Copyright (c) 2024 A S Ganavi, N Jagannatha, K P Nagaraja, Delma D'Souza, P S Rohith
This work is licensed under a Creative Commons Attribution 4.0 International License.
Impact of Al3+ Ions Incorporation on the Enhancement of Optical and Electrical Properties of Cadmium Oxalate Crystals
Corresponding Author(s) : N Jagannatha
Asian Journal of Chemistry,
Vol. 36 No. 2 (2024): Vol 36 Issue 2, 2024
Abstract
Aluminium (impurity ion) incorporated cadmium oxalate (ACO) crystals were grown in a silica hydrogel media by diffusion technique. ACO crystals emerged with the dimension 6´2´1.5 mm3 at the optimizing parameters of gel pH 4.2, gel density 1.01 g cm-3, SMS: oxalic acid of 5:4 and supernatant mixture at an equal ratio (1:1). Further, the extracted crystals were analyzed by employing Energy dispersive X-ray analysis (EDAX), Fourier transform infrared (FTIR) spectroscopy and Thermogravimetric (TG) studies. EDAX measurements confirmed the presence of cations at the ratio Cd2+:Al3+= 65.67:1. FTIR spectra identified O-H, C-C, C-O, C=O and M-O bonds in the crystal armature. TG analysis showed two decomposition phases of foregrounded crystals with thermal stability up to 1076.79 oC in the metal oxide state with minimum change in entropy (∆S = -266.95 J mol-1 K-1). ACO crystal crystallized in a triclinic system. The optical and electrical behaviors of ACO crystals were compared with pure cadmium oxalate crystals. ACO crystals showed complete transparency to visible light and maximum absorption in the UV region like pure/parent crystals but the energy gap was reduced to 5.90 eV. The leakage resistance of ACO crystals was also reduced to 6.583 GΩ and the electrical conductivity coefficient was enhanced to 0.152 S m-1 oC-1 from parent cadmium oxalate crystals.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.V. Dalal, K.B. Saraf and S. Shah, Cryst. Res. Technol., 44, 36 (2009); https://doi.org/10.1002/crat.200800221
- P.S. Rohith, N. Jagannatha and K.V. Pradeep Kumar, Mater. Today Proc., 8, 85 (2019); https://doi.org/10.1016/j.matpr.2019.02.084
- B.B. Parekh, P.M. Vyas, S.R. Vasant and M.J. Joshi, Bull. Mater. Sci., 31, 143 (2008); https://doi.org/10.1007/s12034-008-0025-1
- A.M. Ezhil Raj, D.D. Jayanthi and V.B. Jothy, Solid State Sci., 10, 557 (2008); https://doi.org/10.1016/j.solidstatesciences.2007.10.019
- D. D’Souza and K.P. Nagaraja, Cryst. Res. Technol., 57, 2100138 (2022); https://doi.org/10.1002/crat.202100138
- N. Ponnappa, J. Nettar, H. Mylnahalli, D. D’Souza and L. Neratur, Cryst. Res. Technol., 53, 1700261 (2018); https://doi.org/10.1002/crat.201700261
- N. Jagannatha and P. Mohan Rao, Bull. Mater. Sci., 16, 365 (1993); https://doi.org/10.1007/BF02759549
- N.V. Prasad, G. Prasad, T. Bhimasankaram, S.V. Suryanarayana and G.S. Kumar, Bull. Mater. Sci., 19, 639 (1996); https://doi.org/10.1007/BF02745154
- P.S. Rohith, N. Jagannatha and K.V. Pradeep Kumar, Bull. Mater. Sci., 44, 185 (2021); https://doi.org/10.1007/s12034-021-02486-3
- K.P. Nagaraja, D. D’Souza, K.J. Pampa and N.K. Lokanath, Mater. Res. Express, 6, 035506 (2018); https://doi.org/10.1088/2053-1591/aaf309
- P.S. Rohith, N. Jagannatha and K.V. Pradeep Kumar, J. Mater. Environ. Sci., 11, 788 (2020).
- A.M. Ezhil Raj, D.D. Jayanthi, V.B. Jothy, M. Jayachandran and C. Sanjeeviraja, Inorg. Chim. Acta, 362, 1535 (2009); https://doi.org/10.1016/j.ica.2008.07.025
- E.D. Bacce, A.M. Pires, M.R. Davalos and M. Jafelicci Jr., Int. J. Inorg. Mater., 3, 443 (2001); https://doi.org/10.1016/S1466-6049(01)00047-2
- A.S. Ganavi, S.M. Dharmaprakash, N. Jagannatha, K.P. Nagaraja and Delma D’Souza, Int. J. Innov. Res. Phys., 2, 1 (2021).
- F. Daisy Selasteen, S. Alfred Cecil Raj, A. Alagappa Moses, F. Emalda Prince, R. Esther Getsy and R. Elakkiya, J. Cryst. Process Technol., 6, 65499 (2016); https://doi.org/10.4236/jcpt.2016.62002
- P.V. Dalal, K.B. Saraf, N.G. Shimpi and N.R. Shah, J. Cryst. Pro. Technol., 2, 156 (2012); https://doi.org/10.4236/jcpt.2012.24023
- A.B. Kulkarni, S.N. Mathad and R.P. Bakale, Ann. Chem., 30, 60 (2019); https://doi.org/10.2478/auoc-2019-0011
- K.P. Nagaraja, K.J. Pampa, S.R. Kumara Swamy and N.K. Lokanath, J. Appl. Chem., 7, 863 (2018).
- F.D. Selasteen, S.A. Cecil Raj, A. Anitha, J. John, T. Lavanya and J.F. Rachel, ISOR J. Appl. Phys., 10, 26 (2018).
- P. Vasudevan, S. Sankar and D. Jayaraman, Bull. Korean Chem. Soc., 34, 128 (2013); https://doi.org/10.5012/bkcs.2013.34.1.128
- K.P. Nagaraja, Ph.D. Thesis, Department of Studies in Physics, University of Mysore, Mysuru, India (2019).
References
P.V. Dalal, K.B. Saraf and S. Shah, Cryst. Res. Technol., 44, 36 (2009); https://doi.org/10.1002/crat.200800221
P.S. Rohith, N. Jagannatha and K.V. Pradeep Kumar, Mater. Today Proc., 8, 85 (2019); https://doi.org/10.1016/j.matpr.2019.02.084
B.B. Parekh, P.M. Vyas, S.R. Vasant and M.J. Joshi, Bull. Mater. Sci., 31, 143 (2008); https://doi.org/10.1007/s12034-008-0025-1
A.M. Ezhil Raj, D.D. Jayanthi and V.B. Jothy, Solid State Sci., 10, 557 (2008); https://doi.org/10.1016/j.solidstatesciences.2007.10.019
D. D’Souza and K.P. Nagaraja, Cryst. Res. Technol., 57, 2100138 (2022); https://doi.org/10.1002/crat.202100138
N. Ponnappa, J. Nettar, H. Mylnahalli, D. D’Souza and L. Neratur, Cryst. Res. Technol., 53, 1700261 (2018); https://doi.org/10.1002/crat.201700261
N. Jagannatha and P. Mohan Rao, Bull. Mater. Sci., 16, 365 (1993); https://doi.org/10.1007/BF02759549
N.V. Prasad, G. Prasad, T. Bhimasankaram, S.V. Suryanarayana and G.S. Kumar, Bull. Mater. Sci., 19, 639 (1996); https://doi.org/10.1007/BF02745154
P.S. Rohith, N. Jagannatha and K.V. Pradeep Kumar, Bull. Mater. Sci., 44, 185 (2021); https://doi.org/10.1007/s12034-021-02486-3
K.P. Nagaraja, D. D’Souza, K.J. Pampa and N.K. Lokanath, Mater. Res. Express, 6, 035506 (2018); https://doi.org/10.1088/2053-1591/aaf309
P.S. Rohith, N. Jagannatha and K.V. Pradeep Kumar, J. Mater. Environ. Sci., 11, 788 (2020).
A.M. Ezhil Raj, D.D. Jayanthi, V.B. Jothy, M. Jayachandran and C. Sanjeeviraja, Inorg. Chim. Acta, 362, 1535 (2009); https://doi.org/10.1016/j.ica.2008.07.025
E.D. Bacce, A.M. Pires, M.R. Davalos and M. Jafelicci Jr., Int. J. Inorg. Mater., 3, 443 (2001); https://doi.org/10.1016/S1466-6049(01)00047-2
A.S. Ganavi, S.M. Dharmaprakash, N. Jagannatha, K.P. Nagaraja and Delma D’Souza, Int. J. Innov. Res. Phys., 2, 1 (2021).
F. Daisy Selasteen, S. Alfred Cecil Raj, A. Alagappa Moses, F. Emalda Prince, R. Esther Getsy and R. Elakkiya, J. Cryst. Process Technol., 6, 65499 (2016); https://doi.org/10.4236/jcpt.2016.62002
P.V. Dalal, K.B. Saraf, N.G. Shimpi and N.R. Shah, J. Cryst. Pro. Technol., 2, 156 (2012); https://doi.org/10.4236/jcpt.2012.24023
A.B. Kulkarni, S.N. Mathad and R.P. Bakale, Ann. Chem., 30, 60 (2019); https://doi.org/10.2478/auoc-2019-0011
K.P. Nagaraja, K.J. Pampa, S.R. Kumara Swamy and N.K. Lokanath, J. Appl. Chem., 7, 863 (2018).
F.D. Selasteen, S.A. Cecil Raj, A. Anitha, J. John, T. Lavanya and J.F. Rachel, ISOR J. Appl. Phys., 10, 26 (2018).
P. Vasudevan, S. Sankar and D. Jayaraman, Bull. Korean Chem. Soc., 34, 128 (2013); https://doi.org/10.5012/bkcs.2013.34.1.128
K.P. Nagaraja, Ph.D. Thesis, Department of Studies in Physics, University of Mysore, Mysuru, India (2019).