Copyright (c) 2024 S.GAYATHRI, S.BAKKIALAKSHMI
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Azo Dye Red 2G on Human Gamma Globulin using Multi-Spectroscopic and Docking Studies
Corresponding Author(s) : S. Bakkialakshmi
Asian Journal of Chemistry,
Vol. 36 No. 2 (2024): Vol 36 Issue 2, 2024
Abstract
The study explored the binding interaction between human gamma globulin (HGG) and the synthetic azo dye red 2G (R2G) using spectroscopic techniques and molecular docking studies. The binding effects were identified through UV-visible, fluorescence and FT-IR spectroscopies. The quenching mechanism was found to be static, resulting in the formation of a stable bioconjugate, as determined by Stern-Volmer analysis. The binding distance between R2G and the tryptophan residue of HGG was studied using the Forster resonance energy transfer (FRET) theory. The study also found significant modification in the amide FTIR frequencies correlating to variation in the secondary α-helical structures of HGG at the HGG-R2G complex interface. The binding affinity scores of the protein HGG with the dye were determined using molecular docking. Biophysical techniques, such as turbidity measurements and field emission scanning electron microscopy (FESEM), were used to understand the mechanism of R2G-induced amyloid aggregation in HGG at pH 2. Additionally, the study investigated the potential cytotoxic effects of red 2G on human THP-1 monocytes via an MTT assay. The effects of food colorants on biological macromolecules were studied and it was found that a higher concentration of red 2G has toxic potential to human THP-1 monocytes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Cunha-Vaz, R. Bernardes and C. Lobo, Eur. J. Ophthalmol., 21(Suppl 6), 3 (2011); https://doi.org/10.5301/EJO.2010.6049
- Y. Guo, H. Lee and H. Jeong, Eds.: A. Blanco and G. Blanco, Proteins, In: Medical Biochemistry, Academic Press, Chap. 3, pp. 21-71 (2020); https://doi.org/10.1016/bs.pmbts.2020.04.002
- T. Tripathi, S. Saxena, S. Saha, J. Saxena, D. Rastogi, C. Srivastava and P. Kanowjia, Int. J. Physiol., 8, 80 (2020).
- J.S. Marshall, R. Warrington, W. Watson and H.L. Kim, Allergy Asthma Clin. Immunol., 14(Suppl 2), 49 (2018); https://doi.org/10.1186/s13223-018-0278-1
- K.B. Megha and P.V. Mohanan, Int. J. Biol. Macromol., 169, 28 (2021); https://doi.org/10.1016/j.ijbiomac.2020.12.073
- J.A. Hooper, LymphoSign J., 2, 181 (2015); https://doi.org/10.14785/lpsn-2014-0025
- R.I. Alsantali, Q.A. Raja, A.Y.A. Alzahrani, A. Sadiq, N. Naeem, E.U. Mughal, M.M. Al-Rooqi, N. El-Guesmi, Z. Moussa and S.A. Ahmed, Dyes Pigm., 199, 110050 (2022); https://doi.org/10.1016/j.dyepig.2021.110050
- S. Benkhaya, S. M’rabet and A. El Harfi, Heliyon, 6, e03271 (2020); https://doi.org/10.1016/j.heliyon.2020.e03271
- M. Asif Ahmed, A.S. Al-Khalifa, D.M. Al-Nouri and M.F.S. El-din, Saudi J. Biol. Sci., 28, 27 (2021); https://doi.org/10.1016/j.sjbs.2020.08.025
- H. Sun, Y. Yao, F. Wei, Q. Zhao, B. Liu and L. Zhang, Turk. J. Chem., 45, 5 (2021); https://doi.org/10.3906/kim-2002-10
- R.B. Haveland-Smith, R.D. Combes and B.A. Bridges, Mutat. Res., 64, 241 (1979); https://doi.org/10.1016/0165-1161(79)90093-1
- S. Kamaljeet, S. Bansal and U. SenGupta, Front Chem., 4, 00050 (2017); https://doi.org/10.3389/fchem.2016.00050
- D.L. Mobley and K.A. Dill, Structure, 17, 489 (2009); https://doi.org/10.1016/j.str.2009.02.010
- S. Moradi, M. Shahlaei, F. Balaei, M. Ansari and N. Farhadian, Res. Pharm. Sci., 16, 58 (2021); https://doi.org/10.4103/1735-5362.305189
- S.A. Alex, N. Chandrasekaran and A. Mukherjee, IET Nanobiotechnol., 13, 522 (2019); https://doi.org/10.1049/iet-nbt.2018.5408
- K. Baranowska, M. Moñka, P. Bojarski and M. Józefowicz, Int. J. Mol. Sci., 22, 11705 (2021); https://doi.org/10.3390/ijms222111705
- J. Lin, W. Hua, Y. Zhang, C. Li, W. Xue, J. Yin, Z. Liu and X. Qiu, Biochim. Biophys. Acta Gen., 1850, 419 (2015); https://doi.org/10.1016/j.bbagen.2014.11.016
- S. Bakkialakshmi and D. Chandrakala, Spectrochim. Acta A Mol. Biomol. Spectrosc., 88, 2 (2012); https://doi.org/10.1016/j.saa.2011.10.076
- Y. Liu, W. He, W. Gao, Z. Hu and X. Chen, Int. J. Biol. Macromol., 37, 1 (2005); https://doi.org/10.1016/j.ijbiomac.2005.04.005
- O.A. Chaves, A.P.D.O. Amorim, L.H. Castro, C.M.R. Sant’Anna, M.C. De Oliveira, D. Cesarin-Sobrinho, J.C. Netto-Ferreira and A.B. Ferreira, Molecules, 20, 19526 (2015); https://doi.org/10.3390/molecules201019526
- P. Sadatmousavi, E. Kovalenko and P. Chen, Langmuir, 30, 11122 (2014); https://doi.org/10.1021/la502422u
- A. Sharma, K.S. Ghosh, B.P. Singh and A.K. Gathania, Methods Appl. Fluoresc., 3, 025002 (2015); https://doi.org/10.1088/2050-6120/3/2/025002
- A.A. Salem, M. Lotfy, A. Amin and M.A. Ghattas, Biochem. Biophys. Rep., 20, 100670 (2019); https://doi.org/10.1016/j.bbrep.2019.100670
- X. Li, X. Wang, H. Liu, Y. Peng, Y. Yan and T. Ni, J. Mol. Struct., 1225, 129291 (2021); https://doi.org/10.1016/j.molstruc.2020.129291
- X. Su, L. Wang, Y. Xu, L. Dong and H. Lu, Ecotoxicol. Environ. Saf., 207, 111280 (2021); https://doi.org/10.1016/j.ecoenv.2020.111280
- E. Lissi, C. Calderón and A. Campos, Photochem. Photobiol., 89, 1413 (2013); https://doi.org/10.1111/php.12112
- H. Zhang, R. Cai, C. Chen, L. Gao, P. Ding, L. Dai and B. Chi, Int. J. Mol. Sci., 24, 13281 (2023); https://doi.org/10.3390/ijms241713281
- S. Bakkialakshmi and D. Chandrakala, J. Mol. Liq., 168, 1 (2012); https://doi.org/10.1016/j.molliq.2012.01.018
- J. Xu, Y. Huang, Y. Wei, X. Weng and X. Wei, Foods, 12, 1637 (2023); https://doi.org/10.3390/foods12081637
- Y. Chen, M. Li, J. Kong, J. Liu and Q. Zhang, Foods, 12, 1561 (2023); https://doi.org/10.3390/foods12081561
- K.A. Paterson, J. Arlt and A.C. Jones, Methods Appl. Fluoresc., 8, 025002 (2020); https://doi.org/10.1088/2050-6120/ab71c3
- J.R. Albani, J. Fluoresc., 24, 105 (2014); https://doi.org/10.1007/s10895-013-1274-y
- T.K. Maiti, K.S. Ghosh and S. Dasgupta, Proteins, 64, 355 (2006); https://doi.org/10.1002/prot.20995
- S. Suwal, A. Doyen and L. Bazinet, J. Membr. Sci., 496, 267 (2015); https://doi.org/10.1016/j.memsci.2015.08.056
- J. Bandekar and S. Krimm, Proc. Natl. Acad. Sci. USA, 76, 774 (1979); https://doi.org/10.1073/pnas.76.2.774
- A. Sadat and I.J. Joye, Appl. Sci., 10, 5918 (2020); https://doi.org/10.3390/app10175918
- F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, C. Vasi and G. Dugo, Comput. Struct. Biotechnol. J., 13, 33 (2015); https://doi.org/10.1016/j.csbj.2014.11.007
- A. Basu and G.S. Kumar, J. Hazard. Mater., 289, 204 (2015); https://doi.org/10.1016/j.jhazmat.2015.02.044
- M. Gupta, R. Sharma and A. Kumar, Comput. Biol. Chem., 76, 210 (2018); https://doi.org/10.1016/j.compbiolchem.2018.06.005
- X. Li and T. Ni, J. Biol. Phys., 42, 415 (2016); https://doi.org/10.1007/s10867-016-9415-6
- L. Ying, W. Chao and L. Guanghua, J. Mol. Struct., 980, 108 (2010); https://doi.org/10.1016/j.molstruc.2010.06.044
- Y. Liu, R. Lei, Z. Hu, X. Chen, F. Shen and J. Jing, Spectrosc. Lett., 39, 265 (2006); https://doi.org/10.1080/00387010600636999
- Y. Liu, Z. Yang, J. Du, X. Yao, R. Lei, X. Zheng, J. Liu, H. Hu and H. Li, Immunobiology, 213, 651 (2008); https://doi.org/10.1016/j.imbio.2008.02.003
- N.K. Daud and B.H. Hameed, J. Hazard. Mater., 176, 938 (2010); https://doi.org/10.1016/j.jhazmat.2009.11.130
- Z.L. Almeida and R.M. Brito, Molecules, 25, 1195 (2020); https://doi.org/10.3390/molecules25051195
- E.C. Franklin and F. Prelli, J. Clin. Invest., 39, 1933 (1960); https://doi.org/10.1172/JCI104218
- A. Higuchi, S. Mishima and T. Nakagawa, J. Membr. Sci., 57, 175 (1991); https://doi.org/10.1016/S0376-7388(00)80677-8
- N.A. Al-Shabib, J.M. Khan, M.A. Alsenaidy, A.M. Alsenaidy, M.S. Khan, F.M. Husain, M.R. Khan, M. Naseem, P. Sen, P. Alam and R.H. Khan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 191, 116 (2018); https://doi.org/10.1016/j.saa.2017.09.062
- N.A. Al-Shabib, J.M. Khan, M.S. Khan, M.S. Ali, A.M. Al-Senaidy, M.A. Alsenaidy, F.M. Husain and H.A. Al-Lohedan, Int. J. Biol. Macromol., 98, 277 (2017); https://doi.org/10.1016/j.ijbiomac.2017.01.097
- W. Chanput, J.J. Mes and H.J. Wichers, Int. Immunopharmacol., 23, 37 (2014); https://doi.org/10.1016/j.intimp.2014.08.002
- T.L. Heil, K.R. Volkmann, J.C. Wataha and P.E. Lockwood, J. Oral Rehabil., 29, 401 (2002); https://doi.org/10.1046/j.1365-2842.2002.00893.x
References
J. Cunha-Vaz, R. Bernardes and C. Lobo, Eur. J. Ophthalmol., 21(Suppl 6), 3 (2011); https://doi.org/10.5301/EJO.2010.6049
Y. Guo, H. Lee and H. Jeong, Eds.: A. Blanco and G. Blanco, Proteins, In: Medical Biochemistry, Academic Press, Chap. 3, pp. 21-71 (2020); https://doi.org/10.1016/bs.pmbts.2020.04.002
T. Tripathi, S. Saxena, S. Saha, J. Saxena, D. Rastogi, C. Srivastava and P. Kanowjia, Int. J. Physiol., 8, 80 (2020).
J.S. Marshall, R. Warrington, W. Watson and H.L. Kim, Allergy Asthma Clin. Immunol., 14(Suppl 2), 49 (2018); https://doi.org/10.1186/s13223-018-0278-1
K.B. Megha and P.V. Mohanan, Int. J. Biol. Macromol., 169, 28 (2021); https://doi.org/10.1016/j.ijbiomac.2020.12.073
J.A. Hooper, LymphoSign J., 2, 181 (2015); https://doi.org/10.14785/lpsn-2014-0025
R.I. Alsantali, Q.A. Raja, A.Y.A. Alzahrani, A. Sadiq, N. Naeem, E.U. Mughal, M.M. Al-Rooqi, N. El-Guesmi, Z. Moussa and S.A. Ahmed, Dyes Pigm., 199, 110050 (2022); https://doi.org/10.1016/j.dyepig.2021.110050
S. Benkhaya, S. M’rabet and A. El Harfi, Heliyon, 6, e03271 (2020); https://doi.org/10.1016/j.heliyon.2020.e03271
M. Asif Ahmed, A.S. Al-Khalifa, D.M. Al-Nouri and M.F.S. El-din, Saudi J. Biol. Sci., 28, 27 (2021); https://doi.org/10.1016/j.sjbs.2020.08.025
H. Sun, Y. Yao, F. Wei, Q. Zhao, B. Liu and L. Zhang, Turk. J. Chem., 45, 5 (2021); https://doi.org/10.3906/kim-2002-10
R.B. Haveland-Smith, R.D. Combes and B.A. Bridges, Mutat. Res., 64, 241 (1979); https://doi.org/10.1016/0165-1161(79)90093-1
S. Kamaljeet, S. Bansal and U. SenGupta, Front Chem., 4, 00050 (2017); https://doi.org/10.3389/fchem.2016.00050
D.L. Mobley and K.A. Dill, Structure, 17, 489 (2009); https://doi.org/10.1016/j.str.2009.02.010
S. Moradi, M. Shahlaei, F. Balaei, M. Ansari and N. Farhadian, Res. Pharm. Sci., 16, 58 (2021); https://doi.org/10.4103/1735-5362.305189
S.A. Alex, N. Chandrasekaran and A. Mukherjee, IET Nanobiotechnol., 13, 522 (2019); https://doi.org/10.1049/iet-nbt.2018.5408
K. Baranowska, M. Moñka, P. Bojarski and M. Józefowicz, Int. J. Mol. Sci., 22, 11705 (2021); https://doi.org/10.3390/ijms222111705
J. Lin, W. Hua, Y. Zhang, C. Li, W. Xue, J. Yin, Z. Liu and X. Qiu, Biochim. Biophys. Acta Gen., 1850, 419 (2015); https://doi.org/10.1016/j.bbagen.2014.11.016
S. Bakkialakshmi and D. Chandrakala, Spectrochim. Acta A Mol. Biomol. Spectrosc., 88, 2 (2012); https://doi.org/10.1016/j.saa.2011.10.076
Y. Liu, W. He, W. Gao, Z. Hu and X. Chen, Int. J. Biol. Macromol., 37, 1 (2005); https://doi.org/10.1016/j.ijbiomac.2005.04.005
O.A. Chaves, A.P.D.O. Amorim, L.H. Castro, C.M.R. Sant’Anna, M.C. De Oliveira, D. Cesarin-Sobrinho, J.C. Netto-Ferreira and A.B. Ferreira, Molecules, 20, 19526 (2015); https://doi.org/10.3390/molecules201019526
P. Sadatmousavi, E. Kovalenko and P. Chen, Langmuir, 30, 11122 (2014); https://doi.org/10.1021/la502422u
A. Sharma, K.S. Ghosh, B.P. Singh and A.K. Gathania, Methods Appl. Fluoresc., 3, 025002 (2015); https://doi.org/10.1088/2050-6120/3/2/025002
A.A. Salem, M. Lotfy, A. Amin and M.A. Ghattas, Biochem. Biophys. Rep., 20, 100670 (2019); https://doi.org/10.1016/j.bbrep.2019.100670
X. Li, X. Wang, H. Liu, Y. Peng, Y. Yan and T. Ni, J. Mol. Struct., 1225, 129291 (2021); https://doi.org/10.1016/j.molstruc.2020.129291
X. Su, L. Wang, Y. Xu, L. Dong and H. Lu, Ecotoxicol. Environ. Saf., 207, 111280 (2021); https://doi.org/10.1016/j.ecoenv.2020.111280
E. Lissi, C. Calderón and A. Campos, Photochem. Photobiol., 89, 1413 (2013); https://doi.org/10.1111/php.12112
H. Zhang, R. Cai, C. Chen, L. Gao, P. Ding, L. Dai and B. Chi, Int. J. Mol. Sci., 24, 13281 (2023); https://doi.org/10.3390/ijms241713281
S. Bakkialakshmi and D. Chandrakala, J. Mol. Liq., 168, 1 (2012); https://doi.org/10.1016/j.molliq.2012.01.018
J. Xu, Y. Huang, Y. Wei, X. Weng and X. Wei, Foods, 12, 1637 (2023); https://doi.org/10.3390/foods12081637
Y. Chen, M. Li, J. Kong, J. Liu and Q. Zhang, Foods, 12, 1561 (2023); https://doi.org/10.3390/foods12081561
K.A. Paterson, J. Arlt and A.C. Jones, Methods Appl. Fluoresc., 8, 025002 (2020); https://doi.org/10.1088/2050-6120/ab71c3
J.R. Albani, J. Fluoresc., 24, 105 (2014); https://doi.org/10.1007/s10895-013-1274-y
T.K. Maiti, K.S. Ghosh and S. Dasgupta, Proteins, 64, 355 (2006); https://doi.org/10.1002/prot.20995
S. Suwal, A. Doyen and L. Bazinet, J. Membr. Sci., 496, 267 (2015); https://doi.org/10.1016/j.memsci.2015.08.056
J. Bandekar and S. Krimm, Proc. Natl. Acad. Sci. USA, 76, 774 (1979); https://doi.org/10.1073/pnas.76.2.774
A. Sadat and I.J. Joye, Appl. Sci., 10, 5918 (2020); https://doi.org/10.3390/app10175918
F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, C. Vasi and G. Dugo, Comput. Struct. Biotechnol. J., 13, 33 (2015); https://doi.org/10.1016/j.csbj.2014.11.007
A. Basu and G.S. Kumar, J. Hazard. Mater., 289, 204 (2015); https://doi.org/10.1016/j.jhazmat.2015.02.044
M. Gupta, R. Sharma and A. Kumar, Comput. Biol. Chem., 76, 210 (2018); https://doi.org/10.1016/j.compbiolchem.2018.06.005
X. Li and T. Ni, J. Biol. Phys., 42, 415 (2016); https://doi.org/10.1007/s10867-016-9415-6
L. Ying, W. Chao and L. Guanghua, J. Mol. Struct., 980, 108 (2010); https://doi.org/10.1016/j.molstruc.2010.06.044
Y. Liu, R. Lei, Z. Hu, X. Chen, F. Shen and J. Jing, Spectrosc. Lett., 39, 265 (2006); https://doi.org/10.1080/00387010600636999
Y. Liu, Z. Yang, J. Du, X. Yao, R. Lei, X. Zheng, J. Liu, H. Hu and H. Li, Immunobiology, 213, 651 (2008); https://doi.org/10.1016/j.imbio.2008.02.003
N.K. Daud and B.H. Hameed, J. Hazard. Mater., 176, 938 (2010); https://doi.org/10.1016/j.jhazmat.2009.11.130
Z.L. Almeida and R.M. Brito, Molecules, 25, 1195 (2020); https://doi.org/10.3390/molecules25051195
E.C. Franklin and F. Prelli, J. Clin. Invest., 39, 1933 (1960); https://doi.org/10.1172/JCI104218
A. Higuchi, S. Mishima and T. Nakagawa, J. Membr. Sci., 57, 175 (1991); https://doi.org/10.1016/S0376-7388(00)80677-8
N.A. Al-Shabib, J.M. Khan, M.A. Alsenaidy, A.M. Alsenaidy, M.S. Khan, F.M. Husain, M.R. Khan, M. Naseem, P. Sen, P. Alam and R.H. Khan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 191, 116 (2018); https://doi.org/10.1016/j.saa.2017.09.062
N.A. Al-Shabib, J.M. Khan, M.S. Khan, M.S. Ali, A.M. Al-Senaidy, M.A. Alsenaidy, F.M. Husain and H.A. Al-Lohedan, Int. J. Biol. Macromol., 98, 277 (2017); https://doi.org/10.1016/j.ijbiomac.2017.01.097
W. Chanput, J.J. Mes and H.J. Wichers, Int. Immunopharmacol., 23, 37 (2014); https://doi.org/10.1016/j.intimp.2014.08.002
T.L. Heil, K.R. Volkmann, J.C. Wataha and P.E. Lockwood, J. Oral Rehabil., 29, 401 (2002); https://doi.org/10.1046/j.1365-2842.2002.00893.x