li, Y. Chen, Q. Wu, X. Feng, R. Yin, S.H. Ho, N. Ren and J.S. Chang, Bioresour. Technol., 244, 1456 (2017); https://doi.org/10.1016/j.biortech.2017.05.025
- G. Chu, W. Wang, Y. Dou, K. Sun, W. Qin, Z. Wang and Y. Si, Sci. Total Environ., 900, 165797 (2023); https://doi.org/10.1016/j.scitotenv.2023.165797
- A. Tang, M. Long and Z. He, Electrochim. Acta, 146, 346 (2014); https://doi.org/10.1016/j.electacta.2014.09.027
- H. Cheng, N. Han, Z. Bai, Z. Li, W. Xu and S. Xiao, Surf. Interfaces, 39, 102929 (2023); https://doi.org/10.1016/j.surfin.2023.102929
- R. Hu, R. Xu, Z. Wang, J. Wang and S. Zhou, Chem. Eng. J., 471, 144780 (2023); https://doi.org/10.1016/j.cej.2023.144780
- M. Kubo, T. Matsumoto and M. Shimada, Adv. Powder Technol., 33, 103701 (2022); https://doi.org/10.1016/j.apt.2022.103701
- A. Khan, Z. Liao, Y. Liu, A. Jawad, J. Ifthikar and Z. Chen, J. Hazard. Mater., 329, 262 (2017); https://doi.org/10.1016/j.jhazmat.2017.01.029
- D. Patil, J. Manjanna, S. Chikkamath, V. Uppar and M. Chougala, J. Hazard. Mater. Adv., 4, 100032 (2021); https://doi.org/10.1016/j.hazadv.2021.100032
- L.A. Ramirez, M. Dennehy and M. Alvarez, Catal. Commun., 181, 106723 (2023); https://doi.org/10.1016/j.catcom.2023.106723
- X. Xu, K. Jia, S. Chen, D. Lang, C. Yang, L. Wang, R. Wu, W. Wang and J. Wang, J. Environ. Chem. Eng., 9, 105505 (2021); https://doi.org/10.1016/j.jece.2021.105505
- A. Šuligoj, I. Trendafilova, K. Maver, A. Pintar, A. Ristiæ, G. Dražic, W.H.M. Abdelraheem, Z. Jaglièiæ, I. Arèon, N.Z. Logar, D.D. Dionysiou and N. Novak Tušar, J. Environ. Chem. Eng., 11, 110369 (2023); https://doi.org/10.1016/j.jece.2023.110369
- H.C. Zhou, J.R. Long and O.M. Yaghi, Chem. Rev., 112, 673 (2012); https://doi.org/10.1021/cr300014x
- Q. Wang and D. Astruc, Chem. Rev., 120, 1438 (2020); https://doi.org/10.1021/acs.chemrev.9b00223
- Z. Hasan and S.H. Jhung, J. Hazard. Mater., 283, 329 (2015); https://doi.org/10.1016/j.jhazmat.2014.09.046
- V. Snowlin, H.J. Prabu, A.F. Sahayaraj, I. Johnson, E. Thaninayagam, R.R. Gopi, J. Salamon and A. Simi, J. Inorg. Organomet. Polym. Mater., (2023); https://doi.org/10.1007/s10904-023-02823-5
- T. Jia, Y. Gu and F. Li, J. Environ. Chem. Eng., 10, 108300 (2022); https://doi.org/10.1016/j.jece.2022.108300
- N.A. Khan and S.H. Jhung, J. Hazard. Mater., 237–238, 180 (2012); https://doi.org/10.1016/j.jhazmat.2012.08.025
- A. Bavykina, N. Kolobov, I.S. Khan, J.A. Bau, A. Ramirez and J. Gascon, Chem. Rev., 120, 8468 (2020); https://doi.org/10.1021/acs.chemrev.9b00685
- C.S. Gujja and S.D. Pawar, J. Inorg. Organomet. Polym. Mater., 33, 2636 (2023); https://doi.org/10.1007/s10904-023-02669-x
- W. Chaikittisilp, K. Ariga and Y. Yamauchi, J. Mater. Chem. A Mater. Energy Sustain., 1, 14 (2013); https://doi.org/10.1039/C2TA00278G
- Y. Wang, J. Xu, X. Lin, B. Wang, Z. Zhang, Y. Xu and Y. Suo, J. Solid State Chem., 322, 123984 (2023); https://doi.org/10.1016/j.jssc.2023.123984
- A. Deng, Y. Yin, Y. Liu, Y. Xu, H. He, S. Yang, Q. Qin, D. Sun and S. Li, Sep. Purif. Technol., 318, 123998 (2023); https://doi.org/10.1016/j.seppur.2023.123998
- D. Zhu, L. Wang, W. Yu and H. Xie, Sci. Rep., 8, 5282 (2018); https://doi.org/10.1038/s41598-018-23174-z
- G. Zhang, B. Xu, H. Chong, W. Wei, C. Wang and G. Wang, RSC Adv., 9, 14016 (2019); https://doi.org/10.1039/C9RA01385G
- R.S. Salama, S.E. Samra, A.I. Ahmed, S.A. El-Hakam, S.E. Samra and S.M. El-Dafrawy, Int. J. Med. Chem., 10, 195 (2018); https://www.researchgate.net/publication/327097878
- A.C. Elder, A.B. Aleksandrov, S. Nair and T.M. Orlando, Langmuir, 33, 10153 (2017); https://doi.org/10.1021/acs.langmuir.7b01987
- B. Nageswara Rao, P. Tirupathi Rao, S.E. Basha, D.S.L. Prasanna, K. Samatha and R.K. Ramachandra, Mater. Chem. Phys., 308, 128174 (2023); https://doi.org/10.1016/j.matchemphys.2023.128174
- S. Poulston, P.M. Parlett, P. Stone and M. Bowker, Surf. Interface Anal., 24, 811 (1996); https://doi.org/10.1002/(SICI)1096-9918(199611)24:12<811::AID-SIA191>3.0.CO;2-Z
- T. Aditya, J. Jana, N.K. Singh, A. Pal and T. Pal, ACS Omega, 2, 1968 (2017); https://doi.org/10.1021/acsomega.6b00447
- A. Siri, A. Wongrueng, P. Rakruam and P. Punyapalakul, J. Environ. Chem. Eng., 11, 110464 (2023); https://doi.org/10.1016/j.jece.2023.110464
- K. Naseem, R. Begum, W. Wu, A. Irfan, J. Nisar, M. Azam and Z.H. Farooqi, Int. J. Environ. Sci. Technol., 18, 1809 (2021); https://doi.org/10.1007/s13762-020-02913-8
- M. Liu, B. Niu, H. Guo, S. Ying and Z. Chen, Inorg. Chem. Commun., 130, 108687 (2021); https://doi.org/10.1016/j.inoche.2021.108687
- S. Schlichter, M. Rocha, A.F. Peixoto, J. Pires, C. Freire and M. Alvarez, Polyhedron, 150, 69 (2018); https://doi.org/10.1016/j.poly.2018.04.037
- P.C. Rath, D. Saikia, M. Mishra and H.M. Kao, Appl. Surf. Sci., 427, 1217 (2018); https://doi.org/10.1016/j.apsusc.2017.08.097
- S. Wang, S. Gao, Y. Tang, L. Wang, D. Jia and L. Liu, J. Solid State Chem., 260, 117 (2018); https://doi.org/10.1016/j.jssc.2018.01.025
- C.M. Fan, L.F. Zhang, S.S. Wang, D.H. Wang, L.Q. Lu and A.W. Xu, Nanoscale, 4, 6835 (2012); https://doi.org/10.1039/c2nr31713c
- E. Farzad and H. Veisi, J. Ind. Eng. Chem., 60, 114 (2018); https://doi.org/10.1016/j.jiec.2017.10.017
- H.S. EL-Sheshtawy, H.M. El-Hosainy, K.R. Shoueir, I.M. El-Mehasseb and M. El-Kemary, Appl. Surf. Sci., 467-468, 268 (2019); https://doi.org/10.1016/j.apsusc.2018.10.109
- S. Bae, S. Gim, H. Kim and K. Hanna, Appl. Catal. B, 182, 541 (2016); https://doi.org/10.1016/j.apcatb.2015.10.006
- Y. Shi, X.L. Zhang, G. Feng, X. Chen and Z.H. Lu, Ceram. Int., 41, 14660 (2015); https://doi.org/10.1016/j.ceramint.2015.07.188
- A.T.E. Vilian, S.R. Choe, K. Giribabu, S.C. Jang, C. Roh, Y.S. Huh and Y.K. Han, J. Hazard. Mater., 333, 54 (2017); https://doi.org/10.1016/j.jhazmat.2017.03.015
- T. Aditya, A. Pal and T. Pal, Chem. Commun., 51, 9410 (2015); https://doi.org/10.1039/C5CC01131K
- J. Andrieux, U.B. Demirci and P. Miele, Catal. Today, 170, 13 (2011); https://doi.org/10.1016/j.cattod.2011.01.019
- A. Verma, P. Anand, S. Kumar and Y.P. Fu, Appl. Surf. Sci., 578, 151795 (2022); https://doi.org/10.1016/j.apsusc.2021.151795
- X. Sun, P. He, Z. Gao, Y. Liao, S. Weng, Z. Zhao, H. Song and Z. Zhao, J. Colloid Interface Sci., 553, 1 (2019); https://doi.org/10.1016/j.jcis.2019.06.004
- K. Sahu, B. Satpati, R. Singhal and S. Mohapatra, J. Phys. Chem. Solids, 136, 109143 (2020); https://doi.org/10.1016/j.jpcs.2019.109143
References
J. Xia, G. He, L. Zhang, X. Sun and X. Wang, Appl. Catal. B, 180, 408 (2016); https://doi.org/10.1016/j.apcatb.2015.06.043
Z. Hasan, D.W. Cho, C.M. Chon, K. Yoon and H. Song, Chem. Eng. J., 298, 183 (2016); https://doi.org/10.1016/j.cej.2016.04.029
N. Sahiner, S. Yildiz and H. Al-Lohedan, Appl. Catal. B, 166–167, 145 (2015); https://doi.org/10.1016/j.apcatb.2014.11.027
V. Uberoi and S.K. Bhattacharya, Water Environ. Res., 69, 146 (1997); https://doi.org/10.2175/106143097X125290
Y. Zheng, J. Shu and Z. Wang, Mater. Lett., 158, 339 (2015); https://doi.org/10.1016/j.matlet.2015.06.033
J. Xing, Q. Peng, W. Zhong, Y. Zhang, X. Wang and K. Liu, J. Water Process Eng., 51, 103403 (2023); https://doi.org/10.1016/j.jwpe.2022.103403
J. Feng, L. Fang, Y. Zhang and H. Zhao, Mater. Sci. Semicond. Process., 163, 107537 (2023); https://doi.org/10.1016/j.mssp.2023.107537
H. Zheng, W. Guo, S. Li, Y. Chen, Q. Wu, X. Feng, R. Yin, S.H. Ho, N. Ren and J.S. Chang, Bioresour. Technol., 244, 1456 (2017); https://doi.org/10.1016/j.biortech.2017.05.025
G. Chu, W. Wang, Y. Dou, K. Sun, W. Qin, Z. Wang and Y. Si, Sci. Total Environ., 900, 165797 (2023); https://doi.org/10.1016/j.scitotenv.2023.165797
A. Tang, M. Long and Z. He, Electrochim. Acta, 146, 346 (2014); https://doi.org/10.1016/j.electacta.2014.09.027
H. Cheng, N. Han, Z. Bai, Z. Li, W. Xu and S. Xiao, Surf. Interfaces, 39, 102929 (2023); https://doi.org/10.1016/j.surfin.2023.102929
R. Hu, R. Xu, Z. Wang, J. Wang and S. Zhou, Chem. Eng. J., 471, 144780 (2023); https://doi.org/10.1016/j.cej.2023.144780
M. Kubo, T. Matsumoto and M. Shimada, Adv. Powder Technol., 33, 103701 (2022); https://doi.org/10.1016/j.apt.2022.103701
A. Khan, Z. Liao, Y. Liu, A. Jawad, J. Ifthikar and Z. Chen, J. Hazard. Mater., 329, 262 (2017); https://doi.org/10.1016/j.jhazmat.2017.01.029
D. Patil, J. Manjanna, S. Chikkamath, V. Uppar and M. Chougala, J. Hazard. Mater. Adv., 4, 100032 (2021); https://doi.org/10.1016/j.hazadv.2021.100032
L.A. Ramirez, M. Dennehy and M. Alvarez, Catal. Commun., 181, 106723 (2023); https://doi.org/10.1016/j.catcom.2023.106723
X. Xu, K. Jia, S. Chen, D. Lang, C. Yang, L. Wang, R. Wu, W. Wang and J. Wang, J. Environ. Chem. Eng., 9, 105505 (2021); https://doi.org/10.1016/j.jece.2021.105505
A. Šuligoj, I. Trendafilova, K. Maver, A. Pintar, A. Ristiæ, G. Dražic, W.H.M. Abdelraheem, Z. Jaglièiæ, I. Arèon, N.Z. Logar, D.D. Dionysiou and N. Novak Tušar, J. Environ. Chem. Eng., 11, 110369 (2023); https://doi.org/10.1016/j.jece.2023.110369
H.C. Zhou, J.R. Long and O.M. Yaghi, Chem. Rev., 112, 673 (2012); https://doi.org/10.1021/cr300014x
Q. Wang and D. Astruc, Chem. Rev., 120, 1438 (2020); https://doi.org/10.1021/acs.chemrev.9b00223
Z. Hasan and S.H. Jhung, J. Hazard. Mater., 283, 329 (2015); https://doi.org/10.1016/j.jhazmat.2014.09.046
V. Snowlin, H.J. Prabu, A.F. Sahayaraj, I. Johnson, E. Thaninayagam, R.R. Gopi, J. Salamon and A. Simi, J. Inorg. Organomet. Polym. Mater., (2023); https://doi.org/10.1007/s10904-023-02823-5
T. Jia, Y. Gu and F. Li, J. Environ. Chem. Eng., 10, 108300 (2022); https://doi.org/10.1016/j.jece.2022.108300
N.A. Khan and S.H. Jhung, J. Hazard. Mater., 237–238, 180 (2012); https://doi.org/10.1016/j.jhazmat.2012.08.025
A. Bavykina, N. Kolobov, I.S. Khan, J.A. Bau, A. Ramirez and J. Gascon, Chem. Rev., 120, 8468 (2020); https://doi.org/10.1021/acs.chemrev.9b00685
C.S. Gujja and S.D. Pawar, J. Inorg. Organomet. Polym. Mater., 33, 2636 (2023); https://doi.org/10.1007/s10904-023-02669-x
W. Chaikittisilp, K. Ariga and Y. Yamauchi, J. Mater. Chem. A Mater. Energy Sustain., 1, 14 (2013); https://doi.org/10.1039/C2TA00278G
Y. Wang, J. Xu, X. Lin, B. Wang, Z. Zhang, Y. Xu and Y. Suo, J. Solid State Chem., 322, 123984 (2023); https://doi.org/10.1016/j.jssc.2023.123984
A. Deng, Y. Yin, Y. Liu, Y. Xu, H. He, S. Yang, Q. Qin, D. Sun and S. Li, Sep. Purif. Technol., 318, 123998 (2023); https://doi.org/10.1016/j.seppur.2023.123998
D. Zhu, L. Wang, W. Yu and H. Xie, Sci. Rep., 8, 5282 (2018); https://doi.org/10.1038/s41598-018-23174-z
G. Zhang, B. Xu, H. Chong, W. Wei, C. Wang and G. Wang, RSC Adv., 9, 14016 (2019); https://doi.org/10.1039/C9RA01385G
R.S. Salama, S.E. Samra, A.I. Ahmed, S.A. El-Hakam, S.E. Samra and S.M. El-Dafrawy, Int. J. Med. Chem., 10, 195 (2018); https://www.researchgate.net/publication/327097878
A.C. Elder, A.B. Aleksandrov, S. Nair and T.M. Orlando, Langmuir, 33, 10153 (2017); https://doi.org/10.1021/acs.langmuir.7b01987
B. Nageswara Rao, P. Tirupathi Rao, S.E. Basha, D.S.L. Prasanna, K. Samatha and R.K. Ramachandra, Mater. Chem. Phys., 308, 128174 (2023); https://doi.org/10.1016/j.matchemphys.2023.128174
S. Poulston, P.M. Parlett, P. Stone and M. Bowker, Surf. Interface Anal., 24, 811 (1996); https://doi.org/10.1002/(SICI)1096-9918(199611)24:12<811::AID-SIA191>3.0.CO;2-Z
T. Aditya, J. Jana, N.K. Singh, A. Pal and T. Pal, ACS Omega, 2, 1968 (2017); https://doi.org/10.1021/acsomega.6b00447
A. Siri, A. Wongrueng, P. Rakruam and P. Punyapalakul, J. Environ. Chem. Eng., 11, 110464 (2023); https://doi.org/10.1016/j.jece.2023.110464
K. Naseem, R. Begum, W. Wu, A. Irfan, J. Nisar, M. Azam and Z.H. Farooqi, Int. J. Environ. Sci. Technol., 18, 1809 (2021); https://doi.org/10.1007/s13762-020-02913-8
M. Liu, B. Niu, H. Guo, S. Ying and Z. Chen, Inorg. Chem. Commun., 130, 108687 (2021); https://doi.org/10.1016/j.inoche.2021.108687
S. Schlichter, M. Rocha, A.F. Peixoto, J. Pires, C. Freire and M. Alvarez, Polyhedron, 150, 69 (2018); https://doi.org/10.1016/j.poly.2018.04.037
P.C. Rath, D. Saikia, M. Mishra and H.M. Kao, Appl. Surf. Sci., 427, 1217 (2018); https://doi.org/10.1016/j.apsusc.2017.08.097
S. Wang, S. Gao, Y. Tang, L. Wang, D. Jia and L. Liu, J. Solid State Chem., 260, 117 (2018); https://doi.org/10.1016/j.jssc.2018.01.025
C.M. Fan, L.F. Zhang, S.S. Wang, D.H. Wang, L.Q. Lu and A.W. Xu, Nanoscale, 4, 6835 (2012); https://doi.org/10.1039/c2nr31713c
E. Farzad and H. Veisi, J. Ind. Eng. Chem., 60, 114 (2018); https://doi.org/10.1016/j.jiec.2017.10.017
H.S. EL-Sheshtawy, H.M. El-Hosainy, K.R. Shoueir, I.M. El-Mehasseb and M. El-Kemary, Appl. Surf. Sci., 467-468, 268 (2019); https://doi.org/10.1016/j.apsusc.2018.10.109
S. Bae, S. Gim, H. Kim and K. Hanna, Appl. Catal. B, 182, 541 (2016); https://doi.org/10.1016/j.apcatb.2015.10.006
Y. Shi, X.L. Zhang, G. Feng, X. Chen and Z.H. Lu, Ceram. Int., 41, 14660 (2015); https://doi.org/10.1016/j.ceramint.2015.07.188
A.T.E. Vilian, S.R. Choe, K. Giribabu, S.C. Jang, C. Roh, Y.S. Huh and Y.K. Han, J. Hazard. Mater., 333, 54 (2017); https://doi.org/10.1016/j.jhazmat.2017.03.015
T. Aditya, A. Pal and T. Pal, Chem. Commun., 51, 9410 (2015); https://doi.org/10.1039/C5CC01131K
J. Andrieux, U.B. Demirci and P. Miele, Catal. Today, 170, 13 (2011); https://doi.org/10.1016/j.cattod.2011.01.019
A. Verma, P. Anand, S. Kumar and Y.P. Fu, Appl. Surf. Sci., 578, 151795 (2022); https://doi.org/10.1016/j.apsusc.2021.151795
X. Sun, P. He, Z. Gao, Y. Liao, S. Weng, Z. Zhao, H. Song and Z. Zhao, J. Colloid Interface Sci., 553, 1 (2019); https://doi.org/10.1016/j.jcis.2019.06.004
K. Sahu, B. Satpati, R. Singhal and S. Mohapatra, J. Phys. Chem. Solids, 136, 109143 (2020); https://doi.org/10.1016/j.jpcs.2019.109143