Copyright (c) 2024 ravindra MV
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Unusually Substituted 2,4,5-Trimethoxy 3,5-Diaryl Isoxazoles from Natural Precursor: Antimicrobial and Anticancer Activities
Corresponding Author(s) : M.V. Ravindra
Asian Journal of Chemistry,
Vol. 36 No. 2 (2024): Vol 36 Issue 2, 2024
Abstract
In this work, 2,4,5-trimethoxy substituted 3,5-diaryl isoxazoles were synthesized via their chalcone intermediates and evaluated for antimicrobial and anticancer activities. The natural precursor 2,4,5-trimethoxy benzaldehyde (asaronaldehyde) was obtained from oxidation of β-asarone (Acorus calamus oil) and then reacted with substituted acetophenones via Claisen-Schmidt condensation yielded 2,4,5-trimethoxy substituted chalcones. These chalcones on further treatment with hydroxylamine in presence of sodium acetate and acetic acid cyclizes to give the corresponding 3,5-diaryl isoxazoles yields ranging from 65-80%. Structures were confirmed by IR, GC-MS, 1H NMR and 13C NMR. Synthesized compounds were screened for their antimicrobial activity against bacteria and fungi. The para-substituted isoxazoles (5b, 5c and 5d) exhibited good activity against Gram-negative (Escherichia coli) and (Pseudomonas aeruginosa) and Gram-positive (Bacillus subtilis) and Bacillus licheniformis bacteria and fungi (Phytophthora capsici, Sclerotirum rolfsii, Aspergillus niger and Alternaria alternate). Further, these novel analogues were evaluated for their in vitro anticancer activity against three human tumor cell lines (MCF-7, SW-982 and HeLa) using MTT assay. The anticancer results revealed that phenyl ring at C-3 position bearing electron donor groups in the para-position and 2,4,5-trimethoxy substitutent of the phenyl ring at C-5 position isoxazole showed better inhibitory activity (5b, 5c and 5d). Among synthesized isoxazoles due to the hyper conjugative effect, 2,4,5-trimethoxy 3,5-diaryl isoxazole (5g) having 3-triflouromethyl substitution showed good antimicrobial and higher inhibitory IC50 values 8.56 ± 0.32, 12.16 ± 0.86 and 10.16 ± 0.68 μg/mL (p < 0.05) respectively, when compared to natural precursor β-asarone.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.P. Pandhurnekar, H.C. Pandhurnekar, A.J. Mungole, S.S. Butoliya, and G.Y. Babita, J. Heterocycl. Chem., 60, 537 (2023); https://doi.org/10.1002/jhet.4586
- J. Zhu, J. Mo, H.Z. Lin, Y. Chen and H.P. Sun, Bioorg. Med. Chem., 23, 3065 (2018); https://doi.org/10.1016/j.bmc.2018.05.013
- S. Das and K. Chanda, RSC Adv., 11, 32680 (2021); https://doi.org/10.1039/D1RA04624A
- R. Vaickelionien, V. Petrikait, I. Vaakeviien, A. Pavilonis and V. Mickeviius, PLoS One, 18, e0283289 (2023); https://doi.org/10.1371/journal.pone.0283289
- J.S. Lee, Y.S. Cho, M. Ho. Chang, Y.H. Koh, Y.B. Chungb and N.A. Pae, Bioorg. Med. Chem. Lett., 13, 4117 (2003); https://doi.org/10.1016/j.bmcl.2003.08.021
- V. Andrzejak, G.G. Muccioli, M.B. Malapel, J.E. Bakali, M. Djouina, N. Renault, P. Chavatte P. Desreumaux, M.D. Lambert and R. Millet, Bioorg. Med. Chem., 19, 3777 (2011); https://doi.org/10.1016/j.bmc.2011.04.057
- N. Yasuda, H. Iwagami and Y. Sasaki, Antibiotics, 36, 1516 (1983); https://doi.org/10.7164/antibiotics.36.1516
- P. Anand and B. Singh, Bioorg. Med. Chem., 20, 521 (2012); https://doi.org/10.1016/j.bmc.2011.05.027
- M. Pinho and M.V.D. Teresa, Curr. Org. Chem., 9, 925 (2005); https://doi.org/10.2174/1385272054368420
- G.C. Arya, K. Kaur and V. Jaitak, Eur. J. Med. Chem., 221, 113511 (2021); https://doi.org/10.1016/j.ejmech.2021.113511
- J.P. Yong, C.Z. Lu and Wu X. Anticancer Agents Med Chem., 15, 131 (2015); https://doi.org/10.2174/187152061501141204095736
- K.L. Gao, L.X. Zhao, Z.W. Wang, Y.C. Gao, J.J. Li, S. Gao, Y. Fu and F. Ye, J. Agric. Food. Chem., 68, 10550 (2020); https://pubmed.ncbi.nlm.nih.gov/32886503
- A. Shaik, R.R. Bhandare, K. Palleapati, S. Nissankararao, S. Shaik and V. Kancharlapalli, Molecules, 25, 1047 (2020); https://doi.org/10.3390/molecules25051047
- R.N. Yadav, A.K. Srivastava and B.K. Banik, edss.: B.K. Banik, Green Approaches in Medicinal Chemistry for Sustainable Drug Design, In: Advances in Green and Sustainable Chemistry, Elsevier, Inc., pp. 353-425 (2020); https://doi.org/10.1016/B978-0-12-817592-7.00010-1
- M. Benltifa, J.M. Hayes, S. Vidal, D. Gueyrard, P.G. Goekjian, J.P. Praly, G. Kizilis, C. Tiraidis, K.M. Alexacou, E.D. Chrysina, S.E. Zographos, D.D. Leonidas, G. Archontis and N.K. Oikonomakos, Bioorg. Med. Chem., 17, 7368 (2009); https://doi.org/10.1016/j.bmc.2009.08.060
- C. Selvam, S.M. Jachak, R. Tilagavathi and A.K. Chakraborti, Bioorg. Med. Chem. Lett., 15, 1793 (2005); https://doi.org/10.1016/j.bmcl.2005.02.039
- D. Simoni, M. Rizzi, R. Rondanin, R. Baruchello, P. Marchetti, F.P. Invidiata, M. Poma, P. Labbozzetta, V. Carina, M. Notarbartolo, A. Alaimo and N.D. Alessandro, Bioorg. Med. Chem. Lett., 18, 845 (2008); https://doi.org/10.1016/j.bmcl.2007.11.021
- J.J. Burchall, J. Infect. Dis., 128, S437 (1973); https://doi.org/10.1093/infdis/128.Supplement_3.S437
- P. Dandawate, K. Ahmed, S. Padhye, A. Ahmad and B. Biersack, Anti-Cancer Agents Med. Chem., 21, 558 (2021); https://doi.org/10.2174/1871520620666200705215722
- S. Shenvi, K. Kumar, K.S. Hatti, K. Rijesh, L. Diwakar and G.C. Reddy, Eur. J. Med. Chem., 62, 435 (2013); https://doi.org/10.1016/j.ejmech.2013.01.018
- V. Yadav, R. Mandhan, R. Dadur, A.K. Chhillar, J. Gupta and G.L. Sharma, J. Med. Microbiol., 54, 375 (2005); https://doi.org/10.1099/jmm.0.45748-0
- A.W. Bauer, W.M.M. Kirby, J.C. Sherris and M. Turck, Am. J. Clin. Pathol., 45, 493 (1966); https://doi.org/10.1093/ajcp/45.4_ts.493
- T. Mossman. J. Immunol. Methods, 65, 55 (1983); https://doi.org/10.1016/0022-1759(83)90303-4
References
C.P. Pandhurnekar, H.C. Pandhurnekar, A.J. Mungole, S.S. Butoliya, and G.Y. Babita, J. Heterocycl. Chem., 60, 537 (2023); https://doi.org/10.1002/jhet.4586
J. Zhu, J. Mo, H.Z. Lin, Y. Chen and H.P. Sun, Bioorg. Med. Chem., 23, 3065 (2018); https://doi.org/10.1016/j.bmc.2018.05.013
S. Das and K. Chanda, RSC Adv., 11, 32680 (2021); https://doi.org/10.1039/D1RA04624A
R. Vaickelionien, V. Petrikait, I. Vaakeviien, A. Pavilonis and V. Mickeviius, PLoS One, 18, e0283289 (2023); https://doi.org/10.1371/journal.pone.0283289
J.S. Lee, Y.S. Cho, M. Ho. Chang, Y.H. Koh, Y.B. Chungb and N.A. Pae, Bioorg. Med. Chem. Lett., 13, 4117 (2003); https://doi.org/10.1016/j.bmcl.2003.08.021
V. Andrzejak, G.G. Muccioli, M.B. Malapel, J.E. Bakali, M. Djouina, N. Renault, P. Chavatte P. Desreumaux, M.D. Lambert and R. Millet, Bioorg. Med. Chem., 19, 3777 (2011); https://doi.org/10.1016/j.bmc.2011.04.057
N. Yasuda, H. Iwagami and Y. Sasaki, Antibiotics, 36, 1516 (1983); https://doi.org/10.7164/antibiotics.36.1516
P. Anand and B. Singh, Bioorg. Med. Chem., 20, 521 (2012); https://doi.org/10.1016/j.bmc.2011.05.027
M. Pinho and M.V.D. Teresa, Curr. Org. Chem., 9, 925 (2005); https://doi.org/10.2174/1385272054368420
G.C. Arya, K. Kaur and V. Jaitak, Eur. J. Med. Chem., 221, 113511 (2021); https://doi.org/10.1016/j.ejmech.2021.113511
J.P. Yong, C.Z. Lu and Wu X. Anticancer Agents Med Chem., 15, 131 (2015); https://doi.org/10.2174/187152061501141204095736
K.L. Gao, L.X. Zhao, Z.W. Wang, Y.C. Gao, J.J. Li, S. Gao, Y. Fu and F. Ye, J. Agric. Food. Chem., 68, 10550 (2020); https://pubmed.ncbi.nlm.nih.gov/32886503
A. Shaik, R.R. Bhandare, K. Palleapati, S. Nissankararao, S. Shaik and V. Kancharlapalli, Molecules, 25, 1047 (2020); https://doi.org/10.3390/molecules25051047
R.N. Yadav, A.K. Srivastava and B.K. Banik, edss.: B.K. Banik, Green Approaches in Medicinal Chemistry for Sustainable Drug Design, In: Advances in Green and Sustainable Chemistry, Elsevier, Inc., pp. 353-425 (2020); https://doi.org/10.1016/B978-0-12-817592-7.00010-1
M. Benltifa, J.M. Hayes, S. Vidal, D. Gueyrard, P.G. Goekjian, J.P. Praly, G. Kizilis, C. Tiraidis, K.M. Alexacou, E.D. Chrysina, S.E. Zographos, D.D. Leonidas, G. Archontis and N.K. Oikonomakos, Bioorg. Med. Chem., 17, 7368 (2009); https://doi.org/10.1016/j.bmc.2009.08.060
C. Selvam, S.M. Jachak, R. Tilagavathi and A.K. Chakraborti, Bioorg. Med. Chem. Lett., 15, 1793 (2005); https://doi.org/10.1016/j.bmcl.2005.02.039
D. Simoni, M. Rizzi, R. Rondanin, R. Baruchello, P. Marchetti, F.P. Invidiata, M. Poma, P. Labbozzetta, V. Carina, M. Notarbartolo, A. Alaimo and N.D. Alessandro, Bioorg. Med. Chem. Lett., 18, 845 (2008); https://doi.org/10.1016/j.bmcl.2007.11.021
J.J. Burchall, J. Infect. Dis., 128, S437 (1973); https://doi.org/10.1093/infdis/128.Supplement_3.S437
P. Dandawate, K. Ahmed, S. Padhye, A. Ahmad and B. Biersack, Anti-Cancer Agents Med. Chem., 21, 558 (2021); https://doi.org/10.2174/1871520620666200705215722
S. Shenvi, K. Kumar, K.S. Hatti, K. Rijesh, L. Diwakar and G.C. Reddy, Eur. J. Med. Chem., 62, 435 (2013); https://doi.org/10.1016/j.ejmech.2013.01.018
V. Yadav, R. Mandhan, R. Dadur, A.K. Chhillar, J. Gupta and G.L. Sharma, J. Med. Microbiol., 54, 375 (2005); https://doi.org/10.1099/jmm.0.45748-0
A.W. Bauer, W.M.M. Kirby, J.C. Sherris and M. Turck, Am. J. Clin. Pathol., 45, 493 (1966); https://doi.org/10.1093/ajcp/45.4_ts.493
T. Mossman. J. Immunol. Methods, 65, 55 (1983); https://doi.org/10.1016/0022-1759(83)90303-4