Copyright (c) 2024 M. Sathish, V. Sathana, A. Venkatesan , S. David Amalraj , Anand Gaspar , M. Maria Julie, Jayabalan Jayaprakash
This work is licensed under a Creative Commons Attribution 4.0 International License.
Sustainable Industrial Wastewater Treatment and Antibacterial Activity using Environmental Friendly Ferrite Nanoparticles
Corresponding Author(s) : M. Sathish
Asian Journal of Chemistry,
Vol. 36 No. 2 (2024): Vol 36 Issue 2, 2024
Abstract
A comparison studies of two unique bimetallic spinel ferrite nanoparticles synthesized by the sol-gel process, namely Co-NiFe2O4 and
Cu-ZnFe2O4 were investigated. Various characterization approaches were utilized to examine the structural, morphological, magnetic and electrical characteristics of the nanoparticles. Both Co-NiFe2O4 and Cu-ZnFe2O4 nanoparticles formed single-phase spinel structures, according to X-ray diffraction (XRD) research whereas FTIR spectra provided information about the vibrational modes and chemical bonding within the nanoparticles confirmed the presence of desired metal-oxygen bonds chemical bonding within the nanoparticles. The UV-Vis spectroscopy revealed the optical absorption properties of the nanoparticles indicating the presence of energy bandgaps in the visible range. Scanning electron microscopy (SEM) images suggested the uniform and well-dispersed nanoparticles with average sizes in the nanoscale range. Vibrating sample magnetometry (VSM) measurements demonstrated that both Co-NiFe2O4 and Cu-ZnFe2O4 nanoparticles exhibited ferromagnetic behaviour at room temperature. The saturation magnetization values were found to be higher for Co-NiFe2O4 nanoparticles compared to Cu-ZnFe2O4 nanoparticles, suggesting the superior magnetic properties of the former. As a result, ferrites demonstrate promise in industrial wastewater treatment, facilitating efficient heavy metal removal and advanced organic pollutant degradation, contributing to a sustainable and effective solution. The antibacterial efficacy of synthesized bimetallic ferrite nanoparticles against Salmonell typhi, Escherichia coli, Staphyloccus aureus, Bacillus cereus proves that the synthesized ferrite nanoparticles possess a good antibacterial activity against the selected pathogens.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Rana, P. Dhiman, A. Kumar, D.V. Vo, G. Sharma, S. Sharma and M. Naushad, Chem. Eng. Res. Des., 175, 182 (2021); https://doi.org/10.1016/j.cherd.2021.08.040
- S. Jauhar, J. Kaur, A. Goyal and S. Singhal, RSC Adv., 6, 97694 (2016); https://doi.org/10.1039/C6RA21224G
- P.A. Vinosha, A. Manikandan, A.S. Judith Ceicilia, A. Dinesh, G. Francisco-Nirmala, A.C. Preetha, Y. Slimani, M.A. Almessiere, A. Baykal and B. Xavier, Ceram. Int., 47, 10512 (2021); https://doi.org/10.1016/j.ceramint.2020.12.289
- Y. Bhattacharjee and S. Bose, ACS Appl. Nano Mater., 4, 949 (2021); https://doi.org/10.1021/acsanm.1c00278
- J. Philip and J.M. Laskar, J. Nanofluids, 1, 3 (2012); https://doi.org/10.1166/jon.2012.1002
- M.B. Gawande, A. Goswami, T. Asefa, H. Guo, A.V. Biradar, D.L. Peng, R. Zboril and R.S. Varma, Chem. Soc. Rev., 44, 7540 (2015); https://doi.org/10.1039/C5CS00343A
- S. Kalia, S. Kango, A. Kumar, Y. Haldorai, B. Kumari and R. Kumar, Colloid Polym. Sci., 292, 2025 (2014); https://doi.org/10.1007/s00396-014-3357-y
- H. Osgood, S.V. Devaguptapu, H. Xu, J. Cho and G. Wu, Nano Today, 11, 601 (2016); https://doi.org/10.1016/j.nantod.2016.09.001
- H. Qin, Y. He, P. Xu, D. Huang, Z. Wang, H. Wang, Z. Wang, Y. Zhao, Q. Tian and C. Wang, Adv. Colloid Interface Sci., 294, 102486 (2021); https://doi.org/10.1016/j.cis.2021.102486
- W. Hu, S. Chen, J. Yang, Z. Li and H. Wang, Carbohydr. Polym., 101, 1043 (2014); https://doi.org/10.1016/j.carbpol.2013.09.102
- J. Wu, S. Li and H. Wei, Nanoscale Horiz., 3, 367 (2018); https://doi.org/10.1039/C8NH00070K
- K.K. Kefeni, T.A.M. Msagati and B.B. Mamba, Mater. Sci. Eng. B, 215, 37 (2017); https://doi.org/10.1016/j.mseb.2016.11.002
- G. Chen, I. Roy, C. Yang and P.N. Prasad, Chem. Rev., 116, 2826 (2016); https://doi.org/10.1021/acs.chemrev.5b00148
- A. Ali, T. Shah, R. Ullah, P. Zhou, M. Guo, M. Ovais, Z. Tan and Y.K. Rui, Front. Chem., 9, 629054 (2021); https://doi.org/10.3389/fchem.2021.629054
- W. Wu, Q. He and C. Jiang, Nanoscale Res. Lett., 3, 397 (2008); https://doi.org/10.1007/s11671-008-9174-9
- B. Issa, I.M. Obaidat, B.A. Albiss and Y. Haik, Int. J. Mol. Sci., 14, 21266 (2013); https://doi.org/10.3390/ijms141121266
- E. Ye, M.D. Regulacio, S.Y. Zhang, X.J. Loh and M.Y. Han, Chem. Soc. Rev., 44, 6001 (2015); https://doi.org/10.1039/C5CS00213C
- S. Jung, W. Cho, H.J. Lee and M. Oh, Angew. Chem., 121, 1487 (2009); https://doi.org/10.1002/ange.200804816
- G.J. Owens, R.K. Singh, F. Foroutan, M. Alqaysi, C.M. Han, C. Mahapatra, H.W. Kim and J.C. Knowles, Prog. Mater. Sci., 77, 1 (2016); https://doi.org/10.1016/j.pmatsci.2015.12.001
- C. Ching Lau, M. Kemal Bayazit, P.J. Reardon and J. Tang, Chem. Rec., 19, 172 (2019); https://doi.org/10.1002/tcr.201800121
- W. Ren, G. Lin, C. Clarke, J. Zhou and D. Jin, Adv. Mater., 32, 1901430 (2020); https://doi.org/10.1002/adma.201901430
- J.K. Sharma, P. Srivastava, G. Singh and H.S. Virk, Nanoferrites of Transition Metals and their Catalytic Activity, In: Solid State Phenomena Trans Tech Publications Ltd., vol. 241, pp. 126-138 (2016).
- S. Kalia, A. Kumar, S. Sharma and N. Prasad, J. Phys.: Conf. Ser., 2267, 012133 (2022); https://doi.org/10.1088/1742-6596/2267/1/012133
- J. Kwon, J.H. Kim, S.H. Kang, C.J. Choi, J.A. Rajesh and K.S. Ahn, Appl. Surf. Sci., 413, 83 (2017); https://doi.org/10.1016/j.apsusc.2017.04.022
- M.G. Naseri, E.B. Saion and A. Kamali, Int. Schol. Res. Notices, 2012, 604241 (2012); https://doi.org/10.5402/2012/604241
- K. Hantanasirisakul and Y. Gogotsi, Adv. Mater., 30, 1804779 (2018); https://doi.org/10.1002/adma.201804779
- B. Shao, Z. Liu, G. Zeng, H. Wang, Q. Liang, Q. He, M. Cheng, C. Zhou, L. Jiang and B. Song, J. Mater. Chem. A Mater. Energy Sustain., 8, 7508 (2020); https://doi.org/10.1039/D0TA01552K
- B. Dieny and M. Chshiev, Rev. Mod. Phys., 89, 025008 (2017); https://doi.org/10.1103/RevModPhys.89.025008
- A. Tyagi, S. Banerjee, J. Cherusseri and K.K. Kar, Characteristics of transition metal oxides. Handbook of Nanocomposite Supercapacitor Materials I: Characteristics, Springer, pp. 91-123 (2020).
- G.K. Prasad, J.P. Kumar, L.K. Pandey and B. Singh, Adv. Porous Mater., 5, 1 (2017); https://doi.org/10.1166/apm.2017.1132
- S.J. Salih and W.M. Mahmood, Heliyon, 9, e16601 (2023); https://doi.org/10.1016/j.heliyon.2023.e16601
- M. Zheng, Z.S. Wang, J.Q. Wu and Q. Wang, J. Nanopart. Res., 12, 2211 (2010); https://doi.org/10.1007/s11051-009-9787-7
- A. Lavin, R. Sivasamy, E. Mosquera and M.J. Morel, Surf. Interfaces, 17, 100367 (2019); https://doi.org/10.1016/j.surfin.2019.100367
- A. Mahmoud, M. Echabaane, K. Omri, L. El Mir and R. Ben Chaabane, J. Alloys Compd., 786, 960 (2019); https://doi.org/10.1016/j.jallcom.2019.02.060
- K. Malaie and M.R. Ganjali, J. Energy Storage, 33, 102097 (2021); https://doi.org/10.1016/j.est.2020.102097
- C. Pereira, R.S. Costa, L. Lopes, B. Bachiller-Baeza, I. Rodríguez-Ramos, A. Guerrero-Ruiz, P.B. Tavares, C. Freire and A.M. Pereira, Nanoscale, 10, 12820 (2018); https://doi.org/10.1039/C8NR03533D
- A.B. Mapossa, W. Mhike, J.L. Adalima and S. Tichapondwa, Catalysts, 11, 1543 (2021); https://doi.org/10.3390/catal11121543
- K.K. Kefeni, B.B. Mamba, T.A.M. Msagati, Sep. Purif. Technol., 188, 399 (2017); https://doi.org/10.1016/j.seppur.2017.07.015
- D.M. Tejashwini, H.V. Harini, H.P. Nagaswarupa, R. Naik, S. Harlapur and N. Basavaraju, Results Chem., 7, 101247 (2024); https://doi.org/10.1016/j.rechem.2023.101247
- Y. Liu, L. He, A. Mustapha, H. Li, Z.Q. Hu and M. Lin, J. Appl. Microbiol., 107, 1193 (2009); https://doi.org/10.1111/j.1365-2672.2009.04303.x
References
G. Rana, P. Dhiman, A. Kumar, D.V. Vo, G. Sharma, S. Sharma and M. Naushad, Chem. Eng. Res. Des., 175, 182 (2021); https://doi.org/10.1016/j.cherd.2021.08.040
S. Jauhar, J. Kaur, A. Goyal and S. Singhal, RSC Adv., 6, 97694 (2016); https://doi.org/10.1039/C6RA21224G
P.A. Vinosha, A. Manikandan, A.S. Judith Ceicilia, A. Dinesh, G. Francisco-Nirmala, A.C. Preetha, Y. Slimani, M.A. Almessiere, A. Baykal and B. Xavier, Ceram. Int., 47, 10512 (2021); https://doi.org/10.1016/j.ceramint.2020.12.289
Y. Bhattacharjee and S. Bose, ACS Appl. Nano Mater., 4, 949 (2021); https://doi.org/10.1021/acsanm.1c00278
J. Philip and J.M. Laskar, J. Nanofluids, 1, 3 (2012); https://doi.org/10.1166/jon.2012.1002
M.B. Gawande, A. Goswami, T. Asefa, H. Guo, A.V. Biradar, D.L. Peng, R. Zboril and R.S. Varma, Chem. Soc. Rev., 44, 7540 (2015); https://doi.org/10.1039/C5CS00343A
S. Kalia, S. Kango, A. Kumar, Y. Haldorai, B. Kumari and R. Kumar, Colloid Polym. Sci., 292, 2025 (2014); https://doi.org/10.1007/s00396-014-3357-y
H. Osgood, S.V. Devaguptapu, H. Xu, J. Cho and G. Wu, Nano Today, 11, 601 (2016); https://doi.org/10.1016/j.nantod.2016.09.001
H. Qin, Y. He, P. Xu, D. Huang, Z. Wang, H. Wang, Z. Wang, Y. Zhao, Q. Tian and C. Wang, Adv. Colloid Interface Sci., 294, 102486 (2021); https://doi.org/10.1016/j.cis.2021.102486
W. Hu, S. Chen, J. Yang, Z. Li and H. Wang, Carbohydr. Polym., 101, 1043 (2014); https://doi.org/10.1016/j.carbpol.2013.09.102
J. Wu, S. Li and H. Wei, Nanoscale Horiz., 3, 367 (2018); https://doi.org/10.1039/C8NH00070K
K.K. Kefeni, T.A.M. Msagati and B.B. Mamba, Mater. Sci. Eng. B, 215, 37 (2017); https://doi.org/10.1016/j.mseb.2016.11.002
G. Chen, I. Roy, C. Yang and P.N. Prasad, Chem. Rev., 116, 2826 (2016); https://doi.org/10.1021/acs.chemrev.5b00148
A. Ali, T. Shah, R. Ullah, P. Zhou, M. Guo, M. Ovais, Z. Tan and Y.K. Rui, Front. Chem., 9, 629054 (2021); https://doi.org/10.3389/fchem.2021.629054
W. Wu, Q. He and C. Jiang, Nanoscale Res. Lett., 3, 397 (2008); https://doi.org/10.1007/s11671-008-9174-9
B. Issa, I.M. Obaidat, B.A. Albiss and Y. Haik, Int. J. Mol. Sci., 14, 21266 (2013); https://doi.org/10.3390/ijms141121266
E. Ye, M.D. Regulacio, S.Y. Zhang, X.J. Loh and M.Y. Han, Chem. Soc. Rev., 44, 6001 (2015); https://doi.org/10.1039/C5CS00213C
S. Jung, W. Cho, H.J. Lee and M. Oh, Angew. Chem., 121, 1487 (2009); https://doi.org/10.1002/ange.200804816
G.J. Owens, R.K. Singh, F. Foroutan, M. Alqaysi, C.M. Han, C. Mahapatra, H.W. Kim and J.C. Knowles, Prog. Mater. Sci., 77, 1 (2016); https://doi.org/10.1016/j.pmatsci.2015.12.001
C. Ching Lau, M. Kemal Bayazit, P.J. Reardon and J. Tang, Chem. Rec., 19, 172 (2019); https://doi.org/10.1002/tcr.201800121
W. Ren, G. Lin, C. Clarke, J. Zhou and D. Jin, Adv. Mater., 32, 1901430 (2020); https://doi.org/10.1002/adma.201901430
J.K. Sharma, P. Srivastava, G. Singh and H.S. Virk, Nanoferrites of Transition Metals and their Catalytic Activity, In: Solid State Phenomena Trans Tech Publications Ltd., vol. 241, pp. 126-138 (2016).
S. Kalia, A. Kumar, S. Sharma and N. Prasad, J. Phys.: Conf. Ser., 2267, 012133 (2022); https://doi.org/10.1088/1742-6596/2267/1/012133
J. Kwon, J.H. Kim, S.H. Kang, C.J. Choi, J.A. Rajesh and K.S. Ahn, Appl. Surf. Sci., 413, 83 (2017); https://doi.org/10.1016/j.apsusc.2017.04.022
M.G. Naseri, E.B. Saion and A. Kamali, Int. Schol. Res. Notices, 2012, 604241 (2012); https://doi.org/10.5402/2012/604241
K. Hantanasirisakul and Y. Gogotsi, Adv. Mater., 30, 1804779 (2018); https://doi.org/10.1002/adma.201804779
B. Shao, Z. Liu, G. Zeng, H. Wang, Q. Liang, Q. He, M. Cheng, C. Zhou, L. Jiang and B. Song, J. Mater. Chem. A Mater. Energy Sustain., 8, 7508 (2020); https://doi.org/10.1039/D0TA01552K
B. Dieny and M. Chshiev, Rev. Mod. Phys., 89, 025008 (2017); https://doi.org/10.1103/RevModPhys.89.025008
A. Tyagi, S. Banerjee, J. Cherusseri and K.K. Kar, Characteristics of transition metal oxides. Handbook of Nanocomposite Supercapacitor Materials I: Characteristics, Springer, pp. 91-123 (2020).
G.K. Prasad, J.P. Kumar, L.K. Pandey and B. Singh, Adv. Porous Mater., 5, 1 (2017); https://doi.org/10.1166/apm.2017.1132
S.J. Salih and W.M. Mahmood, Heliyon, 9, e16601 (2023); https://doi.org/10.1016/j.heliyon.2023.e16601
M. Zheng, Z.S. Wang, J.Q. Wu and Q. Wang, J. Nanopart. Res., 12, 2211 (2010); https://doi.org/10.1007/s11051-009-9787-7
A. Lavin, R. Sivasamy, E. Mosquera and M.J. Morel, Surf. Interfaces, 17, 100367 (2019); https://doi.org/10.1016/j.surfin.2019.100367
A. Mahmoud, M. Echabaane, K. Omri, L. El Mir and R. Ben Chaabane, J. Alloys Compd., 786, 960 (2019); https://doi.org/10.1016/j.jallcom.2019.02.060
K. Malaie and M.R. Ganjali, J. Energy Storage, 33, 102097 (2021); https://doi.org/10.1016/j.est.2020.102097
C. Pereira, R.S. Costa, L. Lopes, B. Bachiller-Baeza, I. Rodríguez-Ramos, A. Guerrero-Ruiz, P.B. Tavares, C. Freire and A.M. Pereira, Nanoscale, 10, 12820 (2018); https://doi.org/10.1039/C8NR03533D
A.B. Mapossa, W. Mhike, J.L. Adalima and S. Tichapondwa, Catalysts, 11, 1543 (2021); https://doi.org/10.3390/catal11121543
K.K. Kefeni, B.B. Mamba, T.A.M. Msagati, Sep. Purif. Technol., 188, 399 (2017); https://doi.org/10.1016/j.seppur.2017.07.015
D.M. Tejashwini, H.V. Harini, H.P. Nagaswarupa, R. Naik, S. Harlapur and N. Basavaraju, Results Chem., 7, 101247 (2024); https://doi.org/10.1016/j.rechem.2023.101247
Y. Liu, L. He, A. Mustapha, H. Li, Z.Q. Hu and M. Lin, J. Appl. Microbiol., 107, 1193 (2009); https://doi.org/10.1111/j.1365-2672.2009.04303.x