Copyright (c) 2024 Murodjon Samadiy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recent Developments in the Extraction of Lithium from Water Resources
Corresponding Author(s) : Murodjon Samadiy
Asian Journal of Chemistry,
Vol. 36 No. 2 (2024): Vol 36 Issue 2, 2024
Abstract
An increasing number of electric vehicles, hybrids, and synergistic types are adding electronic components, driving up demand for lithium and its derivatives. These chemicals comprise 80% of the worldwide market and come in forms such as carbonate, lithium hydroxide and mineral concentrates. The use of lithium is predicted to surge by 60% in the coming years due to the proliferation of electric vehicles. This demands efficient and rapid deposit detection methods as well as economical and high-resolution exploration equipment. The quantity and geographical distribution of fossil and ore mineral deposits can be easily mapped using hyperspectral photography. Since salt lakes, oceans, and geothermal water hold the majority of the world’s lithium reserves ranging from 70% to 80%, these areas are ideal for the lithium extraction process. In this regard, there is an increase in research targeted at industrial lithium production from water resources. Recycling lithium-ion batteries is an alternative method that can be utilized to increase the production of lithium. Geothermal waters have lower lithium contents than brines and some of the processes are not suitable. Evaporation methods, solvent extraction, membrane technology, nanofiltration and adsorption can all be used to extract lithium from liquid media. Thus, lithium extraction from aqueous solutions was the focus of this review article, which aimed to provide straightforward technical solutions, low costs, decreased environmental impact and excellent selectivity for the lithium industry.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Tadesse, F. Makuei, B. Albijanic and L. Dyer, Miner. Eng., 131, 170 (2019); https://doi.org/10.1016/j.mineng.2018.11.023
- B. Abdullayev, M. Rifky, J. Makhmayorov, I. Usmanov, T. Deng, M. Samadiy, Int. J. Eng. Trends Technol., 71, 212 (2023); https://doi.org/10.14445/22315381/IJETT-V71I9P219
- P.K. Choubey, M.-s. Kim, R.R. Srivastava, J.-c. Lee and J.-Y. Lee, Miner. Eng., 89, 119 (2016); https://doi.org/10.1016/j.mineng.2016.01.010
- B. Abdullayev, I. Usmanov, M. Samadiy, T. Deng, , Int. J. Eng. Trends Technol., 70, 319 (2022); https://doi.org/10.14445/22315381/IJETT-V70I9P231
- E.A. Mends and P. Chu, J. Environ. Chem. Eng., 11, 110710 (2023); https://doi.org/10.1016/j.jece.2023.110710
- A. Khalil, S. Mohammed, R. Hashaikeh and N. Hilal, Desalination, 528, 115611 (2022); https://doi.org/10.1016/j.desal.2022.115611
- X. Sun, H. Hao, F. Zhao and Z. Liu, Resour. Conserv. Recycl., 124, 50 (2017); https://doi.org/10.1016/j.resconrec.2017.04.012
- P. Loganathan, G. Naidu and S. Vigneswaran, Environ. Sci.: Water Res. Technol., 3, 37 (2017); https://doi.org/10.1039/C6EW00268D
- S.E. Kesler, P.W. Gruber, P.A. Medina, G.A. Keoleian, M.P. Everson and T.J. Wallington, Ore Geol. Rev., 48, 55-69 (2012); https://doi.org/10.1016/j.oregeorev.2012.05.006
- K.M. Suzette, U.S. Geological Survey, Mineral Commodity Summaries, Reston, Virginia (2016).
- T. Kundu, S.S. Rath, S.K. Das, P.K. Parhi and S.I. Angadi, Powder Technol., 415, 118142 (2022); https://doi.org/10.1016/j.powtec.2022.118142
- M. Samadiy and T. Deng, J. Chem. Soc. Pakistan, 43, 406 (2021); http://doi.org/10.52568/000585/JCSP/43.04.2021
- G.C. Guo, D. Wang, X.L. Wei, Q. Zhang, H. Liu, W.M. Lau and L.M. Liu, J. Phys. Chem. Lett., 6, 5002 (2015); https://doi.org/10.1021/acs.jpclett.5b02513
- Z-Y. Ji, F-J. Yang, Y-Y. Zhao, J. Liu, N. Wang and J-S. Yuan, Chem. Eng. J., 328, 768-786 (2017); https://doi.org/10.1016/j.cej.2017.07.047
- T. Dursun and C. Soutis, Mater. Design, 56, 862 (2014); https://doi.org/10.1016/j.matdes.2013.12.002
- L. Wang, C.G. Meng, M. Han and W. Ma, J. Colloid Interf. Sci., 325, 31 (2008); https://doi.org/10.1016/j.jcis.2008.05.005
- L. Wu, C. Zhang, S. Kim, T.A. Hatton, H. Mo and T.D. Waite, Water Res., 221, 118822 (2022); https://doi.org/10.1016/j.watres.2022.118822
- R.E. Ciez and J.F. Whitacre, Nat. Sustain., 2, 148 (2019); https://doi.org/10.1038/s41893-019-0222-5
- H. Yu, G. Naidu, C. Zhang, C. Wang, A. Razmjou, D.S. Han, T. He and H. Shon, Desalination, 539, 115951 (2022); https://doi.org/10.1016/j.desal.2022.115951
- M.P. Paranthaman, L. Li, J. Luo, T. Hoke, H. Ucar, B.A. Moyer and S. Harrison, Environ. Sci. Technol., 51, 13481 (2017); https://doi.org/10.1021/acs.est.7b03464
- J.F. Song, L.D. Nghiem, X.-M. Lia and T. He, Environ. Sci.: Water Res. Technol., 3, 593 (2017); https://doi.org/10.1039/C7EW00020K
- F.L. Tabarés, Lithium: Technology, Performance and Safety, Nova Science Publishers: New York, USA (2013).
- Roskill Information Services Ltd., The economics of lithium (11th ed.): London, United Kingdom, Roskill Information Services Ltd., 324 (2009).
- C. Grosjean, P.H. Miranda, M. Perrin and P. Poggi, Renew. Sustain. Energy Rev., 16, 1735 (2012); https://doi.org/10.1016/j.rser.2011.11.023
- M.G. Aylmore, K. Merigot, Z. Quadir, W.D. Rickard, N.J. Evans, B.J. McDonald and P. Spitalny, Miner. Eng., 116, 182 (2018); https://doi.org/10.1016/j.mineng.2017.08.004
- F.A. Kruse, J.W. Boardman, J.F. Huntington, IEEE Trans. Geosci. Remote Sens., 41, 1388 (2003); https://doi.org/10.1109/TGRS.2003.812908
- R. Booysen, S. Lorenz, S.T. Thiele, W.C. Fuchsloch, T. Marais, P.A.M. Nex and R. Gloaguen, Remote Sens. Environ., 269, 2 (2022); https://doi.org/10.1016/j.rse.2021.112790
- J. Cardoso-Fernandes, A. Cláudia Teodoro, A. Lima, C. Mielke, F. Körting, E. Roda-Robles and J. Cauzid, IGARSS, 6, 5226 (2020); https://doi.org/10.1109/IGARSS39084.2020.9323705
- T. Boschetti, Geothermics, 98, 102286 (2022); https://doi.org/10.1016/j.geothermics.2021.102286
- L. Kavanagh, J. Keohane, G. Garcia-Cabellos, G. Garcia-Cabellos, A. Lloyd and J. Cleary, Resources, 7, 57 (2018); https://doi.org/10.3390/resources7030057
- D. Yelatontsev and A. Mukhachev, Hydrometallurgy, 201, 105578 (2021); https://doi.org/10.1016/j.hydromet.2021.105578
- L.A. Gil-Alana and M. Monge, Resour. Policy, 60, 198 (2019); https://doi.org/10.1016/j.resourpol.2019.01.006
- National Minerals Information Center, Mineral Commodity Summaries (2020); https://pubs.usgs.gov/periodicals/mcs2020/mcs2020.pdf (accessed 08 July 2022).
- J. Wang, H. Hu and K. Wu, Hydrometallurgy, 191, 105233 (2020); https://doi.org/10.1016/j.hydromet.2019.105233
- BNEF, Electric Vehicle Outlook (2019); https://about.bnef.com/electric-vehicle-outlook/#toc-viewreport
- Roskill, Lithium Outlook to 2028-Tables (2019); https://roskill.com/market-reports/
- A.-L. Toba, R.T. Nguyen, C. Cole, G. Neupane and M.P. Paranthaman, Resour. Conserv. Recycl., 169, 105514 (2021); https://doi.org/10.1016/j.resconrec.2021.105514
- V. Flexer, C.F. Baspineiro and C.I. Galli, Sci. Total Environ., 639, 1188 (2018); https://doi.org/10.1016/j.scitotenv.2018.05.223
- B. Swain, Sep. Purif. Technol., 172, 388 (2017); https://doi.org/10.1016/j.seppur.2016.08.031
- J.W. An, D.J. Kang, K.T. Tran, M.J. Kim, T. Lim and T. Tran, Hydrometallurgy, 117, 64-70 (2012); https://doi.org/10.1016/j.hydromet.2012.02.008
- European Commission, Critical Raw Materials Resilience: Charting a Path towards Greater Security and Sustainability (2020).
- B.K. Pramanik, M.B. Asif, S. Kentish, L.D. Nghiem and F.I. Hai, J. Environ. Chem. Eng., 7, 103395 (2019); https://doi.org/10.1016/j.jece.2019.103395
- S.H. Park, J.H. Kim, S.J. Moon, J.T. Jung, H.H. Wang, A. Ali, C.A. Quist-Jensen, F. Macedonio, E. Drioli and Y.M. Lee, J. Membr. Sci., 598, 117683 (2020); https://doi.org/10.1016/j.memsci.2019.117683
- Y. Zhang, L. Wang, W. Sun, Y. Hu and H. Tang, J. Ind. Eng. Chem., 81, 7 (2019); https://doi.org/10.1016/j.jiec.2019.09.002
- A Schaefer, A.G. Fane and T.D. Waite, Nanofiltration Principles and Applications, Elsevier (2005).
- S.-Y. Sun, L.-J. Cai, X.-Y. Nie, X. Song and J.-G. Yu, J. Water Process Eng., 7, 210 (2015); https://doi.org/10.1016/j.jwpe.2015.06.012
- Q. Bi, Z. Zhang, C. Zhao and Z. Tao, Water Sci. Technol., 70, 1690 (2014); https://doi.org/10.2166/wst.2014.426
- C.A. Quist-Jensen, F. Macedonio and E. Drioli, Desalin. Water Treat., 57, 7593 (2015); https://doi.org/10.1080/19443994.2015.1030110
- B.K. Pramanik, M.B. Asif, R. Roychand, L. Shu, V. Jegatheesan, M. Bhuiyan and F.I. Hai, Chemosphere, 260, 127623 (2020); https://doi.org/10.1016/j.chemosphere.2020.127623
- A. Seip, S. Safari, D.M. Pickup, A.V. Chadwick, S. Ramos, C.A. Velasco, J.M. Cerrato and D.S. Alessi, Chem. Eng. J., 426, 130713 (2021); https://doi.org/10.1016/j.cej.2021.130713
- Y.S. Kurniawan, R.R. Sathuluri, K. Ohto, W. Iwasaki, H. Kawakita, S. Morisada, M. Miyazaki and Jumina, Sep. Purif. Technol., 211, 925 (2019); https://doi.org/10.1016/j.seppur.2018.10.049
- F. Arroyo, J. Morillo, J. Usero, D. Rosado and H. El-Bakouri, Desalination, 468, 114073 (2019); https://doi.org/10.1016/j.desal.2019.114073
- X. Li, Y. Mo, W. Qing, S. Shao, C.Y. Tang and J. Li, J. Membr. Sci., 591, 117317 (2019); https://doi.org/10.1016/j.memsci.2019.117317
- F. Du, D.M. Warsinger, T.I. Urmi, G.P. Thiel, A. Kumar and V. Lienhard, Environ. Sci. Technol., 52, 5949 (2018); https://doi.org/10.1021/acs.est.8b01195
- M. Figueira, D. Rodríguez-Jiménez, J. López, M. Reig, J.L. Cortina and C. Valderrama, Desalination, 549, 116321 (2023); https://doi.org/10.1016/j.desal.2022.116321
- L. Wang, D. Rehman, P.-F. Sun, A. Deshmukh, L. Zhang, Q. Han, Z. Yang, Z. Wang, H.-D. Park, J.H. Lienhard and C.Y. Tang, ACS Appl. Mater. Interfaces, 13, 16906 (2021); https://doi.org/10.1021/acsami.1c02252
- X. Xu, Y. Chen, P. Wan, K. Gasem, K. Wang, T. He, H. Adidharma and M. Fan, Progr. Mater. Sci., 84, 276 (2016); https://doi.org/10.1016%2Fj.pmatsci.2016.09.004
- S. Wei, Y. Wei, T. Chen, C. Liu and Y. Tang, Chem. Eng. J., 379, 122407 (2019); https://doi.org/10.1016/j.cej.2019.122407
- M.B. Bajestani, A. Moheb and M. Masigol, Ind. Eng. Chem. Res., 58, 12207 (2019); https://doi.org/10.1021/acs.iecr.9b00804
- D.H. Snydacker, V.I. Hegde, M. Aykol and C. Wolverton, Chem. Mater., 30, 6961 (2018); https://doi.org/10.1021/acs.chemmater.7b03509
- D. Weng, H. Duan, Y. Hou, J. Huo, L. Chen, F. Zhang and J. Wang, Progr. Nat. Sci.: Mater. Int., 30, 139 (2020); https://doi.org/10.1016/j.pnsc.2020.01.017
- K. Ooi, Y. Miyai and S. Katoh, Solvent Extr. Ion Exchange, 5, 561 (1987); https://doi.org/10.1080/07366298708918581
- R. Chitrakar, H. Kanoh, Y. Miyai and K. Ooi, Ind. Eng. Chem. Res., 40, 2054 (2001); https://doi.org/10.1021/ie000911h
- J. Darul, W. Nowicki and P. Piszora, J. Phys. Chem. C, 116, 17872 (2012); https://doi.org/10.1021/jp302227p
- M. Moazeni, H. Hajipour, M. Askari and M. Nusheh, Mater. Res. Bull., 61, 70 (2015); https://doi.org/10.1016/j.materresbull.2014.09.069
- K. Shi, M. Luo, J. Ying, S. Zhen, Z. Xing and R. Chen, iScience, 23, 101768 (2020); https://doi.org/10.1016/j.isci.2020.101768
- W. Ding, J. Zhang, Y. Liu, Y. Guo, T. Deng and X. Yu, Chem. Eng. J., 426, 139 (2021); https://doi.org/10.1016/j.cej.2021.131689
- J.-M. Gao, Z. Du, Q. Zhao, Y. Guo and F. Cheng, J. Mater. Res. Technol., 13, 228 (2021); https://doi.org/10.1016/j.jmrt.2021.04.073
- S. Chen, Z. Chen, Z. Wei, J. Hu, Y. Guo and T. Deng, Chem. Eng. J., 410, 128320 (2021); https://doi.org/10.1016/j.cej.2020.128320
- T. Ryu, Y. Haldorai, A. Rengaraj, J. Shin, H.-J. Hong, G.-W. Lee, Y.-K. Han, Y.S. Huh and K.-S. Chung, Ind. Eng. Chem. Res., 55, 7218 (2016); https://doi.org/10.1021/acs.iecr.6b01632
- H.-J. Hong, I.-S. Park, T. Ryu, J. Ryu, B.-G. Kim and K.-S. Chung, Chem. Eng. J., 234, 16 (2013); https://doi.org/10.1016/j.cej.2013.08.060
- G.M. Nisola, L.A. Limjuco, E.L. Vivas, C.P. Lawagon, M.J. Park, H.K. Shon, N. Mittal, I.W. Nah, H. Kim and W.-J. Chung, Chem. Eng. J., 280, 536 (2015); https://doi.org/10.1016/j.cej.2015.05.107
- M.J. Park, G.M. Nisola, A.B. Beltran, R.E.C. Torrejos, J.G. Seo, S.-P. Lee, H. Kim and W.-J. Chung, Chem. Eng. J., 254, 73 (2014); https://doi.org/10.1016/j.cej.2014.05.095
- Q. Jia, J. Wang and R. Guo, J. Porous Mater., 26, 705 (2018); https://doi.org/10.1007/s10934-018-0662-8
- G. Zhu, P. Wang, P. Qi and C. Gao, Chem. Eng. J., 235, 340 (2014); https://doi.org/10.1016/j.cej.2013.09.068
- K. Zhao, B. Tong, X. Yu, Y. Guo, Y. Xie and T. Deng, Chem. Eng. J., 430, 131423 (2014); https://doi.org/10.1016/j.cej.2021.131423
- M. Arslan, G. Acik and M.A. Tasdelen, Polym. Chem., 10, 3806 (2019); https://doi.org/10.1039/c9py00510b
- Y. Han, S. Kim, S. Yu, N.V. Myung and H. Kim, J. Ind. Eng. Chem., 81, 115 (2019); https://doi.org/10.1016/j.jiec.2019.08.061
References
B. Tadesse, F. Makuei, B. Albijanic and L. Dyer, Miner. Eng., 131, 170 (2019); https://doi.org/10.1016/j.mineng.2018.11.023
B. Abdullayev, M. Rifky, J. Makhmayorov, I. Usmanov, T. Deng, M. Samadiy, Int. J. Eng. Trends Technol., 71, 212 (2023); https://doi.org/10.14445/22315381/IJETT-V71I9P219
P.K. Choubey, M.-s. Kim, R.R. Srivastava, J.-c. Lee and J.-Y. Lee, Miner. Eng., 89, 119 (2016); https://doi.org/10.1016/j.mineng.2016.01.010
B. Abdullayev, I. Usmanov, M. Samadiy, T. Deng, , Int. J. Eng. Trends Technol., 70, 319 (2022); https://doi.org/10.14445/22315381/IJETT-V70I9P231
E.A. Mends and P. Chu, J. Environ. Chem. Eng., 11, 110710 (2023); https://doi.org/10.1016/j.jece.2023.110710
A. Khalil, S. Mohammed, R. Hashaikeh and N. Hilal, Desalination, 528, 115611 (2022); https://doi.org/10.1016/j.desal.2022.115611
X. Sun, H. Hao, F. Zhao and Z. Liu, Resour. Conserv. Recycl., 124, 50 (2017); https://doi.org/10.1016/j.resconrec.2017.04.012
P. Loganathan, G. Naidu and S. Vigneswaran, Environ. Sci.: Water Res. Technol., 3, 37 (2017); https://doi.org/10.1039/C6EW00268D
S.E. Kesler, P.W. Gruber, P.A. Medina, G.A. Keoleian, M.P. Everson and T.J. Wallington, Ore Geol. Rev., 48, 55-69 (2012); https://doi.org/10.1016/j.oregeorev.2012.05.006
K.M. Suzette, U.S. Geological Survey, Mineral Commodity Summaries, Reston, Virginia (2016).
T. Kundu, S.S. Rath, S.K. Das, P.K. Parhi and S.I. Angadi, Powder Technol., 415, 118142 (2022); https://doi.org/10.1016/j.powtec.2022.118142
M. Samadiy and T. Deng, J. Chem. Soc. Pakistan, 43, 406 (2021); http://doi.org/10.52568/000585/JCSP/43.04.2021
G.C. Guo, D. Wang, X.L. Wei, Q. Zhang, H. Liu, W.M. Lau and L.M. Liu, J. Phys. Chem. Lett., 6, 5002 (2015); https://doi.org/10.1021/acs.jpclett.5b02513
Z-Y. Ji, F-J. Yang, Y-Y. Zhao, J. Liu, N. Wang and J-S. Yuan, Chem. Eng. J., 328, 768-786 (2017); https://doi.org/10.1016/j.cej.2017.07.047
T. Dursun and C. Soutis, Mater. Design, 56, 862 (2014); https://doi.org/10.1016/j.matdes.2013.12.002
L. Wang, C.G. Meng, M. Han and W. Ma, J. Colloid Interf. Sci., 325, 31 (2008); https://doi.org/10.1016/j.jcis.2008.05.005
L. Wu, C. Zhang, S. Kim, T.A. Hatton, H. Mo and T.D. Waite, Water Res., 221, 118822 (2022); https://doi.org/10.1016/j.watres.2022.118822
R.E. Ciez and J.F. Whitacre, Nat. Sustain., 2, 148 (2019); https://doi.org/10.1038/s41893-019-0222-5
H. Yu, G. Naidu, C. Zhang, C. Wang, A. Razmjou, D.S. Han, T. He and H. Shon, Desalination, 539, 115951 (2022); https://doi.org/10.1016/j.desal.2022.115951
M.P. Paranthaman, L. Li, J. Luo, T. Hoke, H. Ucar, B.A. Moyer and S. Harrison, Environ. Sci. Technol., 51, 13481 (2017); https://doi.org/10.1021/acs.est.7b03464
J.F. Song, L.D. Nghiem, X.-M. Lia and T. He, Environ. Sci.: Water Res. Technol., 3, 593 (2017); https://doi.org/10.1039/C7EW00020K
F.L. Tabarés, Lithium: Technology, Performance and Safety, Nova Science Publishers: New York, USA (2013).
Roskill Information Services Ltd., The economics of lithium (11th ed.): London, United Kingdom, Roskill Information Services Ltd., 324 (2009).
C. Grosjean, P.H. Miranda, M. Perrin and P. Poggi, Renew. Sustain. Energy Rev., 16, 1735 (2012); https://doi.org/10.1016/j.rser.2011.11.023
M.G. Aylmore, K. Merigot, Z. Quadir, W.D. Rickard, N.J. Evans, B.J. McDonald and P. Spitalny, Miner. Eng., 116, 182 (2018); https://doi.org/10.1016/j.mineng.2017.08.004
F.A. Kruse, J.W. Boardman, J.F. Huntington, IEEE Trans. Geosci. Remote Sens., 41, 1388 (2003); https://doi.org/10.1109/TGRS.2003.812908
R. Booysen, S. Lorenz, S.T. Thiele, W.C. Fuchsloch, T. Marais, P.A.M. Nex and R. Gloaguen, Remote Sens. Environ., 269, 2 (2022); https://doi.org/10.1016/j.rse.2021.112790
J. Cardoso-Fernandes, A. Cláudia Teodoro, A. Lima, C. Mielke, F. Körting, E. Roda-Robles and J. Cauzid, IGARSS, 6, 5226 (2020); https://doi.org/10.1109/IGARSS39084.2020.9323705
T. Boschetti, Geothermics, 98, 102286 (2022); https://doi.org/10.1016/j.geothermics.2021.102286
L. Kavanagh, J. Keohane, G. Garcia-Cabellos, G. Garcia-Cabellos, A. Lloyd and J. Cleary, Resources, 7, 57 (2018); https://doi.org/10.3390/resources7030057
D. Yelatontsev and A. Mukhachev, Hydrometallurgy, 201, 105578 (2021); https://doi.org/10.1016/j.hydromet.2021.105578
L.A. Gil-Alana and M. Monge, Resour. Policy, 60, 198 (2019); https://doi.org/10.1016/j.resourpol.2019.01.006
National Minerals Information Center, Mineral Commodity Summaries (2020); https://pubs.usgs.gov/periodicals/mcs2020/mcs2020.pdf (accessed 08 July 2022).
J. Wang, H. Hu and K. Wu, Hydrometallurgy, 191, 105233 (2020); https://doi.org/10.1016/j.hydromet.2019.105233
BNEF, Electric Vehicle Outlook (2019); https://about.bnef.com/electric-vehicle-outlook/#toc-viewreport
Roskill, Lithium Outlook to 2028-Tables (2019); https://roskill.com/market-reports/
A.-L. Toba, R.T. Nguyen, C. Cole, G. Neupane and M.P. Paranthaman, Resour. Conserv. Recycl., 169, 105514 (2021); https://doi.org/10.1016/j.resconrec.2021.105514
V. Flexer, C.F. Baspineiro and C.I. Galli, Sci. Total Environ., 639, 1188 (2018); https://doi.org/10.1016/j.scitotenv.2018.05.223
B. Swain, Sep. Purif. Technol., 172, 388 (2017); https://doi.org/10.1016/j.seppur.2016.08.031
J.W. An, D.J. Kang, K.T. Tran, M.J. Kim, T. Lim and T. Tran, Hydrometallurgy, 117, 64-70 (2012); https://doi.org/10.1016/j.hydromet.2012.02.008
European Commission, Critical Raw Materials Resilience: Charting a Path towards Greater Security and Sustainability (2020).
B.K. Pramanik, M.B. Asif, S. Kentish, L.D. Nghiem and F.I. Hai, J. Environ. Chem. Eng., 7, 103395 (2019); https://doi.org/10.1016/j.jece.2019.103395
S.H. Park, J.H. Kim, S.J. Moon, J.T. Jung, H.H. Wang, A. Ali, C.A. Quist-Jensen, F. Macedonio, E. Drioli and Y.M. Lee, J. Membr. Sci., 598, 117683 (2020); https://doi.org/10.1016/j.memsci.2019.117683
Y. Zhang, L. Wang, W. Sun, Y. Hu and H. Tang, J. Ind. Eng. Chem., 81, 7 (2019); https://doi.org/10.1016/j.jiec.2019.09.002
A Schaefer, A.G. Fane and T.D. Waite, Nanofiltration Principles and Applications, Elsevier (2005).
S.-Y. Sun, L.-J. Cai, X.-Y. Nie, X. Song and J.-G. Yu, J. Water Process Eng., 7, 210 (2015); https://doi.org/10.1016/j.jwpe.2015.06.012
Q. Bi, Z. Zhang, C. Zhao and Z. Tao, Water Sci. Technol., 70, 1690 (2014); https://doi.org/10.2166/wst.2014.426
C.A. Quist-Jensen, F. Macedonio and E. Drioli, Desalin. Water Treat., 57, 7593 (2015); https://doi.org/10.1080/19443994.2015.1030110
B.K. Pramanik, M.B. Asif, R. Roychand, L. Shu, V. Jegatheesan, M. Bhuiyan and F.I. Hai, Chemosphere, 260, 127623 (2020); https://doi.org/10.1016/j.chemosphere.2020.127623
A. Seip, S. Safari, D.M. Pickup, A.V. Chadwick, S. Ramos, C.A. Velasco, J.M. Cerrato and D.S. Alessi, Chem. Eng. J., 426, 130713 (2021); https://doi.org/10.1016/j.cej.2021.130713
Y.S. Kurniawan, R.R. Sathuluri, K. Ohto, W. Iwasaki, H. Kawakita, S. Morisada, M. Miyazaki and Jumina, Sep. Purif. Technol., 211, 925 (2019); https://doi.org/10.1016/j.seppur.2018.10.049
F. Arroyo, J. Morillo, J. Usero, D. Rosado and H. El-Bakouri, Desalination, 468, 114073 (2019); https://doi.org/10.1016/j.desal.2019.114073
X. Li, Y. Mo, W. Qing, S. Shao, C.Y. Tang and J. Li, J. Membr. Sci., 591, 117317 (2019); https://doi.org/10.1016/j.memsci.2019.117317
F. Du, D.M. Warsinger, T.I. Urmi, G.P. Thiel, A. Kumar and V. Lienhard, Environ. Sci. Technol., 52, 5949 (2018); https://doi.org/10.1021/acs.est.8b01195
M. Figueira, D. Rodríguez-Jiménez, J. López, M. Reig, J.L. Cortina and C. Valderrama, Desalination, 549, 116321 (2023); https://doi.org/10.1016/j.desal.2022.116321
L. Wang, D. Rehman, P.-F. Sun, A. Deshmukh, L. Zhang, Q. Han, Z. Yang, Z. Wang, H.-D. Park, J.H. Lienhard and C.Y. Tang, ACS Appl. Mater. Interfaces, 13, 16906 (2021); https://doi.org/10.1021/acsami.1c02252
X. Xu, Y. Chen, P. Wan, K. Gasem, K. Wang, T. He, H. Adidharma and M. Fan, Progr. Mater. Sci., 84, 276 (2016); https://doi.org/10.1016%2Fj.pmatsci.2016.09.004
S. Wei, Y. Wei, T. Chen, C. Liu and Y. Tang, Chem. Eng. J., 379, 122407 (2019); https://doi.org/10.1016/j.cej.2019.122407
M.B. Bajestani, A. Moheb and M. Masigol, Ind. Eng. Chem. Res., 58, 12207 (2019); https://doi.org/10.1021/acs.iecr.9b00804
D.H. Snydacker, V.I. Hegde, M. Aykol and C. Wolverton, Chem. Mater., 30, 6961 (2018); https://doi.org/10.1021/acs.chemmater.7b03509
D. Weng, H. Duan, Y. Hou, J. Huo, L. Chen, F. Zhang and J. Wang, Progr. Nat. Sci.: Mater. Int., 30, 139 (2020); https://doi.org/10.1016/j.pnsc.2020.01.017
K. Ooi, Y. Miyai and S. Katoh, Solvent Extr. Ion Exchange, 5, 561 (1987); https://doi.org/10.1080/07366298708918581
R. Chitrakar, H. Kanoh, Y. Miyai and K. Ooi, Ind. Eng. Chem. Res., 40, 2054 (2001); https://doi.org/10.1021/ie000911h
J. Darul, W. Nowicki and P. Piszora, J. Phys. Chem. C, 116, 17872 (2012); https://doi.org/10.1021/jp302227p
M. Moazeni, H. Hajipour, M. Askari and M. Nusheh, Mater. Res. Bull., 61, 70 (2015); https://doi.org/10.1016/j.materresbull.2014.09.069
K. Shi, M. Luo, J. Ying, S. Zhen, Z. Xing and R. Chen, iScience, 23, 101768 (2020); https://doi.org/10.1016/j.isci.2020.101768
W. Ding, J. Zhang, Y. Liu, Y. Guo, T. Deng and X. Yu, Chem. Eng. J., 426, 139 (2021); https://doi.org/10.1016/j.cej.2021.131689
J.-M. Gao, Z. Du, Q. Zhao, Y. Guo and F. Cheng, J. Mater. Res. Technol., 13, 228 (2021); https://doi.org/10.1016/j.jmrt.2021.04.073
S. Chen, Z. Chen, Z. Wei, J. Hu, Y. Guo and T. Deng, Chem. Eng. J., 410, 128320 (2021); https://doi.org/10.1016/j.cej.2020.128320
T. Ryu, Y. Haldorai, A. Rengaraj, J. Shin, H.-J. Hong, G.-W. Lee, Y.-K. Han, Y.S. Huh and K.-S. Chung, Ind. Eng. Chem. Res., 55, 7218 (2016); https://doi.org/10.1021/acs.iecr.6b01632
H.-J. Hong, I.-S. Park, T. Ryu, J. Ryu, B.-G. Kim and K.-S. Chung, Chem. Eng. J., 234, 16 (2013); https://doi.org/10.1016/j.cej.2013.08.060
G.M. Nisola, L.A. Limjuco, E.L. Vivas, C.P. Lawagon, M.J. Park, H.K. Shon, N. Mittal, I.W. Nah, H. Kim and W.-J. Chung, Chem. Eng. J., 280, 536 (2015); https://doi.org/10.1016/j.cej.2015.05.107
M.J. Park, G.M. Nisola, A.B. Beltran, R.E.C. Torrejos, J.G. Seo, S.-P. Lee, H. Kim and W.-J. Chung, Chem. Eng. J., 254, 73 (2014); https://doi.org/10.1016/j.cej.2014.05.095
Q. Jia, J. Wang and R. Guo, J. Porous Mater., 26, 705 (2018); https://doi.org/10.1007/s10934-018-0662-8
G. Zhu, P. Wang, P. Qi and C. Gao, Chem. Eng. J., 235, 340 (2014); https://doi.org/10.1016/j.cej.2013.09.068
K. Zhao, B. Tong, X. Yu, Y. Guo, Y. Xie and T. Deng, Chem. Eng. J., 430, 131423 (2014); https://doi.org/10.1016/j.cej.2021.131423
M. Arslan, G. Acik and M.A. Tasdelen, Polym. Chem., 10, 3806 (2019); https://doi.org/10.1039/c9py00510b
Y. Han, S. Kim, S. Yu, N.V. Myung and H. Kim, J. Ind. Eng. Chem., 81, 115 (2019); https://doi.org/10.1016/j.jiec.2019.08.061